Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
//===- Chunks.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Chunks.h"
#include "InputFiles.h"
#include "Symbols.h"
#include "Writer.h"
#include "SymbolTable.h"
#include "lld/Common/ErrorHandler.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/COFF.h"
#include "llvm/Object/COFF.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>

using namespace llvm;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::COFF;
using llvm::support::ulittle32_t;

namespace lld {
namespace coff {

SectionChunk::SectionChunk(ObjFile *f, const coff_section *h)
    : Chunk(SectionKind), file(f), header(h), repl(this) {
  // Initialize relocs.
  setRelocs(file->getCOFFObj()->getRelocations(header));

  // Initialize sectionName.
  StringRef sectionName;
  if (Expected<StringRef> e = file->getCOFFObj()->getSectionName(header))
    sectionName = *e;
  sectionNameData = sectionName.data();
  sectionNameSize = sectionName.size();

  setAlignment(header->getAlignment());

  hasData = !(header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA);

  // If linker GC is disabled, every chunk starts out alive.  If linker GC is
  // enabled, treat non-comdat sections as roots. Generally optimized object
  // files will be built with -ffunction-sections or /Gy, so most things worth
  // stripping will be in a comdat.
  live = !config->doGC || !isCOMDAT();
}

// SectionChunk is one of the most frequently allocated classes, so it is
// important to keep it as compact as possible. As of this writing, the number
// below is the size of this class on x64 platforms.
static_assert(sizeof(SectionChunk) <= 88, "SectionChunk grew unexpectedly");

static void add16(uint8_t *p, int16_t v) { write16le(p, read16le(p) + v); }
static void add32(uint8_t *p, int32_t v) { write32le(p, read32le(p) + v); }
static void add64(uint8_t *p, int64_t v) { write64le(p, read64le(p) + v); }
static void or16(uint8_t *p, uint16_t v) { write16le(p, read16le(p) | v); }
static void or32(uint8_t *p, uint32_t v) { write32le(p, read32le(p) | v); }

// Verify that given sections are appropriate targets for SECREL
// relocations. This check is relaxed because unfortunately debug
// sections have section-relative relocations against absolute symbols.
static bool checkSecRel(const SectionChunk *sec, OutputSection *os) {
  if (os)
    return true;
  if (sec->isCodeView())
    return false;
  error("SECREL relocation cannot be applied to absolute symbols");
  return false;
}

static void applySecRel(const SectionChunk *sec, uint8_t *off,
                        OutputSection *os, uint64_t s) {
  if (!checkSecRel(sec, os))
    return;
  uint64_t secRel = s - os->getRVA();
  if (secRel > UINT32_MAX) {
    error("overflow in SECREL relocation in section: " + sec->getSectionName());
    return;
  }
  add32(off, secRel);
}

static void applySecIdx(uint8_t *off, OutputSection *os) {
  // Absolute symbol doesn't have section index, but section index relocation
  // against absolute symbol should be resolved to one plus the last output
  // section index. This is required for compatibility with MSVC.
  if (os)
    add16(off, os->sectionIndex);
  else
    add16(off, DefinedAbsolute::numOutputSections + 1);
}

void SectionChunk::applyRelX64(uint8_t *off, uint16_t type, OutputSection *os,
                               uint64_t s, uint64_t p) const {
  switch (type) {
  case IMAGE_REL_AMD64_ADDR32:   add32(off, s + config->imageBase); break;
  case IMAGE_REL_AMD64_ADDR64:   add64(off, s + config->imageBase); break;
  case IMAGE_REL_AMD64_ADDR32NB: add32(off, s); break;
  case IMAGE_REL_AMD64_REL32:    add32(off, s - p - 4); break;
  case IMAGE_REL_AMD64_REL32_1:  add32(off, s - p - 5); break;
  case IMAGE_REL_AMD64_REL32_2:  add32(off, s - p - 6); break;
  case IMAGE_REL_AMD64_REL32_3:  add32(off, s - p - 7); break;
  case IMAGE_REL_AMD64_REL32_4:  add32(off, s - p - 8); break;
  case IMAGE_REL_AMD64_REL32_5:  add32(off, s - p - 9); break;
  case IMAGE_REL_AMD64_SECTION:  applySecIdx(off, os); break;
  case IMAGE_REL_AMD64_SECREL:   applySecRel(this, off, os, s); break;
  default:
    error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
          toString(file));
  }
}

