Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
/*-
 * Copyright (c) 2006-2011 Joseph Koshy
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <assert.h>
#include <libelf.h>
#include <string.h>

#include "_libelf.h"

ELFTC_VCSID("$Id: libelf_convert.m4 3712 2019-03-16 22:23:34Z jkoshy $");

/* WARNING: GENERATED FROM __file__. */

divert(-1)

# Generate conversion routines for converting between in-memory and
# file representations of Elf data structures.
#
# These conversions use the type information defined in `elf_types.m4'.

include(SRCDIR`/elf_types.m4')

# For the purposes of generating conversion code, ELF types may be
# classified according to the following characteristics:
#
# 1. Whether the ELF type can be directly mapped to an integral C
#    language type.  For example, the ELF_T_WORD type maps directly to
#    a 'uint32_t', but ELF_T_GNUHASH lacks a matching C type.
#
# 2. Whether the type has word size dependent variants.  For example,
#    ELT_T_EHDR is represented using C types Elf32_Ehdr and El64_Ehdr,
#    and the ELF_T_ADDR and ELF_T_OFF types have integral C types that
#    can be 32- or 64- bit wide.
#
# 3. Whether the ELF types has a fixed representation or not.  For
#    example, the ELF_T_SYM type has a fixed size file representation,
#    some types like ELF_T_NOTE and ELF_T_GNUHASH use a variable size
#    representation.
#
# We use m4 macros to generate conversion code for ELF types that have
# a fixed size representation.  Conversion functions for the remaining
# types are coded by hand.
#
#* Handling File and Memory Representations
#
# `In-memory' representations of an Elf data structure use natural
# alignments and native byte ordering.  This allows pointer arithmetic
# and casting to work as expected.  On the other hand, the `file'
# representation of an ELF data structure could possibly be packed
# tighter than its `in-memory' representation, and could be of a
# differing byte order.  Reading ELF objects that are members of `ar'
# archives present an additional complication: `ar' pads file data to
# even addresses, so file data structures in an archive member
# residing inside an `ar' archive could be at misaligned memory
# addresses when brought into memory.
#
# In summary, casting the `char *' pointers that point to memory
# representations (i.e., source pointers for the *_tof() functions and
# the destination pointers for the *_tom() functions), is safe, as
# these pointers should be correctly aligned for the memory type
# already.  However, pointers to file representations have to be
# treated as being potentially unaligned and no casting can be done.

# NOCVT(TYPE) -- Do not generate the cvt[] structure entry for TYPE
define(`NOCVT',`define(`NOCVT_'$1,1)')

# NOFUNC(TYPE) -- Do not generate a conversion function for TYPE
define(`NOFUNC',`define(`NOFUNC_'$1,1)')

# IGNORE(TYPE) -- Completely ignore the type.
define(`IGNORE',`NOCVT($1)NOFUNC($1)')

# Mark ELF types that should not be processed by the M4 macros below.

# Types for which we use functions with non-standard names.
IGNORE(`BYTE')			# Uses a wrapper around memcpy().
IGNORE(`NOTE')			# Not a fixed size type.

# Types for which we supply hand-coded functions.
NOFUNC(`GNUHASH')		# A type with complex internal structure.
NOFUNC(`VDEF')			# See MAKE_VERSION_CONVERTERS below.
NOFUNC(`VNEED')			# ..

# Unimplemented types.
IGNORE(`MOVEP')

# ELF types that don't exist in a 32-bit world.
NOFUNC(`XWORD32')
NOFUNC(`SXWORD32')

# `Primitive' ELF types are those that are an alias for an integral
# type.  As they have no internal structure, they can be copied using
# a `memcpy()', and byteswapped in straightforward way.
#
# Mark all ELF types that directly map to integral C types.
define(`PRIM_ADDR',	1)
define(`PRIM_BYTE',	1)
define(`PRIM_HALF',	1)
define(`PRIM_LWORD',	1)
define(`PRIM_OFF',	1)
define(`PRIM_SWORD',	1)
define(`PRIM_SXWORD',	1)
define(`PRIM_WORD',	1)
define(`PRIM_XWORD',	1)

# Note the primitive types that are size-dependent.
define(`SIZEDEP_ADDR',	1)
define(`SIZEDEP_OFF',	1)

# Generate conversion functions for primitive types.
#
# Macro use: MAKEPRIMFUNCS(ELFTYPE,CTYPE,TYPESIZE,SYMSIZE)
# `$1': Name of the ELF type.
# `$2': C structure name suffix.
# `$3': ELF class specifier for types, one of [`32', `64'].
# `$4': Additional ELF class specifier, one of [`', `32', `64'].
#
# Generates a pair of conversion functions.
define(`MAKEPRIMFUNCS',`
static int
_libelf_cvt_$1$4_tof(unsigned char *dst, size_t dsz, unsigned char *src,
    size_t count, int byteswap)
{
	Elf$3_$2 t, *s = (Elf$3_$2 *) (uintptr_t) src;
	size_t c;

