Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
//===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// This file implements classes for searching and analyzing source code clones.
///
//===----------------------------------------------------------------------===//

#include "clang/Analysis/CloneDetection.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DataCollection.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/Path.h"

using namespace clang;

StmtSequence::StmtSequence(const CompoundStmt *Stmt, const Decl *D,
                           unsigned StartIndex, unsigned EndIndex)
    : S(Stmt), D(D), StartIndex(StartIndex), EndIndex(EndIndex) {
  assert(Stmt && "Stmt must not be a nullptr");
  assert(StartIndex < EndIndex && "Given array should not be empty");
  assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt");
}

StmtSequence::StmtSequence(const Stmt *Stmt, const Decl *D)
    : S(Stmt), D(D), StartIndex(0), EndIndex(0) {}

StmtSequence::StmtSequence()
    : S(nullptr), D(nullptr), StartIndex(0), EndIndex(0) {}

bool StmtSequence::contains(const StmtSequence &Other) const {
  // If both sequences reside in different declarations, they can never contain
  // each other.
  if (D != Other.D)
    return false;

  const SourceManager &SM = getASTContext().getSourceManager();

  // Otherwise check if the start and end locations of the current sequence
  // surround the other sequence.
  bool StartIsInBounds =
      SM.isBeforeInTranslationUnit(getBeginLoc(), Other.getBeginLoc()) ||
      getBeginLoc() == Other.getBeginLoc();
  if (!StartIsInBounds)
    return false;

  bool EndIsInBounds =
      SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) ||
      Other.getEndLoc() == getEndLoc();
  return EndIsInBounds;
}

StmtSequence::iterator StmtSequence::begin() const {
  if (!holdsSequence()) {
    return &S;
  }
  auto CS = cast<CompoundStmt>(S);
  return CS->body_begin() + StartIndex;
}

StmtSequence::iterator StmtSequence::end() const {
  if (!holdsSequence()) {
    return reinterpret_cast<StmtSequence::iterator>(&S) + 1;
  }
  auto CS = cast<CompoundStmt>(S);
  return CS->body_begin() + EndIndex;
}

ASTContext &StmtSequence::getASTContext() const {
  assert(D);
  return D->getASTContext();
}

SourceLocation StmtSequence::getBeginLoc() const {
  return front()->getBeginLoc();
}

SourceLocation StmtSequence::getEndLoc() const { return back()->getEndLoc(); }

SourceRange StmtSequence::getSourceRange() const {
  return SourceRange(getBeginLoc(), getEndLoc());
}

void CloneDetector::analyzeCodeBody(const Decl *D) {
  assert(D);
  assert(D->hasBody());

  Sequences.push_back(StmtSequence(D->getBody(), D));
}

/// Returns true if and only if \p Stmt contains at least one other
/// sequence in the \p Group.
static bool containsAnyInGroup(StmtSequence &Seq,
                               CloneDetector::CloneGroup &Group) {
  for (StmtSequence &GroupSeq : Group) {
    if (Seq.contains(GroupSeq))
      return true;
  }
  return false;
}

/// Returns true if and only if all sequences in \p OtherGroup are
/// contained by a sequence in \p Group.
static bool containsGroup(CloneDetector::CloneGroup &Group,
                          CloneDetector::CloneGroup &OtherGroup) {
  // We have less sequences in the current group than we have in the other,
  // so we will never fulfill the requirement for returning true. This is only
  // possible because we know that a sequence in Group can contain at most
  // one sequence in OtherGroup.
  if (Group.size() < OtherGroup.size())
    return false;

  for (StmtSequence &Stmt : Group) {
    if (!containsAnyInGroup(Stmt, OtherGroup))
      return false;
  }
  return true;
}

void OnlyLargestCloneConstraint::constrain(
    std::vector<CloneDetector::CloneGroup> &Result) {
  std::vector<unsigned> IndexesToRemove;

  // Compare every group in the result with the rest. If one groups contains
  // another group, we only need to return the bigger group.
  // Note: This doesn't scale well, so if possible avoid calling any heavy
  // function from this loop to minimize the performance impact.
  for (unsigned i = 0; i < Result.size(); ++i) {
    for (unsigned j = 0; j < Result.size(); ++j) {
      // Don't compare a group with itself.
      if (i == j)
        continue;

      if (containsGroup(Result[j], Result[i])) {
        IndexesToRemove.push_back(i);
        break;
      }
    }
  }

