/*
* Copyright (c) 2017 Thomas Pornin <pornin@bolet.org>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#define BR_POWER_ASM_MACROS 1
#include "inner.h"
#if BR_POWER8
/* see bearssl_block.h */
void
br_aes_pwr8_ctr_init(br_aes_pwr8_ctr_keys *ctx,
const void *key, size_t len)
{
ctx->vtable = &br_aes_pwr8_ctr_vtable;
ctx->num_rounds = br_aes_pwr8_keysched(ctx->skey.skni, key, len);
}
static void
ctr_128(const unsigned char *sk, const unsigned char *ivbuf,
unsigned char *buf, size_t num_blocks)
{
long cc0, cc1, cc2, cc3;
#if BR_POWER8_LE
static const uint32_t idx2be[] = {
0x03020100, 0x07060504, 0x0B0A0908, 0x0F0E0D0C
};
#endif
static const uint32_t ctrinc[] = {
0, 0, 0, 4
};
cc0 = 0;
cc1 = 16;
cc2 = 32;
cc3 = 48;
asm volatile (
/*
* Load subkeys into v0..v10
*/
lxvw4x(32, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(33, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(34, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(35, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(36, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(37, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(38, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(39, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(40, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(41, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(42, %[cc0], %[sk])
li(%[cc0], 0)
#if BR_POWER8_LE
/*
* v15 = constant for byteswapping words
*/
lxvw4x(47, 0, %[idx2be])
#endif
/*
* v28 = increment for IV counter.
*/
lxvw4x(60, 0, %[ctrinc])
/*
* Load IV into v16..v19
*/
lxvw4x(48, %[cc0], %[ivbuf])
lxvw4x(49, %[cc1], %[ivbuf])
lxvw4x(50, %[cc2], %[ivbuf])
lxvw4x(51, %[cc3], %[ivbuf])
#if BR_POWER8_LE
vperm(16, 16, 16, 15)
vperm(17, 17, 17, 15)
vperm(18, 18, 18, 15)
vperm(19, 19, 19, 15)
#endif
mtctr(%[num_blocks])
label(loop)
/*
* Compute next IV into v24..v27
*/
vadduwm(24, 16, 28)
vadduwm(25, 17, 28)
vadduwm(26, 18, 28)
vadduwm(27, 19, 28)
/*
* Load next data blocks. We do this early on but we
* won't need them until IV encryption is done.
*/
lxvw4x(52, %[cc0], %[buf])
lxvw4x(53, %[cc1], %[buf])
lxvw4x(54, %[cc2], %[buf])
lxvw4x(55, %[cc3], %[buf])
/*
* Encrypt the current IV.
*/
vxor(16, 16, 0)
vxor(17, 17, 0)
vxor(18, 18, 0)
vxor(19, 19, 0)
vcipher(16, 16, 1)
vcipher(17, 17, 1)
vcipher(18, 18, 1)
vcipher(19, 19, 1)
vcipher(16, 16, 2)
vcipher(17, 17, 2)
vcipher(18, 18, 2)
vcipher(19, 19, 2)
vcipher(16, 16, 3)
vcipher(17, 17, 3)
vcipher(18, 18, 3)
vcipher(19, 19, 3)
vcipher(16, 16, 4)
vcipher(17, 17, 4)
vcipher(18, 18, 4)
vcipher(19, 19, 4)
vcipher(16, 16, 5)
vcipher(17, 17, 5)
vcipher(18, 18, 5)
vcipher(19, 19, 5)
vcipher(16, 16, 6)
vcipher(17, 17, 6)
vcipher(18, 18, 6)
vcipher(19, 19, 6)
vcipher(16, 16, 7)
vcipher(17, 17, 7)
vcipher(18, 18, 7)
vcipher(19, 19, 7)
vcipher(16, 16, 8)
vcipher(17, 17, 8)
vcipher(18, 18, 8)
vcipher(19, 19, 8)
vcipher(16, 16, 9)
vcipher(17, 17, 9)
vcipher(18, 18, 9)
vcipher(19, 19, 9)
vcipherlast(16, 16, 10)
vcipherlast(17, 17, 10)
vcipherlast(18, 18, 10)
vcipherlast(19, 19, 10)
#if BR_POWER8_LE
vperm(16, 16, 16, 15)
vperm(17, 17, 17, 15)
vperm(18, 18, 18, 15)
vperm(19, 19, 19, 15)
#endif
/*
* Load next plaintext word and XOR with encrypted IV.