	(void) dsz;

	if (!byteswap) {
		(void) memcpy(dst, src, count * sizeof(*s));
		return (1);
	}

	for (c = 0; c < count; c++) {
		t = *s++;
		SWAP_$1$4(t);
		WRITE_$1$4(dst,t);
	}

	return (1);
}

static int
_libelf_cvt_$1$4_tom(unsigned char *dst, size_t dsz, unsigned char *src,
    size_t count, int byteswap)
{
	Elf$3_$2 t, *d = (Elf$3_$2 *) (uintptr_t) dst;
	size_t c;

	if (dsz < count * sizeof(Elf$3_$2))
		return (0);

	if (!byteswap) {
		(void) memcpy(dst, src, count * sizeof(*d));
		return (1);
	}

	for (c = 0; c < count; c++) {
		READ_$1$4(src,t);
		SWAP_$1$4(t);
		*d++ = t;
	}

	return (1);
}
')

#
# Handling composite ELF types
#

# SWAP_FIELD(FIELDNAME,ELFTYPE) -- Generate code to swap one field.
define(`SWAP_FIELD',
  `ifdef(`SIZEDEP_'$2,
    `SWAP_$2'SZ()`(t.$1);
			',
    `SWAP_$2(t.$1);
			')')

# SWAP_MEMBERS(STRUCT) -- Iterate over a structure definition.
define(`SWAP_MEMBERS',
  `ifelse($#,1,`/**/',
     `SWAP_FIELD($1)SWAP_MEMBERS(shift($@))')')

# SWAP_STRUCT(CTYPE,SIZE) -- Generate code to swap an ELF structure.
define(`SWAP_STRUCT',
  `pushdef(`SZ',$2)/* Swap an Elf$2_$1 */
			SWAP_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')')

# WRITE_FIELD(ELFTYPE,FIELDNAME) -- Generate code to write one field.
define(`WRITE_FIELD',
  `ifdef(`SIZEDEP_'$2,
    `WRITE_$2'SZ()`(dst,t.$1);
		',
    `WRITE_$2(dst,t.$1);
		')')

# WRITE_MEMBERS(ELFTYPELIST) -- Iterate over a structure definition.
define(`WRITE_MEMBERS',
  `ifelse($#,1,`/**/',
    `WRITE_FIELD($1)WRITE_MEMBERS(shift($@))')')

# WRITE_STRUCT(CTYPE,SIZE) -- Generate code to write out an ELF structure.
define(`WRITE_STRUCT',
  `pushdef(`SZ',$2)/* Write an Elf$2_$1 */
		WRITE_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')')

# READ_FIELD(ELFTYPE,CTYPE) -- Generate code to read one field.
define(`READ_FIELD',
  `ifdef(`SIZEDEP_'$2,
    `READ_$2'SZ()`(s,t.$1);
		',
    `READ_$2(s,t.$1);
		')')

# READ_MEMBERS(ELFTYPELIST) -- Iterate over a structure definition.
define(`READ_MEMBERS',
  `ifelse($#,1,`/**/',
    `READ_FIELD($1)READ_MEMBERS(shift($@))')')

# READ_STRUCT(CTYPE,SIZE) -- Generate code to read an ELF structure.
define(`READ_STRUCT',
  `pushdef(`SZ',$2)/* Read an Elf$2_$1 */
		READ_MEMBERS(Elf$2_$1_DEF)popdef(`SZ')')


# MAKECOMPFUNCS -- Generate converters for composite ELF structures.
#
# When converting data to file representation, the source pointer will
# be naturally aligned for a data structure's in-memory
# representation.  When converting data to memory, the destination
# pointer will be similarly aligned.
#
# For in-place conversions, when converting to file representations,
# the source buffer is large enough to hold `file' data.  When
# converting from file to memory, we need to be careful to work
# `backwards', to avoid overwriting unconverted data.
#
# Macro use:
# `$1': Name of the ELF type.
# `$2': C structure name suffix.
# `$3': ELF class specifier, one of [`', `32', `64']
define(`MAKECOMPFUNCS', `ifdef(`NOFUNC_'$1$3,`',`
static int
_libelf_cvt_$1$3_tof(unsigned char *dst, size_t dsz, unsigned char *src,
    size_t count, int byteswap)
{
	Elf$3_$2	t, *s;
	size_t c;