  // Erasing a list of indexes from the vector should be done with decreasing
  // indexes. As IndexesToRemove is constructed with increasing values, we just
  // reverse iterate over it to get the desired order.
  for (auto I = IndexesToRemove.rbegin(); I != IndexesToRemove.rend(); ++I) {
    Result.erase(Result.begin() + *I);
  }
}

bool FilenamePatternConstraint::isAutoGenerated(
    const CloneDetector::CloneGroup &Group) {
  if (IgnoredFilesPattern.empty() || Group.empty() ||
      !IgnoredFilesRegex->isValid())
    return false;

  for (const StmtSequence &S : Group) {
    const SourceManager &SM = S.getASTContext().getSourceManager();
    StringRef Filename = llvm::sys::path::filename(
        SM.getFilename(S.getContainingDecl()->getLocation()));
    if (IgnoredFilesRegex->match(Filename))
      return true;
  }

  return false;
}

/// This class defines what a type II code clone is: If it collects for two
/// statements the same data, then those two statements are considered to be
/// clones of each other.
///
/// All collected data is forwarded to the given data consumer of the type T.
/// The data consumer class needs to provide a member method with the signature:
///   update(StringRef Str)
namespace {
template <class T>
class CloneTypeIIStmtDataCollector
    : public ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>> {
  ASTContext &Context;
  /// The data sink to which all data is forwarded.
  T &DataConsumer;

  template <class Ty> void addData(const Ty &Data) {
    data_collection::addDataToConsumer(DataConsumer, Data);
  }

public:
  CloneTypeIIStmtDataCollector(const Stmt *S, ASTContext &Context,
                               T &DataConsumer)
      : Context(Context), DataConsumer(DataConsumer) {
    this->Visit(S);
  }

// Define a visit method for each class to collect data and subsequently visit
// all parent classes. This uses a template so that custom visit methods by us
// take precedence.
#define DEF_ADD_DATA(CLASS, CODE)                                              \
  template <class = void> void Visit##CLASS(const CLASS *S) {                  \
    CODE;                                                                      \
    ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S);        \
  }

#include "clang/AST/StmtDataCollectors.inc"

// Type II clones ignore variable names and literals, so let's skip them.
#define SKIP(CLASS)                                                            \
  void Visit##CLASS(const CLASS *S) {                                          \
    ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S);        \
  }
  SKIP(DeclRefExpr)
  SKIP(MemberExpr)
  SKIP(IntegerLiteral)
  SKIP(FloatingLiteral)
  SKIP(StringLiteral)
  SKIP(CXXBoolLiteralExpr)
  SKIP(CharacterLiteral)
#undef SKIP
};
} // end anonymous namespace

static size_t createHash(llvm::MD5 &Hash) {
  size_t HashCode;

  // Create the final hash code for the current Stmt.
  llvm::MD5::MD5Result HashResult;
  Hash.final(HashResult);

  // Copy as much as possible of the generated hash code to the Stmt's hash
  // code.
  std::memcpy(&HashCode, &HashResult,
              std::min(sizeof(HashCode), sizeof(HashResult)));

  return HashCode;
}

/// Generates and saves a hash code for the given Stmt.
/// \param S The given Stmt.
/// \param D The Decl containing S.
/// \param StmtsByHash Output parameter that will contain the hash codes for
///                    each StmtSequence in the given Stmt.
/// \return The hash code of the given Stmt.
///
/// If the given Stmt is a CompoundStmt, this method will also generate
/// hashes for all possible StmtSequences in the children of this Stmt.
static size_t
saveHash(const Stmt *S, const Decl *D,
         std::vector<std::pair<size_t, StmtSequence>> &StmtsByHash) {
  llvm::MD5 Hash;
  ASTContext &Context = D->getASTContext();

