/*
* This m4 code has been taken from The SPARC Architecture Manual Version 8.
*/
/*
* Division/Remainder
*
* Input is:
* dividend -- the thing being divided
* divisor -- how many ways to divide it
* Important parameters:
* N -- how many bits per iteration we try to get
* as our current guess: define(N, 4) define(TWOSUPN, 16)
* WORDSIZE -- how many bits altogether we're talking about:
* obviously: define(WORDSIZE, 32)
* A derived constant:
* TOPBITS -- how many bits are in the top "decade" of a number:
* define(TOPBITS, eval( WORDSIZE - N*((WORDSIZE-1)/N) ) )
* Important variables are:
* Q -- the partial quotient under development -- initially 0
* R -- the remainder so far -- initially == the dividend
* ITER -- number of iterations of the main division loop which will
* be required. Equal to CEIL( lg2(quotient)/N )
* Note that this is log_base_(2ˆN) of the quotient.
* V -- the current comparand -- initially divisor*2ˆ(ITER*N-1)
* Cost:
* current estimate for non-large dividend is
* CEIL( lg2(quotient) / N ) x ( 10 + 7N/2 ) + C
* a large dividend is one greater than 2ˆ(31-TOPBITS) and takes a
* different path, as the upper bits of the quotient must be developed
* one bit at a time.
* This uses the m4 and cpp macro preprocessors.
*/
define(dividend, `%o0')
define(divisor,`%o1')
define(Q, `%o2')
define(R, `%o3')
define(ITER, `%o4')
define(V, `%o5')
define(SIGN, `%g3')
define(T, `%g1')
define(SC,`%g2')
/*
* This is the recursive definition of how we develop quotient digits.
* It takes three important parameters:
* $1 -- the current depth, 1<=$1<=N
* $2 -- the current accumulation of quotient bits
* N -- max depth
* We add a new bit to $2 and either recurse or insert the bits in the quotient.
* Dynamic input:
* R -- current remainder
* Q -- current quotient
* V -- current comparand
* cc -- set on current value of R
* Dynamic output:
* R', Q', V', cc'
*/
#include "../assembly.h"
define(DEVELOP_QUOTIENT_BITS,
` !depth $1, accumulated bits $2
bl L.$1.eval(TWOSUPN+$2)
srl V,1,V
! remainder is nonnegative
subcc R,V,R
ifelse( $1, N,
` b 9f
add Q, ($2*2+1), Q
',` DEVELOP_QUOTIENT_BITS( incr($1), `eval(2*$2+1)')
')
L.$1.eval(TWOSUPN+$2):
! remainder is negative
addcc R,V,R
ifelse( $1, N,
` b 9f
add Q, ($2*2-1), Q
',` DEVELOP_QUOTIENT_BITS( incr($1), `eval(2*$2-1)')
')
ifelse( $1, 1, `9:')
')
ifelse( ANSWER, `quotient', `
.text
.align 32
DEFINE_COMPILERRT_FUNCTION(__udivsi3)
b divide
mov 0,SIGN ! result always nonnegative
.text
.align 32
DEFINE_COMPILERRT_FUNCTION(__divsi3)
orcc divisor,dividend,%g0 ! are either dividend or divisor negative
bge divide ! if not, skip this junk
xor divisor,dividend,SIGN ! record sign of result in sign of SIGN
tst divisor
bge 2f
tst dividend
! divisor < 0
bge divide
neg divisor
2:
! dividend < 0
neg dividend
! FALL THROUGH
',`
.text
.align 32
DEFINE_COMPILERRT_FUNCTION(__umodsi3)
b divide
mov 0,SIGN ! result always nonnegative
.text
.align 32
DEFINE_COMPILERRT_FUNCTION(__modsi3)
orcc divisor,dividend,%g0 ! are either dividend or divisor negative
bge divide ! if not, skip this junk
mov dividend,SIGN ! record sign of result in sign of SIGN
tst divisor
bge 2f
tst dividend
! divisor < 0
bge divide
neg divisor
2:
! dividend < 0
neg dividend
! FALL THROUGH
')
divide:
! Compute size of quotient, scale comparand.
orcc divisor,%g0,V ! movcc divisor,V
te 2 ! if divisor = 0
mov dividend,R
mov 0,Q
sethi %hi(1<<(WORDSIZE-TOPBITS-1)),T
cmp R,T
blu not_really_big
mov 0,ITER
!
! Here, the dividend is >= 2ˆ(31-N) or so. We must be careful here,
! as our usual N-at-a-shot divide step will cause overflow and havoc.
! The total number of bits in the result here is N*ITER+SC, where
! SC <= N.
! Compute ITER in an unorthodox manner: know we need to Shift V into
! the top decade: so don't even bother to compare to R.
1:
cmp V,T
bgeu 3f
mov 1,SC
sll V,N,V
b 1b
inc ITER
! Now compute SC
2: addcc V,V,V
bcc not_too_big
add SC,1,SC
! We're here if the divisor overflowed when Shifting.
! This means that R has the high-order bit set.
! Restore V and subtract from R.
sll T,TOPBITS,T ! high order bit
srl V,1,V ! rest of V
add V,T,V
b do_single_div
dec SC
not_too_big:
3: cmp V,R
blu 2b
nop
be do_single_div
nop
! V > R: went too far: back up 1 step
! srl V,1,V
! dec SC
! do single-bit divide steps
!
! We have to be careful here. We know that R >= V, so we can do the
! first divide step without thinking. BUT, the others are conditional,
! and are only done if R >= 0. Because both R and V may have the high-
! order bit set in the first step, just falling into the regular
! division loop will mess up the first time around.
! So we unroll slightly...
do_single_div:
deccc SC
bl end_regular_divide
nop
sub R,V,R
mov 1,Q
b,a end_single_divloop
! EMPTY
single_divloop:
sll Q,1,Q
bl 1f
srl V,1,V
! R >= 0
sub R,V,R
b 2f
inc Q
1: ! R < 0
add R,V,R
dec Q
2:
end_single_divloop:
deccc SC
bge single_divloop
tst R
b,a end_regular_divide
! EMPTY
not_really_big:
1:
sll V,N,V
cmp V,R
bleu 1b
inccc ITER
be got_result
dec ITER
do_regular_divide:
! Do the main division iteration
tst R
! Fall through into divide loop
divloop:
sll Q,N,Q
DEVELOP_QUOTIENT_BITS( 1, 0 )
end_regular_divide:
deccc ITER
bge divloop
tst R
bl,a got_result
! non-restoring fixup if remainder < 0, otherwise annulled
ifelse( ANSWER, `quotient',
` dec Q
',` add R,divisor,R
')
got_result:
tst SIGN
bl,a 1f
! negate for answer < 0, otherwise annulled
ifelse( ANSWER, `quotient',
` neg %o2,%o2 ! Q <- -Q
',` neg %o3,%o3 ! R <- -R
')
1:
retl ! leaf-routine return
ifelse( ANSWER, `quotient',
` mov %o2,%o0 ! quotient <- Q
',` mov %o3,%o0 ! remainder <- R
')