	(void) dsz;

	s = (Elf$3_$2 *) (uintptr_t) src;
	for (c = 0; c < count; c++) {
		t = *s++;
		if (byteswap) {
			SWAP_STRUCT($2,$3)
		}
		WRITE_STRUCT($2,$3)
	}

	return (1);
}

static int
_libelf_cvt_$1$3_tom(unsigned char *dst, size_t dsz, unsigned char *src,
    size_t count, int byteswap)
{
	Elf$3_$2	t, *d;
	unsigned char	*s,*s0;
	size_t		fsz;

	fsz = elf$3_fsize(ELF_T_$1, (size_t) 1, EV_CURRENT);
	d   = ((Elf$3_$2 *) (uintptr_t) dst) + (count - 1);
	s0  = src + (count - 1) * fsz;

	if (dsz < count * sizeof(Elf$3_$2))
		return (0);

	while (count--) {
		s = s0;
		READ_STRUCT($2,$3)
		if (byteswap) {
			SWAP_STRUCT($2,$3)
		}
		*d-- = t; s0 -= fsz;
	}

	return (1);
}
')')

# MAKE_TYPE_CONVERTER(ELFTYPE,CTYPE)
#
# Make type convertor functions from the type definition
# of the ELF type:
# - Skip convertors marked as `NOFUNC'.
# - Invoke `MAKEPRIMFUNCS' or `MAKECOMPFUNCS' as appropriate.
define(`MAKE_TYPE_CONVERTER',
  `ifdef(`NOFUNC_'$1,`',
    `ifdef(`PRIM_'$1,
      `ifdef(`SIZEDEP_'$1,
	`MAKEPRIMFUNCS($1,$2,32,32)dnl
	 MAKEPRIMFUNCS($1,$2,64,64)',
	`MAKEPRIMFUNCS($1,$2,64)')',
      `MAKECOMPFUNCS($1,$2,32)dnl
       MAKECOMPFUNCS($1,$2,64)')')')

# MAKE_TYPE_CONVERTERS(ELFTYPELIST) -- Generate conversion functions.
define(`MAKE_TYPE_CONVERTERS',
  `ifelse($#,1,`',
    `MAKE_TYPE_CONVERTER($1)MAKE_TYPE_CONVERTERS(shift($@))')')


#
# Macros to generate entries for the table of convertors.
#

# CONV(ELFTYPE,SIZE,DIRECTION)
#
# Generate the name of a convertor function.
define(`CONV',
  `ifdef(`NOFUNC_'$1$2,
    `.$3$2 = NULL',
    `ifdef(`PRIM_'$1,
      `ifdef(`SIZEDEP_'$1,
	`.$3$2 = _libelf_cvt_$1$2_$3',
	`.$3$2 = _libelf_cvt_$1_$3')',
      `.$3$2 = _libelf_cvt_$1$2_$3')')')

# CONVERTER_NAME(ELFTYPE)
#
# Generate the contents of one `struct cvt' instance.
define(`CONVERTER_NAME',
  `ifdef(`NOCVT_'$1,`',
    `	[ELF_T_$1] = {
		CONV($1,32,tof),
		CONV($1,32,tom),
		CONV($1,64,tof),
		CONV($1,64,tom)
	},

')')

# CONVERTER_NAMES(ELFTYPELIST)
#
# Generate the `struct cvt[]' array.
define(`CONVERTER_NAMES',
  `ifelse($#,1,`',
    `CONVERTER_NAME($1)CONVERTER_NAMES(shift($@))')')

#
# Handling ELF version sections.
#

# _FSZ(FIELD,BASETYPE) - return the file size for a field.
define(`_FSZ',
  `ifelse($2,`HALF',2,
     $2,`WORD',4)')

# FSZ(STRUCT) - determine the file size of a structure.
define(`FSZ',
  `ifelse($#,1,0,
    `eval(_FSZ($1) + FSZ(shift($@)))')')

# MAKE_VERSION_CONVERTERS(TYPE,BASE,AUX,PFX) -- Generate conversion
# functions for versioning structures.
define(`MAKE_VERSION_CONVERTERS',
  `MAKE_VERSION_CONVERTER($1,$2,$3,$4,32)
   MAKE_VERSION_CONVERTER($1,$2,$3,$4,64)')

# MAKE_VERSION_CONVERTOR(TYPE,CBASE,CAUX,PFX,SIZE) -- Generate a
# conversion function.
define(`MAKE_VERSION_CONVERTER',`
static int
_libelf_cvt_$1$5_tof(unsigned char *dst, size_t dsz, unsigned char *src,
    size_t count, int byteswap)
{
	Elf$5_$2	t;
	Elf$5_$3	a;
	const size_t	verfsz = FSZ(Elf$5_$2_DEF);
	const size_t	auxfsz = FSZ(Elf$5_$3_DEF);
	const size_t	vermsz = sizeof(Elf$5_$2);
	const size_t	auxmsz = sizeof(Elf$5_$3);
	unsigned char * const dstend = dst + dsz;
	unsigned char * const srcend = src + count;
	unsigned char	*dtmp, *dstaux, *srcaux;
	Elf$5_Word	aux, anext, cnt, vnext;

	for (dtmp = dst, vnext = ~0U;
	     vnext != 0 && dtmp + verfsz <= dstend && src + vermsz <= srcend;
	     dtmp += vnext, src += vnext) {