void SectionChunk::applyRelX86(uint8_t *off, uint16_t type, OutputSection *os,
                               uint64_t s, uint64_t p) const {
  switch (type) {
  case IMAGE_REL_I386_ABSOLUTE: break;
  case IMAGE_REL_I386_DIR32:    add32(off, s + config->imageBase); break;
  case IMAGE_REL_I386_DIR32NB:  add32(off, s); break;
  case IMAGE_REL_I386_REL32:    add32(off, s - p - 4); break;
  case IMAGE_REL_I386_SECTION:  applySecIdx(off, os); break;
  case IMAGE_REL_I386_SECREL:   applySecRel(this, off, os, s); break;
  default:
    error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
          toString(file));
  }
}

static void applyMOV(uint8_t *off, uint16_t v) {
  write16le(off, (read16le(off) & 0xfbf0) | ((v & 0x800) >> 1) | ((v >> 12) & 0xf));
  write16le(off + 2, (read16le(off + 2) & 0x8f00) | ((v & 0x700) << 4) | (v & 0xff));
}

static uint16_t readMOV(uint8_t *off, bool movt) {
  uint16_t op1 = read16le(off);
  if ((op1 & 0xfbf0) != (movt ? 0xf2c0 : 0xf240))
    error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") +
          " instruction in MOV32T relocation");
  uint16_t op2 = read16le(off + 2);
  if ((op2 & 0x8000) != 0)
    error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") +
          " instruction in MOV32T relocation");
  return (op2 & 0x00ff) | ((op2 >> 4) & 0x0700) | ((op1 << 1) & 0x0800) |
         ((op1 & 0x000f) << 12);
}

void applyMOV32T(uint8_t *off, uint32_t v) {
  uint16_t immW = readMOV(off, false);    // read MOVW operand
  uint16_t immT = readMOV(off + 4, true); // read MOVT operand
  uint32_t imm = immW | (immT << 16);
  v += imm;                         // add the immediate offset
  applyMOV(off, v);           // set MOVW operand
  applyMOV(off + 4, v >> 16); // set MOVT operand
}

static void applyBranch20T(uint8_t *off, int32_t v) {
  if (!isInt<21>(v))
    error("relocation out of range");
  uint32_t s = v < 0 ? 1 : 0;
  uint32_t j1 = (v >> 19) & 1;
  uint32_t j2 = (v >> 18) & 1;
  or16(off, (s << 10) | ((v >> 12) & 0x3f));
  or16(off + 2, (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff));
}

void applyBranch24T(uint8_t *off, int32_t v) {
  if (!isInt<25>(v))
    error("relocation out of range");
  uint32_t s = v < 0 ? 1 : 0;
  uint32_t j1 = ((~v >> 23) & 1) ^ s;
  uint32_t j2 = ((~v >> 22) & 1) ^ s;
  or16(off, (s << 10) | ((v >> 12) & 0x3ff));
  // Clear out the J1 and J2 bits which may be set.
  write16le(off + 2, (read16le(off + 2) & 0xd000) | (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff));
}

void SectionChunk::applyRelARM(uint8_t *off, uint16_t type, OutputSection *os,
                               uint64_t s, uint64_t p) const {
  // Pointer to thumb code must have the LSB set.
  uint64_t sx = s;
  if (os && (os->header.Characteristics & IMAGE_SCN_MEM_EXECUTE))
    sx |= 1;
  switch (type) {
  case IMAGE_REL_ARM_ADDR32:    add32(off, sx + config->imageBase); break;
  case IMAGE_REL_ARM_ADDR32NB:  add32(off, sx); break;
  case IMAGE_REL_ARM_MOV32T:    applyMOV32T(off, sx + config->imageBase); break;
  case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(off, sx - p - 4); break;
  case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(off, sx - p - 4); break;
  case IMAGE_REL_ARM_BLX23T:    applyBranch24T(off, sx - p - 4); break;
  case IMAGE_REL_ARM_SECTION:   applySecIdx(off, os); break;
  case IMAGE_REL_ARM_SECREL:    applySecRel(this, off, os, s); break;
  case IMAGE_REL_ARM_REL32:     add32(off, sx - p - 4); break;
  default:
    error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
          toString(file));
  }
}

// Interpret the existing immediate value as a byte offset to the
// target symbol, then update the instruction with the immediate as
// the page offset from the current instruction to the target.
void applyArm64Addr(uint8_t *off, uint64_t s, uint64_t p, int shift) {
  uint32_t orig = read32le(off);
  uint64_t imm = ((orig >> 29) & 0x3) | ((orig >> 3) & 0x1FFFFC);
  s += imm;
  imm = (s >> shift) - (p >> shift);
  uint32_t immLo = (imm & 0x3) << 29;
  uint32_t immHi = (imm & 0x1FFFFC) << 3;
  uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3);
  write32le(off, (orig & ~mask) | immLo | immHi);
}