*/
vxor(16, 20, 16)
vxor(17, 21, 17)
vxor(18, 22, 18)
vxor(19, 23, 19)
stxvw4x(48, %[cc0], %[buf])
stxvw4x(49, %[cc1], %[buf])
stxvw4x(50, %[cc2], %[buf])
stxvw4x(51, %[cc3], %[buf])
addi(%[buf], %[buf], 64)
/*
* Update IV.
*/
vand(16, 24, 24)
vand(17, 25, 25)
vand(18, 26, 26)
vand(19, 27, 27)
bdnz(loop)
: [cc0] "+b" (cc0), [cc1] "+b" (cc1), [cc2] "+b" (cc2), [cc3] "+b" (cc3),
[buf] "+b" (buf)
: [sk] "b" (sk), [ivbuf] "b" (ivbuf), [num_blocks] "b" (num_blocks >> 2),
[ctrinc] "b" (ctrinc)
#if BR_POWER8_LE
, [idx2be] "b" (idx2be)
#endif
: "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9",
"v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17", "v18", "v19",
"v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29",
"ctr", "memory"
);
}
static void
ctr_192(const unsigned char *sk, const unsigned char *ivbuf,
unsigned char *buf, size_t num_blocks)
{
long cc0, cc1, cc2, cc3;
#if BR_POWER8_LE
static const uint32_t idx2be[] = {
0x03020100, 0x07060504, 0x0B0A0908, 0x0F0E0D0C
};
#endif
static const uint32_t ctrinc[] = {
0, 0, 0, 4
};
cc0 = 0;
cc1 = 16;
cc2 = 32;
cc3 = 48;
asm volatile (
/*
* Load subkeys into v0..v12
*/
lxvw4x(32, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(33, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(34, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(35, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(36, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(37, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(38, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(39, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(40, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(41, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(42, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(43, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(44, %[cc0], %[sk])
li(%[cc0], 0)
#if BR_POWER8_LE
/*
* v15 = constant for byteswapping words
*/
lxvw4x(47, 0, %[idx2be])
#endif
/*
* v28 = increment for IV counter.
*/
lxvw4x(60, 0, %[ctrinc])
/*
* Load IV into v16..v19
*/
lxvw4x(48, %[cc0], %[ivbuf])
lxvw4x(49, %[cc1], %[ivbuf])
lxvw4x(50, %[cc2], %[ivbuf])
lxvw4x(51, %[cc3], %[ivbuf])
#if BR_POWER8_LE
vperm(16, 16, 16, 15)
vperm(17, 17, 17, 15)
vperm(18, 18, 18, 15)
vperm(19, 19, 19, 15)
#endif
mtctr(%[num_blocks])
label(loop)
/*
* Compute next IV into v24..v27
*/
vadduwm(24, 16, 28)
vadduwm(25, 17, 28)
vadduwm(26, 18, 28)
vadduwm(27, 19, 28)
/*
* Load next data blocks. We do this early on but we
* won't need them until IV encryption is done.
*/
lxvw4x(52, %[cc0], %[buf])
lxvw4x(53, %[cc1], %[buf])
lxvw4x(54, %[cc2], %[buf])
lxvw4x(55, %[cc3], %[buf])
/*
* Encrypt the current IV.