		/* Read in an Elf$5_$2 structure. */
		t = *((Elf$5_$2 *) (uintptr_t) src);

		aux = t.$4_aux;
		cnt = t.$4_cnt;
		vnext = t.$4_next;

		if (byteswap) {
			SWAP_STRUCT($2, $5)
		}

		dst = dtmp;
		WRITE_STRUCT($2, $5)

		if (aux < verfsz)
			return (0);

		/* Process AUX entries. */
		for (anext = ~0U, dstaux = dtmp + aux, srcaux = src + aux;
		     cnt != 0 && anext != 0 && dstaux + auxfsz <= dstend &&
			srcaux + auxmsz <= srcend;
		     dstaux += anext, srcaux += anext, cnt--) {

			/* Read in an Elf$5_$3 structure. */
			a = *((Elf$5_$3 *) (uintptr_t) srcaux);
			anext = a.$4a_next;

			if (byteswap) {
				pushdef(`t',`a')SWAP_STRUCT($3, $5)popdef(`t')
			}

			dst = dstaux;
			pushdef(`t',`a')WRITE_STRUCT($3, $5)popdef(`t')
		}

		if (anext || cnt)
			return (0);
	}

	if (vnext)
		return (0);

	return (1);
}

static int
_libelf_cvt_$1$5_tom(unsigned char *dst, size_t dsz, unsigned char *src,
    size_t count, int byteswap)
{
	Elf$5_$2	t, *dp;
	Elf$5_$3	a, *ap;
	const size_t	verfsz = FSZ(Elf$5_$2_DEF);
	const size_t	auxfsz = FSZ(Elf$5_$3_DEF);
	const size_t	vermsz = sizeof(Elf$5_$2);
	const size_t	auxmsz = sizeof(Elf$5_$3);
	unsigned char * const dstend = dst + dsz;
	unsigned char * const srcend = src + count;
	unsigned char	*dstaux, *s, *srcaux, *stmp;
	Elf$5_Word	aux, anext, cnt, vnext;

	for (stmp = src, vnext = ~0U;
	     vnext != 0 && stmp + verfsz <= srcend && dst + vermsz <= dstend;
	     stmp += vnext, dst += vnext) {

		/* Read in a $1 structure. */
		s = stmp;
		READ_STRUCT($2, $5)
		if (byteswap) {
			SWAP_STRUCT($2, $5)
		}

		dp = (Elf$5_$2 *) (uintptr_t) dst;
		*dp = t;

		aux = t.$4_aux;
		cnt = t.$4_cnt;
		vnext = t.$4_next;

		if (aux < vermsz)
			return (0);

		/* Process AUX entries. */
		for (anext = ~0U, dstaux = dst + aux, srcaux = stmp + aux;
		     cnt != 0 && anext != 0 && dstaux + auxmsz <= dstend &&
			srcaux + auxfsz <= srcend;
		     dstaux += anext, srcaux += anext, cnt--) {

			s = srcaux;
			pushdef(`t',`a')READ_STRUCT($3, $5)popdef(`t')

			if (byteswap) {
				pushdef(`t',`a')SWAP_STRUCT($3, $5)popdef(`t')
			}

			anext = a.$4a_next;

			ap = ((Elf$5_$3 *) (uintptr_t) dstaux);
			*ap = a;
		}

		if (anext || cnt)
			return (0);
	}

	if (vnext)
		return (0);

	return (1);
}')

divert(0)

/*
 * C macros to byte swap integral quantities.
 */

#define	SWAP_BYTE(X)	do { (void) (X); } while (0)
#define	SWAP_IDENT(X)	do { (void) (X); } while (0)
#define	SWAP_HALF(X)	do {						\
		uint16_t _x = (uint16_t) (X);				\
		uint32_t _t = _x & 0xFFU;				\
		_t <<= 8U; _x >>= 8U; _t |= _x & 0xFFU;			\
		(X) = (uint16_t) _t;					\
	} while (0)
#define	_SWAP_WORD(X, T) do {						\
		uint32_t _x = (uint32_t) (X);				\
		uint32_t _t = _x & 0xFF;				\
		_t <<= 8; _x >>= 8; _t |= _x & 0xFF;			\
		_t <<= 8; _x >>= 8; _t |= _x & 0xFF;			\
		_t <<= 8; _x >>= 8; _t |= _x & 0xFF;			\
		(X) = (T) _t;						\
	} while (0)
#define	SWAP_ADDR32(X)	_SWAP_WORD(X, Elf32_Addr)
#define	SWAP_OFF32(X)	_SWAP_WORD(X, Elf32_Off)
#define	SWAP_SWORD(X)	_SWAP_WORD(X, Elf32_Sword)
#define	SWAP_WORD(X)	_SWAP_WORD(X, Elf32_Word)
#define	_SWAP_WORD64(X, T) do {						\
		uint64_t _x = (uint64_t) (X);				\
		uint64_t _t = _x & 0xFF;				\
		_t <<= 8; _x >>= 8; _t |= _x & 0xFF;			\
		_t <<= 8; _x >>= 8; _t |= _x & 0xFF;			\
		_t <<= 8; _x >>= 8; _t |= _x & 0xFF;			\
		_t <<= 8; _x >>= 8; _t |= _x & 0xFF;			\
		_t <<= 8; _x >>= 8; _t |= _x & 0xFF;			\
		_t <<= 8; _x >>= 8; _t |= _x & 0xFF;			\
		_t <<= 8; _x >>= 8; _t |= _x & 0xFF;			\
		(X) = (T) _t;						\
	} while (0)
#define	SWAP_ADDR64(X)	_SWAP_WORD64(X, Elf64_Addr)
#define	SWAP_LWORD(X)	_SWAP_WORD64(X, Elf64_Lword)
#define	SWAP_OFF64(X)	_SWAP_WORD64(X, Elf64_Off)
#define	SWAP_SXWORD(X)	_SWAP_WORD64(X, Elf64_Sxword)
#define	SWAP_XWORD(X)	_SWAP_WORD64(X, Elf64_Xword)