// Update the immediate field in a AARCH64 ldr, str, and add instruction.
// Optionally limit the range of the written immediate by one or more bits
// (rangeLimit).
void applyArm64Imm(uint8_t *off, uint64_t imm, uint32_t rangeLimit) {
  uint32_t orig = read32le(off);
  imm += (orig >> 10) & 0xFFF;
  orig &= ~(0xFFF << 10);
  write32le(off, orig | ((imm & (0xFFF >> rangeLimit)) << 10));
}

// Add the 12 bit page offset to the existing immediate.
// Ldr/str instructions store the opcode immediate scaled
// by the load/store size (giving a larger range for larger
// loads/stores). The immediate is always (both before and after
// fixing up the relocation) stored scaled similarly.
// Even if larger loads/stores have a larger range, limit the
// effective offset to 12 bit, since it is intended to be a
// page offset.
static void applyArm64Ldr(uint8_t *off, uint64_t imm) {
  uint32_t orig = read32le(off);
  uint32_t size = orig >> 30;
  // 0x04000000 indicates SIMD/FP registers
  // 0x00800000 indicates 128 bit
  if ((orig & 0x4800000) == 0x4800000)
    size += 4;
  if ((imm & ((1 << size) - 1)) != 0)
    error("misaligned ldr/str offset");
  applyArm64Imm(off, imm >> size, size);
}

static void applySecRelLow12A(const SectionChunk *sec, uint8_t *off,
                              OutputSection *os, uint64_t s) {
  if (checkSecRel(sec, os))
    applyArm64Imm(off, (s - os->getRVA()) & 0xfff, 0);
}

static void applySecRelHigh12A(const SectionChunk *sec, uint8_t *off,
                               OutputSection *os, uint64_t s) {
  if (!checkSecRel(sec, os))
    return;
  uint64_t secRel = (s - os->getRVA()) >> 12;
  if (0xfff < secRel) {
    error("overflow in SECREL_HIGH12A relocation in section: " +
          sec->getSectionName());
    return;
  }
  applyArm64Imm(off, secRel & 0xfff, 0);
}

static void applySecRelLdr(const SectionChunk *sec, uint8_t *off,
                           OutputSection *os, uint64_t s) {
  if (checkSecRel(sec, os))
    applyArm64Ldr(off, (s - os->getRVA()) & 0xfff);
}

void applyArm64Branch26(uint8_t *off, int64_t v) {
  if (!isInt<28>(v))
    error("relocation out of range");
  or32(off, (v & 0x0FFFFFFC) >> 2);
}

static void applyArm64Branch19(uint8_t *off, int64_t v) {
  if (!isInt<21>(v))
    error("relocation out of range");
  or32(off, (v & 0x001FFFFC) << 3);
}

static void applyArm64Branch14(uint8_t *off, int64_t v) {
  if (!isInt<16>(v))
    error("relocation out of range");
  or32(off, (v & 0x0000FFFC) << 3);
}

void SectionChunk::applyRelARM64(uint8_t *off, uint16_t type, OutputSection *os,
                                 uint64_t s, uint64_t p) const {
  switch (type) {
  case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(off, s, p, 12); break;
  case IMAGE_REL_ARM64_REL21:          applyArm64Addr(off, s, p, 0); break;
  case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(off, s & 0xfff, 0); break;
  case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(off, s & 0xfff); break;
  case IMAGE_REL_ARM64_BRANCH26:       applyArm64Branch26(off, s - p); break;
  case IMAGE_REL_ARM64_BRANCH19:       applyArm64Branch19(off, s - p); break;
  case IMAGE_REL_ARM64_BRANCH14:       applyArm64Branch14(off, s - p); break;
  case IMAGE_REL_ARM64_ADDR32:         add32(off, s + config->imageBase); break;
  case IMAGE_REL_ARM64_ADDR32NB:       add32(off, s); break;
  case IMAGE_REL_ARM64_ADDR64:         add64(off, s + config->imageBase); break;
  case IMAGE_REL_ARM64_SECREL:         applySecRel(this, off, os, s); break;
  case IMAGE_REL_ARM64_SECREL_LOW12A:  applySecRelLow12A(this, off, os, s); break;
  case IMAGE_REL_ARM64_SECREL_HIGH12A: applySecRelHigh12A(this, off, os, s); break;
  case IMAGE_REL_ARM64_SECREL_LOW12L:  applySecRelLdr(this, off, os, s); break;
  case IMAGE_REL_ARM64_SECTION:        applySecIdx(off, os); break;
  case IMAGE_REL_ARM64_REL32:          add32(off, s - p - 4); break;
  default:
    error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
          toString(file));
  }
}