*/
vxor(16, 16, 0)
vxor(17, 17, 0)
vxor(18, 18, 0)
vxor(19, 19, 0)
vcipher(16, 16, 1)
vcipher(17, 17, 1)
vcipher(18, 18, 1)
vcipher(19, 19, 1)
vcipher(16, 16, 2)
vcipher(17, 17, 2)
vcipher(18, 18, 2)
vcipher(19, 19, 2)
vcipher(16, 16, 3)
vcipher(17, 17, 3)
vcipher(18, 18, 3)
vcipher(19, 19, 3)
vcipher(16, 16, 4)
vcipher(17, 17, 4)
vcipher(18, 18, 4)
vcipher(19, 19, 4)
vcipher(16, 16, 5)
vcipher(17, 17, 5)
vcipher(18, 18, 5)
vcipher(19, 19, 5)
vcipher(16, 16, 6)
vcipher(17, 17, 6)
vcipher(18, 18, 6)
vcipher(19, 19, 6)
vcipher(16, 16, 7)
vcipher(17, 17, 7)
vcipher(18, 18, 7)
vcipher(19, 19, 7)
vcipher(16, 16, 8)
vcipher(17, 17, 8)
vcipher(18, 18, 8)
vcipher(19, 19, 8)
vcipher(16, 16, 9)
vcipher(17, 17, 9)
vcipher(18, 18, 9)
vcipher(19, 19, 9)
vcipher(16, 16, 10)
vcipher(17, 17, 10)
vcipher(18, 18, 10)
vcipher(19, 19, 10)
vcipher(16, 16, 11)
vcipher(17, 17, 11)
vcipher(18, 18, 11)
vcipher(19, 19, 11)
vcipherlast(16, 16, 12)
vcipherlast(17, 17, 12)
vcipherlast(18, 18, 12)
vcipherlast(19, 19, 12)
#if BR_POWER8_LE
vperm(16, 16, 16, 15)
vperm(17, 17, 17, 15)
vperm(18, 18, 18, 15)
vperm(19, 19, 19, 15)
#endif
/*
* Load next plaintext word and XOR with encrypted IV.
*/
vxor(16, 20, 16)
vxor(17, 21, 17)
vxor(18, 22, 18)
vxor(19, 23, 19)
stxvw4x(48, %[cc0], %[buf])
stxvw4x(49, %[cc1], %[buf])
stxvw4x(50, %[cc2], %[buf])
stxvw4x(51, %[cc3], %[buf])
addi(%[buf], %[buf], 64)
/*
* Update IV.
*/
vand(16, 24, 24)
vand(17, 25, 25)
vand(18, 26, 26)
vand(19, 27, 27)
bdnz(loop)
: [cc0] "+b" (cc0), [cc1] "+b" (cc1), [cc2] "+b" (cc2), [cc3] "+b" (cc3),
[buf] "+b" (buf)
: [sk] "b" (sk), [ivbuf] "b" (ivbuf), [num_blocks] "b" (num_blocks >> 2),
[ctrinc] "b" (ctrinc)
#if BR_POWER8_LE
, [idx2be] "b" (idx2be)
#endif
: "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9",
"v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17", "v18", "v19",
"v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29",
"ctr", "memory"
);
}
static void
ctr_256(const unsigned char *sk, const unsigned char *ivbuf,
unsigned char *buf, size_t num_blocks)
{
long cc0, cc1, cc2, cc3;
#if BR_POWER8_LE
static const uint32_t idx2be[] = {
0x03020100, 0x07060504, 0x0B0A0908, 0x0F0E0D0C
};
#endif
static const uint32_t ctrinc[] = {
0, 0, 0, 4
};
cc0 = 0;
cc1 = 16;
cc2 = 32;
cc3 = 48;
asm volatile (
/*
* Load subkeys into v0..v14
*/
lxvw4x(32, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(33, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(34, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(35, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(36, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(37, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(38, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(39, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(40, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(41, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(42, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(43, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(44, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(45, %[cc0], %[sk])
addi(%[cc0], %[cc0], 16)
lxvw4x(46, %[cc0], %[sk])
li(%[cc0], 0)
#if BR_POWER8_LE
/*
* v15 = constant for byteswapping words
*/
lxvw4x(47, 0, %[idx2be])
#endif
/*
* v28 = increment for IV counter.