/*
 * C macros to write out various integral values.
 *
 * Note:
 * - The destination pointer could be unaligned.
 * - Values are written out in native byte order.
 * - The destination pointer is incremented after the write.
 */
#define	WRITE_BYTE(P,X) do {						\
		unsigned char *const _p = (unsigned char *) (P);	\
		_p[0]		= (unsigned char) (X);			\
		(P)		= _p + 1;				\
	} while (0)
#define	WRITE_HALF(P,X)	do {						\
		uint16_t _t	= (X);					\
		unsigned char *const _p	= (unsigned char *) (P);	\
		const unsigned char *const _q = (unsigned char *) &_t;	\
		_p[0]		= _q[0];				\
		_p[1]		= _q[1];				\
		(P)		= _p + 2;				\
	} while (0)
#define	WRITE_WORD(P,X) do {						\
		uint32_t _t	= (uint32_t) (X);			\
		unsigned char *const _p	= (unsigned char *) (P);	\
		const unsigned char *const _q = (unsigned char *) &_t;	\
		_p[0]		= _q[0];				\
		_p[1]		= _q[1];				\
		_p[2]		= _q[2];				\
		_p[3]		= _q[3];				\
		(P)		= _p + 4;				\
	} while (0)
#define	WRITE_ADDR32(P,X)	WRITE_WORD(P,X)
#define	WRITE_OFF32(P,X)	WRITE_WORD(P,X)
#define	WRITE_SWORD(P,X)	WRITE_WORD(P,X)
#define	WRITE_WORD64(P,X)	do {					\
		uint64_t _t	= (uint64_t) (X);			\
		unsigned char *const _p	= (unsigned char *) (P);	\
		const unsigned char *const _q = (unsigned char *) &_t;	\
		_p[0]		= _q[0];				\
		_p[1]		= _q[1];				\
		_p[2]		= _q[2];				\
		_p[3]		= _q[3];				\
		_p[4]		= _q[4];				\
		_p[5]		= _q[5];				\
		_p[6]		= _q[6];				\
		_p[7]		= _q[7];				\
		(P)		= _p + 8;				\
	} while (0)
#define	WRITE_ADDR64(P,X)	WRITE_WORD64(P,X)
#define	WRITE_LWORD(P,X)	WRITE_WORD64(P,X)
#define	WRITE_OFF64(P,X)	WRITE_WORD64(P,X)
#define	WRITE_SXWORD(P,X)	WRITE_WORD64(P,X)
#define	WRITE_XWORD(P,X)	WRITE_WORD64(P,X)
#define	WRITE_IDENT(P,X)	do {					\
		(void) memcpy((P), (X), sizeof((X)));			\
		(P)		= (P) + EI_NIDENT;			\
	} while (0)

/*
 * C macros to read in various integral values.
 *
 * Note:
 * - The source pointer could be unaligned.
 * - Values are read in native byte order.
 * - The source pointer is incremented appropriately.
 */