  CloneTypeIIStmtDataCollector<llvm::MD5>(S, Context, Hash);

  auto CS = dyn_cast<CompoundStmt>(S);
  SmallVector<size_t, 8> ChildHashes;

  for (const Stmt *Child : S->children()) {
    if (Child == nullptr) {
      ChildHashes.push_back(0);
      continue;
    }
    size_t ChildHash = saveHash(Child, D, StmtsByHash);
    Hash.update(
        StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
    ChildHashes.push_back(ChildHash);
  }

  if (CS) {
    // If we're in a CompoundStmt, we hash all possible combinations of child
    // statements to find clones in those subsequences.
    // We first go through every possible starting position of a subsequence.
    for (unsigned Pos = 0; Pos < CS->size(); ++Pos) {
      // Then we try all possible lengths this subsequence could have and
      // reuse the same hash object to make sure we only hash every child
      // hash exactly once.
      llvm::MD5 Hash;
      for (unsigned Length = 1; Length <= CS->size() - Pos; ++Length) {
        // Grab the current child hash and put it into our hash. We do
        // -1 on the index because we start counting the length at 1.
        size_t ChildHash = ChildHashes[Pos + Length - 1];
        Hash.update(
            StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
        // If we have at least two elements in our subsequence, we can start
        // saving it.
        if (Length > 1) {
          llvm::MD5 SubHash = Hash;
          StmtsByHash.push_back(std::make_pair(
              createHash(SubHash), StmtSequence(CS, D, Pos, Pos + Length)));
        }
      }
    }
  }

  size_t HashCode = createHash(Hash);
  StmtsByHash.push_back(std::make_pair(HashCode, StmtSequence(S, D)));
  return HashCode;
}

namespace {
/// Wrapper around FoldingSetNodeID that it can be used as the template
/// argument of the StmtDataCollector.
class FoldingSetNodeIDWrapper {

  llvm::FoldingSetNodeID &FS;

public:
  FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {}

  void update(StringRef Str) { FS.AddString(Str); }
};
} // end anonymous namespace

/// Writes the relevant data from all statements and child statements
/// in the given StmtSequence into the given FoldingSetNodeID.
static void CollectStmtSequenceData(const StmtSequence &Sequence,
                                    FoldingSetNodeIDWrapper &OutputData) {
  for (const Stmt *S : Sequence) {
    CloneTypeIIStmtDataCollector<FoldingSetNodeIDWrapper>(
        S, Sequence.getASTContext(), OutputData);

    for (const Stmt *Child : S->children()) {
      if (!Child)
        continue;

      CollectStmtSequenceData(StmtSequence(Child, Sequence.getContainingDecl()),
                              OutputData);
    }
  }
}

/// Returns true if both sequences are clones of each other.
static bool areSequencesClones(const StmtSequence &LHS,
                               const StmtSequence &RHS) {
  // We collect the data from all statements in the sequence as we did before
  // when generating a hash value for each sequence. But this time we don't
  // hash the collected data and compare the whole data set instead. This
  // prevents any false-positives due to hash code collisions.
  llvm::FoldingSetNodeID DataLHS, DataRHS;
  FoldingSetNodeIDWrapper LHSWrapper(DataLHS);
  FoldingSetNodeIDWrapper RHSWrapper(DataRHS);

  CollectStmtSequenceData(LHS, LHSWrapper);
  CollectStmtSequenceData(RHS, RHSWrapper);

  return DataLHS == DataRHS;
}

void RecursiveCloneTypeIIHashConstraint::constrain(
    std::vector<CloneDetector::CloneGroup> &Sequences) {
  // FIXME: Maybe we can do this in-place and don't need this additional vector.
  std::vector<CloneDetector::CloneGroup> Result;

  for (CloneDetector::CloneGroup &Group : Sequences) {
    // We assume in the following code that the Group is non-empty, so we
    // skip all empty groups.
    if (Group.empty())
      continue;

    std::vector<std::pair<size_t, StmtSequence>> StmtsByHash;

    // Generate hash codes for all children of S and save them in StmtsByHash.
    for (const StmtSequence &S : Group) {
      saveHash(S.front(), S.getContainingDecl(), StmtsByHash);
    }

    // Sort hash_codes in StmtsByHash.
    llvm::stable_sort(StmtsByHash, llvm::less_first());

    // Check for each StmtSequence if its successor has the same hash value.
    // We don't check the last StmtSequence as it has no successor.
    // Note: The 'size - 1 ' in the condition is safe because we check for an
    // empty Group vector at the beginning of this function.
    for (unsigned i = 0; i < StmtsByHash.size() - 1; ++i) {
      const auto Current = StmtsByHash[i];