*/
lxvw4x(60, 0, %[ctrinc])
/*
* Load IV into v16..v19
*/
lxvw4x(48, %[cc0], %[ivbuf])
lxvw4x(49, %[cc1], %[ivbuf])
lxvw4x(50, %[cc2], %[ivbuf])
lxvw4x(51, %[cc3], %[ivbuf])
#if BR_POWER8_LE
vperm(16, 16, 16, 15)
vperm(17, 17, 17, 15)
vperm(18, 18, 18, 15)
vperm(19, 19, 19, 15)
#endif
mtctr(%[num_blocks])
label(loop)
/*
* Compute next IV into v24..v27
*/
vadduwm(24, 16, 28)
vadduwm(25, 17, 28)
vadduwm(26, 18, 28)
vadduwm(27, 19, 28)
/*
* Load next data blocks. We do this early on but we
* won't need them until IV encryption is done.
*/
lxvw4x(52, %[cc0], %[buf])
lxvw4x(53, %[cc1], %[buf])
lxvw4x(54, %[cc2], %[buf])
lxvw4x(55, %[cc3], %[buf])
/*
* Encrypt the current IV.
*/
vxor(16, 16, 0)
vxor(17, 17, 0)
vxor(18, 18, 0)
vxor(19, 19, 0)
vcipher(16, 16, 1)
vcipher(17, 17, 1)
vcipher(18, 18, 1)
vcipher(19, 19, 1)
vcipher(16, 16, 2)
vcipher(17, 17, 2)
vcipher(18, 18, 2)
vcipher(19, 19, 2)
vcipher(16, 16, 3)
vcipher(17, 17, 3)
vcipher(18, 18, 3)
vcipher(19, 19, 3)
vcipher(16, 16, 4)
vcipher(17, 17, 4)
vcipher(18, 18, 4)
vcipher(19, 19, 4)
vcipher(16, 16, 5)
vcipher(17, 17, 5)
vcipher(18, 18, 5)
vcipher(19, 19, 5)
vcipher(16, 16, 6)
vcipher(17, 17, 6)
vcipher(18, 18, 6)
vcipher(19, 19, 6)
vcipher(16, 16, 7)
vcipher(17, 17, 7)
vcipher(18, 18, 7)
vcipher(19, 19, 7)
vcipher(16, 16, 8)
vcipher(17, 17, 8)
vcipher(18, 18, 8)
vcipher(19, 19, 8)
vcipher(16, 16, 9)
vcipher(17, 17, 9)
vcipher(18, 18, 9)
vcipher(19, 19, 9)
vcipher(16, 16, 10)
vcipher(17, 17, 10)
vcipher(18, 18, 10)
vcipher(19, 19, 10)
vcipher(16, 16, 11)
vcipher(17, 17, 11)
vcipher(18, 18, 11)
vcipher(19, 19, 11)
vcipher(16, 16, 12)
vcipher(17, 17, 12)
vcipher(18, 18, 12)
vcipher(19, 19, 12)
vcipher(16, 16, 13)
vcipher(17, 17, 13)
vcipher(18, 18, 13)
vcipher(19, 19, 13)
vcipherlast(16, 16, 14)
vcipherlast(17, 17, 14)
vcipherlast(18, 18, 14)
vcipherlast(19, 19, 14)
#if BR_POWER8_LE
vperm(16, 16, 16, 15)
vperm(17, 17, 17, 15)
vperm(18, 18, 18, 15)
vperm(19, 19, 19, 15)
#endif
/*
* Load next plaintext word and XOR with encrypted IV.