#define	READ_BYTE(P,X)	do {						\
		const unsigned char *const _p =				\
			(const unsigned char *) (P);			\
		(X)		= _p[0];				\
		(P)		= (P) + 1;				\
	} while (0)
#define	READ_HALF(P,X)	do {						\
		uint16_t _t;						\
		unsigned char *const _q = (unsigned char *) &_t;	\
		const unsigned char *const _p =				\
			(const unsigned char *) (P);			\
		_q[0]		= _p[0];				\
		_q[1]		= _p[1];				\
		(P)		= (P) + 2;				\
		(X)		= _t;					\
	} while (0)
#define	_READ_WORD(P,X,T) do {						\
		uint32_t _t;						\
		unsigned char *const _q = (unsigned char *) &_t;	\
		const unsigned char *const _p =				\
			(const unsigned char *) (P);			\
		_q[0]		= _p[0];				\
		_q[1]		= _p[1];				\
		_q[2]		= _p[2];				\
		_q[3]		= _p[3];				\
		(P)		= (P) + 4;				\
		(X)		= (T) _t;				\
	} while (0)
#define	READ_ADDR32(P,X)	_READ_WORD(P, X, Elf32_Addr)
#define	READ_OFF32(P,X)		_READ_WORD(P, X, Elf32_Off)
#define	READ_SWORD(P,X)		_READ_WORD(P, X, Elf32_Sword)
#define	READ_WORD(P,X)		_READ_WORD(P, X, Elf32_Word)
#define	_READ_WORD64(P,X,T)	do {					\
		uint64_t _t;						\
		unsigned char *const _q = (unsigned char *) &_t;	\
		const unsigned char *const _p =				\
			(const unsigned char *) (P);			\
		_q[0]		= _p[0];				\
		_q[1]		= _p[1];				\
		_q[2]		= _p[2];				\
		_q[3]		= _p[3];				\
		_q[4]		= _p[4];				\
		_q[5]		= _p[5];				\
		_q[6]		= _p[6];				\
		_q[7]		= _p[7];				\
		(P)		= (P) + 8;				\
		(X)		= (T) _t;				\
	} while (0)
#define	READ_ADDR64(P,X)	_READ_WORD64(P, X, Elf64_Addr)
#define	READ_LWORD(P,X)		_READ_WORD64(P, X, Elf64_Lword)
#define	READ_OFF64(P,X)		_READ_WORD64(P, X, Elf64_Off)
#define	READ_SXWORD(P,X)	_READ_WORD64(P, X, Elf64_Sxword)
#define	READ_XWORD(P,X)		_READ_WORD64(P, X, Elf64_Xword)
#define	READ_IDENT(P,X)		do {					\
		(void) memcpy((X), (P), sizeof((X)));			\
		(P)		= (P) + EI_NIDENT;			\
	} while (0)

#define	ROUNDUP2(V,N)	(V) = ((((V) + (N) - 1)) & ~((N) - 1))

/*[*/
MAKE_TYPE_CONVERTERS(ELF_TYPE_LIST)
MAKE_VERSION_CONVERTERS(VDEF,Verdef,Verdaux,vd)
MAKE_VERSION_CONVERTERS(VNEED,Verneed,Vernaux,vn)
/*]*/

/*
 * Sections of type ELF_T_BYTE are never byteswapped, consequently a
 * simple memcpy suffices for both directions of conversion.
 */

static int
_libelf_cvt_BYTE_tox(unsigned char *dst, size_t dsz, unsigned char *src,
    size_t count, int byteswap)
{
	(void) byteswap;
	if (dsz < count)
		return (0);
	if (dst != src)
		(void) memcpy(dst, src, count);
	return (1);
}

/*
 * Sections of type ELF_T_GNUHASH start with a header containing 4 32-bit
 * words.  Bloom filter data comes next, followed by hash buckets and the
 * hash chain.
 *
 * Bloom filter words are 64 bit wide on ELFCLASS64 objects and are 32 bit
 * wide on ELFCLASS32 objects.  The other objects in this section are 32
 * bits wide.
 *
 * Argument `srcsz' denotes the number of bytes to be converted.  In the
 * 32-bit case we need to translate `srcsz' to a count of 32-bit words.
 */

static int
_libelf_cvt_GNUHASH32_tom(unsigned char *dst, size_t dsz, unsigned char *src,
    size_t srcsz, int byteswap)
{
	return (_libelf_cvt_WORD_tom(dst, dsz, src, srcsz / sizeof(uint32_t),
		byteswap));
}

static int
_libelf_cvt_GNUHASH32_tof(unsigned char *dst, size_t dsz, unsigned char *src,
    size_t srcsz, int byteswap)
{
	return (_libelf_cvt_WORD_tof(dst, dsz, src, srcsz / sizeof(uint32_t),
		byteswap));
}

static int
_libelf_cvt_GNUHASH64_tom(unsigned char *dst, size_t dsz, unsigned char *src,
    size_t srcsz, int byteswap)
{
	size_t sz;
	uint64_t t64, *bloom64;
	Elf_GNU_Hash_Header *gh;
	uint32_t n, nbuckets, nchains, maskwords, shift2, symndx, t32;
	uint32_t *buckets, *chains;

	sz = 4 * sizeof(uint32_t);	/* File header is 4 words long. */
	if (dsz < sizeof(Elf_GNU_Hash_Header) || srcsz < sz)
		return (0);

	/* Read in the section header and byteswap if needed. */
	READ_WORD(src, nbuckets);
	READ_WORD(src, symndx);
	READ_WORD(src, maskwords);
	READ_WORD(src, shift2);

	srcsz -= sz;

	if (byteswap) {
		SWAP_WORD(nbuckets);
		SWAP_WORD(symndx);
		SWAP_WORD(maskwords);
		SWAP_WORD(shift2);
	}