      // It's likely that we just found a sequence of StmtSequences that
      // represent a CloneGroup, so we create a new group and start checking and
      // adding the StmtSequences in this sequence.
      CloneDetector::CloneGroup NewGroup;

      size_t PrototypeHash = Current.first;

      for (; i < StmtsByHash.size(); ++i) {
        // A different hash value means we have reached the end of the sequence.
        if (PrototypeHash != StmtsByHash[i].first) {
          // The current sequence could be the start of a new CloneGroup. So we
          // decrement i so that we visit it again in the outer loop.
          // Note: i can never be 0 at this point because we are just comparing
          // the hash of the Current StmtSequence with itself in the 'if' above.
          assert(i != 0);
          --i;
          break;
        }
        // Same hash value means we should add the StmtSequence to the current
        // group.
        NewGroup.push_back(StmtsByHash[i].second);
      }

      // We created a new clone group with matching hash codes and move it to
      // the result vector.
      Result.push_back(NewGroup);
    }
  }
  // Sequences is the output parameter, so we copy our result into it.
  Sequences = Result;
}

void RecursiveCloneTypeIIVerifyConstraint::constrain(
    std::vector<CloneDetector::CloneGroup> &Sequences) {
  CloneConstraint::splitCloneGroups(
      Sequences, [](const StmtSequence &A, const StmtSequence &B) {
        return areSequencesClones(A, B);
      });
}

size_t MinComplexityConstraint::calculateStmtComplexity(
    const StmtSequence &Seq, std::size_t Limit,
    const std::string &ParentMacroStack) {
  if (Seq.empty())
    return 0;

  size_t Complexity = 1;

  ASTContext &Context = Seq.getASTContext();

  // Look up what macros expanded into the current statement.
  std::string MacroStack =
      data_collection::getMacroStack(Seq.getBeginLoc(), Context);

  // First, check if ParentMacroStack is not empty which means we are currently
  // dealing with a parent statement which was expanded from a macro.
  // If this parent statement was expanded from the same macros as this
  // statement, we reduce the initial complexity of this statement to zero.
  // This causes that a group of statements that were generated by a single
  // macro expansion will only increase the total complexity by one.
  // Note: This is not the final complexity of this statement as we still
  // add the complexity of the child statements to the complexity value.
  if (!ParentMacroStack.empty() && MacroStack == ParentMacroStack) {
    Complexity = 0;
  }

  // Iterate over the Stmts in the StmtSequence and add their complexity values
  // to the current complexity value.
  if (Seq.holdsSequence()) {
    for (const Stmt *S : Seq) {
      Complexity += calculateStmtComplexity(
          StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
      if (Complexity >= Limit)
        return Limit;
    }
  } else {
    for (const Stmt *S : Seq.front()->children()) {
      Complexity += calculateStmtComplexity(
          StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
      if (Complexity >= Limit)
        return Limit;
    }
  }
  return Complexity;
}

void MatchingVariablePatternConstraint::constrain(
    std::vector<CloneDetector::CloneGroup> &CloneGroups) {
  CloneConstraint::splitCloneGroups(
      CloneGroups, [](const StmtSequence &A, const StmtSequence &B) {
        VariablePattern PatternA(A);
        VariablePattern PatternB(B);
        return PatternA.countPatternDifferences(PatternB) == 0;
      });
}

void CloneConstraint::splitCloneGroups(
    std::vector<CloneDetector::CloneGroup> &CloneGroups,
    llvm::function_ref<bool(const StmtSequence &, const StmtSequence &)>
        Compare) {
  std::vector<CloneDetector::CloneGroup> Result;
  for (auto &HashGroup : CloneGroups) {
    // Contains all indexes in HashGroup that were already added to a
    // CloneGroup.
    std::vector<char> Indexes;
    Indexes.resize(HashGroup.size());

    for (unsigned i = 0; i < HashGroup.size(); ++i) {
      // Skip indexes that are already part of a CloneGroup.
      if (Indexes[i])
        continue;

      // Pick the first unhandled StmtSequence and consider it as the
      // beginning
      // of a new CloneGroup for now.
      // We don't add i to Indexes because we never iterate back.
      StmtSequence Prototype = HashGroup[i];
      CloneDetector::CloneGroup PotentialGroup = {Prototype};
      ++Indexes[i];