*/
vxor(16, 20, 16)
vxor(17, 21, 17)
vxor(18, 22, 18)
vxor(19, 23, 19)
stxvw4x(48, %[cc0], %[buf])
stxvw4x(49, %[cc1], %[buf])
stxvw4x(50, %[cc2], %[buf])
stxvw4x(51, %[cc3], %[buf])
addi(%[buf], %[buf], 64)
/*
* Update IV.
*/
vand(16, 24, 24)
vand(17, 25, 25)
vand(18, 26, 26)
vand(19, 27, 27)
bdnz(loop)
: [cc0] "+b" (cc0), [cc1] "+b" (cc1), [cc2] "+b" (cc2), [cc3] "+b" (cc3),
[buf] "+b" (buf)
: [sk] "b" (sk), [ivbuf] "b" (ivbuf), [num_blocks] "b" (num_blocks >> 2),
[ctrinc] "b" (ctrinc)
#if BR_POWER8_LE
, [idx2be] "b" (idx2be)
#endif
: "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9",
"v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17", "v18", "v19",
"v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29",
"ctr", "memory"
);
}
/* see bearssl_block.h */
uint32_t
br_aes_pwr8_ctr_run(const br_aes_pwr8_ctr_keys *ctx,
const void *iv, uint32_t cc, void *data, size_t len)
{
unsigned char *buf;
unsigned char ivbuf[64];
buf = data;
memcpy(ivbuf + 0, iv, 12);
memcpy(ivbuf + 16, iv, 12);
memcpy(ivbuf + 32, iv, 12);
memcpy(ivbuf + 48, iv, 12);
if (len >= 64) {
br_enc32be(ivbuf + 12, cc + 0);
br_enc32be(ivbuf + 28, cc + 1);
br_enc32be(ivbuf + 44, cc + 2);
br_enc32be(ivbuf + 60, cc + 3);
switch (ctx->num_rounds) {
case 10:
ctr_128(ctx->skey.skni, ivbuf, buf,
(len >> 4) & ~(size_t)3);
break;
case 12:
ctr_192(ctx->skey.skni, ivbuf, buf,
(len >> 4) & ~(size_t)3);
break;
default:
ctr_256(ctx->skey.skni, ivbuf, buf,
(len >> 4) & ~(size_t)3);
break;
}
cc += (len >> 4) & ~(size_t)3;
buf += len & ~(size_t)63;
len &= 63;
}
if (len > 0) {
unsigned char tmp[64];
memcpy(tmp, buf, len);
memset(tmp + len, 0, (sizeof tmp) - len);
br_enc32be(ivbuf + 12, cc + 0);
br_enc32be(ivbuf + 28, cc + 1);
br_enc32be(ivbuf + 44, cc + 2);
br_enc32be(ivbuf + 60, cc + 3);
switch (ctx->num_rounds) {
case 10:
ctr_128(ctx->skey.skni, ivbuf, tmp, 4);
break;
case 12:
ctr_192(ctx->skey.skni, ivbuf, tmp, 4);
break;
default:
ctr_256(ctx->skey.skni, ivbuf, tmp, 4);
break;
}
memcpy(buf, tmp, len);
cc += (len + 15) >> 4;
}
return cc;
}
/* see bearssl_block.h */
const br_block_ctr_class br_aes_pwr8_ctr_vtable = {
sizeof(br_aes_pwr8_ctr_keys),
16,
4,
(void (*)(const br_block_ctr_class **, const void *, size_t))
&br_aes_pwr8_ctr_init,
(uint32_t (*)(const br_block_ctr_class *const *,
const void *, uint32_t, void *, size_t))
&br_aes_pwr8_ctr_run
};
/* see bearssl_block.h */
const br_block_ctr_class *
br_aes_pwr8_ctr_get_vtable(void)
{
return br_aes_pwr8_supported() ? &br_aes_pwr8_ctr_vtable : NULL;
}
#else
/* see bearssl_block.h */
const br_block_ctr_class *
br_aes_pwr8_ctr_get_vtable(void)
{
return NULL;
}
#endif