	/* Check source buffer and destination buffer sizes. */
	sz = nbuckets * sizeof(uint32_t) + maskwords * sizeof(uint64_t);
	if (srcsz < sz || dsz < sz + sizeof(Elf_GNU_Hash_Header))
		return (0);

	gh = (Elf_GNU_Hash_Header *) (uintptr_t) dst;
	gh->gh_nbuckets  = nbuckets;
	gh->gh_symndx    = symndx;
	gh->gh_maskwords = maskwords;
	gh->gh_shift2    = shift2;

	dsz -= sizeof(Elf_GNU_Hash_Header);
	dst += sizeof(Elf_GNU_Hash_Header);

	bloom64 = (uint64_t *) (uintptr_t) dst;

	/* Copy bloom filter data. */
	for (n = 0; n < maskwords; n++) {
		READ_XWORD(src, t64);
		if (byteswap)
			SWAP_XWORD(t64);
		bloom64[n] = t64;
	}

	/* The hash buckets follows the bloom filter. */
	dst += maskwords * sizeof(uint64_t);
	buckets = (uint32_t *) (uintptr_t) dst;

	for (n = 0; n < nbuckets; n++) {
		READ_WORD(src, t32);
		if (byteswap)
			SWAP_WORD(t32);
		buckets[n] = t32;
	}

	dst += nbuckets * sizeof(uint32_t);

	/* The hash chain follows the hash buckets. */
	dsz -= sz;
	srcsz -= sz;

	if (dsz < srcsz)	/* Destination lacks space. */
		return (0);

	nchains = (uint32_t) (srcsz / sizeof(uint32_t));
	chains = (uint32_t *) (uintptr_t) dst;

	for (n = 0; n < nchains; n++) {
		READ_WORD(src, t32);
		if (byteswap)
			SWAP_WORD(t32);
		*chains++ = t32;
	}

	return (1);
}

static int
_libelf_cvt_GNUHASH64_tof(unsigned char *dst, size_t dsz, unsigned char *src,
    size_t srcsz, int byteswap)
{
	uint32_t *s32;
	size_t sz, hdrsz;
	uint64_t *s64, t64;
	Elf_GNU_Hash_Header *gh;
	uint32_t maskwords, n, nbuckets, nchains, t0, t1, t2, t3, t32;

	hdrsz = 4 * sizeof(uint32_t);	/* Header is 4x32 bits. */
	if (dsz < hdrsz || srcsz < sizeof(Elf_GNU_Hash_Header))
		return (0);

	gh = (Elf_GNU_Hash_Header *) (uintptr_t) src;

	t0 = nbuckets = gh->gh_nbuckets;
	t1 = gh->gh_symndx;
	t2 = maskwords = gh->gh_maskwords;
	t3 = gh->gh_shift2;

	src   += sizeof(Elf_GNU_Hash_Header);
	srcsz -= sizeof(Elf_GNU_Hash_Header);
	dsz   -= hdrsz;

	sz = gh->gh_nbuckets * sizeof(uint32_t) + gh->gh_maskwords *
	    sizeof(uint64_t);

	if (srcsz < sz || dsz < sz)
		return (0);

	/* Write out the header. */
	if (byteswap) {
		SWAP_WORD(t0);
		SWAP_WORD(t1);
		SWAP_WORD(t2);
		SWAP_WORD(t3);
	}

	WRITE_WORD(dst, t0);
	WRITE_WORD(dst, t1);
	WRITE_WORD(dst, t2);
	WRITE_WORD(dst, t3);

	/* Copy the bloom filter and the hash table. */
	s64 = (uint64_t *) (uintptr_t) src;
	for (n = 0; n < maskwords; n++) {
		t64 = *s64++;
		if (byteswap)
			SWAP_XWORD(t64);
		WRITE_WORD64(dst, t64);
	}

	s32 = (uint32_t *) s64;
	for (n = 0; n < nbuckets; n++) {
		t32 = *s32++;
		if (byteswap)
			SWAP_WORD(t32);
		WRITE_WORD(dst, t32);
	}

	srcsz -= sz;
	dsz   -= sz;

	/* Copy out the hash chains. */
	if (dsz < srcsz)
		return (0);

	nchains = (uint32_t) (srcsz / sizeof(uint32_t));
	for (n = 0; n < nchains; n++) {
		t32 = *s32++;
		if (byteswap)
			SWAP_WORD(t32);
		WRITE_WORD(dst, t32);
	}

	return (1);
}

/*
 * Elf_Note structures comprise a fixed size header followed by variable
 * length strings.  The fixed size header needs to be byte swapped, but
 * not the strings.
 *
 * Argument `count' denotes the total number of bytes to be converted.
 * The destination buffer needs to be at least `count' bytes in size.
 */
static int
_libelf_cvt_NOTE_tom(unsigned char *dst, size_t dsz, unsigned char *src,
    size_t count, int byteswap)
{
	uint32_t namesz, descsz, type;
	Elf_Note *en;
	size_t sz, hdrsz;

	if (dsz < count)	/* Destination buffer is too small. */
		return (0);

	hdrsz = 3 * sizeof(uint32_t);
	if (count < hdrsz)		/* Source too small. */
		return (0);

	if (!byteswap) {
		(void) memcpy(dst, src, count);
		return (1);
	}

	/* Process all notes in the section. */
	while (count > hdrsz) {
		/* Read the note header. */
		READ_WORD(src, namesz);
		READ_WORD(src, descsz);
		READ_WORD(src, type);