      // Check all following StmtSequences for clones.
      for (unsigned j = i + 1; j < HashGroup.size(); ++j) {
        // Skip indexes that are already part of a CloneGroup.
        if (Indexes[j])
          continue;

        // If a following StmtSequence belongs to our CloneGroup, we add it.
        const StmtSequence &Candidate = HashGroup[j];

        if (!Compare(Prototype, Candidate))
          continue;

        PotentialGroup.push_back(Candidate);
        // Make sure we never visit this StmtSequence again.
        ++Indexes[j];
      }

      // Otherwise, add it to the result and continue searching for more
      // groups.
      Result.push_back(PotentialGroup);
    }

    assert(llvm::all_of(Indexes, [](char c) { return c == 1; }));
  }
  CloneGroups = Result;
}

void VariablePattern::addVariableOccurence(const VarDecl *VarDecl,
                                           const Stmt *Mention) {
  // First check if we already reference this variable
  for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) {
    if (Variables[KindIndex] == VarDecl) {
      // If yes, add a new occurrence that points to the existing entry in
      // the Variables vector.
      Occurences.emplace_back(KindIndex, Mention);
      return;
    }
  }
  // If this variable wasn't already referenced, add it to the list of
  // referenced variables and add a occurrence that points to this new entry.
  Occurences.emplace_back(Variables.size(), Mention);
  Variables.push_back(VarDecl);
}

void VariablePattern::addVariables(const Stmt *S) {
  // Sometimes we get a nullptr (such as from IfStmts which often have nullptr
  // children). We skip such statements as they don't reference any
  // variables.
  if (!S)
    return;

  // Check if S is a reference to a variable. If yes, add it to the pattern.
  if (auto D = dyn_cast<DeclRefExpr>(S)) {
    if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl()))
      addVariableOccurence(VD, D);
  }

  // Recursively check all children of the given statement.
  for (const Stmt *Child : S->children()) {
    addVariables(Child);
  }
}

unsigned VariablePattern::countPatternDifferences(
    const VariablePattern &Other,
    VariablePattern::SuspiciousClonePair *FirstMismatch) {
  unsigned NumberOfDifferences = 0;

  assert(Other.Occurences.size() == Occurences.size());
  for (unsigned i = 0; i < Occurences.size(); ++i) {
    auto ThisOccurence = Occurences[i];
    auto OtherOccurence = Other.Occurences[i];
    if (ThisOccurence.KindID == OtherOccurence.KindID)
      continue;

    ++NumberOfDifferences;

    // If FirstMismatch is not a nullptr, we need to store information about
    // the first difference between the two patterns.
    if (FirstMismatch == nullptr)
      continue;

    // Only proceed if we just found the first difference as we only store
    // information about the first difference.
    if (NumberOfDifferences != 1)
      continue;

    const VarDecl *FirstSuggestion = nullptr;
    // If there is a variable available in the list of referenced variables
    // which wouldn't break the pattern if it is used in place of the
    // current variable, we provide this variable as the suggested fix.
    if (OtherOccurence.KindID < Variables.size())
      FirstSuggestion = Variables[OtherOccurence.KindID];

    // Store information about the first clone.
    FirstMismatch->FirstCloneInfo =
        VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
            Variables[ThisOccurence.KindID], ThisOccurence.Mention,
            FirstSuggestion);

    // Same as above but with the other clone. We do this for both clones as
    // we don't know which clone is the one containing the unintended
    // pattern error.
    const VarDecl *SecondSuggestion = nullptr;
    if (ThisOccurence.KindID < Other.Variables.size())
      SecondSuggestion = Other.Variables[ThisOccurence.KindID];

    // Store information about the second clone.
    FirstMismatch->SecondCloneInfo =
        VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
            Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention,
            SecondSuggestion);

    // SuspiciousClonePair guarantees that the first clone always has a
    // suggested variable associated with it. As we know that one of the two
    // clones in the pair always has suggestion, we swap the two clones
    // in case the first clone has no suggested variable which means that
    // the second clone has a suggested variable and should be first.
    if (!FirstMismatch->FirstCloneInfo.Suggestion)
      std::swap(FirstMismatch->FirstCloneInfo, FirstMismatch->SecondCloneInfo);

    // This ensures that we always have at least one suggestion in a pair.
    assert(FirstMismatch->FirstCloneInfo.Suggestion);
  }

  return NumberOfDifferences;
}