		/* Translate. */
		SWAP_WORD(namesz);
		SWAP_WORD(descsz);
		SWAP_WORD(type);

		/* Copy out the translated note header. */
		en = (Elf_Note *) (uintptr_t) dst;
		en->n_namesz = namesz;
		en->n_descsz = descsz;
		en->n_type = type;

		dsz -= sizeof(Elf_Note);
		dst += sizeof(Elf_Note);
		count -= hdrsz;

		ROUNDUP2(namesz, 4U);
		ROUNDUP2(descsz, 4U);

		sz = namesz + descsz;

		if (count < sz || dsz < sz)	/* Buffers are too small. */
			return (0);

		(void) memcpy(dst, src, sz);

		src += sz;
		dst += sz;

		count -= sz;
		dsz -= sz;
	}

	return (1);
}

static int
_libelf_cvt_NOTE_tof(unsigned char *dst, size_t dsz, unsigned char *src,
    size_t count, int byteswap)
{
	uint32_t namesz, descsz, type;
	Elf_Note *en;
	size_t sz;

	if (dsz < count)
		return (0);

	if (!byteswap) {
		(void) memcpy(dst, src, count);
		return (1);
	}

	while (count > sizeof(Elf_Note)) {

		en = (Elf_Note *) (uintptr_t) src;
		namesz = en->n_namesz;
		descsz = en->n_descsz;
		type = en->n_type;

		sz = namesz;
		ROUNDUP2(sz, 4U);
		sz += descsz;
		ROUNDUP2(sz, 4U);

		SWAP_WORD(namesz);
		SWAP_WORD(descsz);
		SWAP_WORD(type);

		WRITE_WORD(dst, namesz);
		WRITE_WORD(dst, descsz);
		WRITE_WORD(dst, type);

		src += sizeof(Elf_Note);
		count -= sizeof(Elf_Note);

		if (count < sz)
			return (0);

		(void) memcpy(dst, src, sz);

		src += sz;
		dst += sz;
		count -= sz;
	}

	return (1);
}

struct converters {
	int	(*tof32)(unsigned char *dst, size_t dsz, unsigned char *src,
		    size_t cnt, int byteswap);
	int	(*tom32)(unsigned char *dst, size_t dsz, unsigned char *src,
		    size_t cnt, int byteswap);
	int	(*tof64)(unsigned char *dst, size_t dsz, unsigned char *src,
		    size_t cnt, int byteswap);
	int	(*tom64)(unsigned char *dst, size_t dsz, unsigned char *src,
		    size_t cnt, int byteswap);
};


static struct converters cvt[ELF_T_NUM] = {
	/*[*/
CONVERTER_NAMES(ELF_TYPE_LIST)
	/*]*/

	/*
	 * Types that need hand-coded converters follow.
	 */

	[ELF_T_BYTE] = {
		.tof32 = _libelf_cvt_BYTE_tox,
		.tom32 = _libelf_cvt_BYTE_tox,
		.tof64 = _libelf_cvt_BYTE_tox,
		.tom64 = _libelf_cvt_BYTE_tox
	},

	[ELF_T_NOTE] = {
		.tof32 = _libelf_cvt_NOTE_tof,
		.tom32 = _libelf_cvt_NOTE_tom,
		.tof64 = _libelf_cvt_NOTE_tof,
		.tom64 = _libelf_cvt_NOTE_tom
	}
};

/*
 * Return a translator function for the specified ELF section type, conversion
 * direction, ELF class and ELF machine.
 */
_libelf_translator_function *
_libelf_get_translator(Elf_Type t, int direction, int elfclass, int elfmachine)
{
	assert(elfclass == ELFCLASS32 || elfclass == ELFCLASS64);
	assert(direction == ELF_TOFILE || direction == ELF_TOMEMORY);
	assert(t >= ELF_T_FIRST && t <= ELF_T_LAST);

	/* TODO: Handle MIPS64 REL{,A} sections (ticket #559). */
	(void) elfmachine;

	return ((elfclass == ELFCLASS32) ?
	    (direction == ELF_TOFILE ? cvt[t].tof32 : cvt[t].tom32) :
	    (direction == ELF_TOFILE ? cvt[t].tof64 : cvt[t].tom64));
}