static void maybeReportRelocationToDiscarded(const SectionChunk *fromChunk,
                                             Defined *sym,
                                             const coff_relocation &rel) {
  // Don't report these errors when the relocation comes from a debug info
  // section or in mingw mode. MinGW mode object files (built by GCC) can
  // have leftover sections with relocations against discarded comdat
  // sections. Such sections are left as is, with relocations untouched.
  if (fromChunk->isCodeView() || fromChunk->isDWARF() || config->mingw)
    return;

  // Get the name of the symbol. If it's null, it was discarded early, so we
  // have to go back to the object file.
  ObjFile *file = fromChunk->file;
  StringRef name;
  if (sym) {
    name = sym->getName();
  } else {
    COFFSymbolRef coffSym =
        check(file->getCOFFObj()->getSymbol(rel.SymbolTableIndex));
    name = check(file->getCOFFObj()->getSymbolName(coffSym));
  }

  std::vector<std::string> symbolLocations =
      getSymbolLocations(file, rel.SymbolTableIndex);

  std::string out;
  llvm::raw_string_ostream os(out);
  os << "relocation against symbol in discarded section: " + name;
  for (const std::string &s : symbolLocations)
    os << s;
  error(os.str());
}

void SectionChunk::writeTo(uint8_t *buf) const {
  if (!hasData)
    return;
  // Copy section contents from source object file to output file.
  ArrayRef<uint8_t> a = getContents();
  if (!a.empty())
    memcpy(buf, a.data(), a.size());

  // Apply relocations.
  size_t inputSize = getSize();
  for (size_t i = 0, e = relocsSize; i < e; i++) {
    const coff_relocation &rel = relocsData[i];

    // Check for an invalid relocation offset. This check isn't perfect, because
    // we don't have the relocation size, which is only known after checking the
    // machine and relocation type. As a result, a relocation may overwrite the
    // beginning of the following input section.
    if (rel.VirtualAddress >= inputSize) {
      error("relocation points beyond the end of its parent section");
      continue;
    }

    uint8_t *off = buf + rel.VirtualAddress;

    auto *sym =
        dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex));

    // Get the output section of the symbol for this relocation.  The output
    // section is needed to compute SECREL and SECTION relocations used in debug
    // info.
    Chunk *c = sym ? sym->getChunk() : nullptr;
    OutputSection *os = c ? c->getOutputSection() : nullptr;

    // Skip the relocation if it refers to a discarded section, and diagnose it
    // as an error if appropriate. If a symbol was discarded early, it may be
    // null. If it was discarded late, the output section will be null, unless
    // it was an absolute or synthetic symbol.
    if (!sym ||
        (!os && !isa<DefinedAbsolute>(sym) && !isa<DefinedSynthetic>(sym))) {
      maybeReportRelocationToDiscarded(this, sym, rel);
      continue;
    }

    uint64_t s = sym->getRVA();

    // Compute the RVA of the relocation for relative relocations.
    uint64_t p = rva + rel.VirtualAddress;
    switch (config->machine) {
    case AMD64:
      applyRelX64(off, rel.Type, os, s, p);
      break;
    case I386:
      applyRelX86(off, rel.Type, os, s, p);
      break;
    case ARMNT:
      applyRelARM(off, rel.Type, os, s, p);
      break;
    case ARM64:
      applyRelARM64(off, rel.Type, os, s, p);
      break;
    default:
      llvm_unreachable("unknown machine type");
    }
  }
}

void SectionChunk::addAssociative(SectionChunk *child) {
  // Insert this child at the head of the list.
  assert(child->assocChildren == nullptr &&
         "associated sections cannot have their own associated children");
  child->assocChildren = assocChildren;
  assocChildren = child;
}

static uint8_t getBaserelType(const coff_relocation &rel) {
  switch (config->machine) {
  case AMD64:
    if (rel.Type == IMAGE_REL_AMD64_ADDR64)
      return IMAGE_REL_BASED_DIR64;
    return IMAGE_REL_BASED_ABSOLUTE;
  case I386:
    if (rel.Type == IMAGE_REL_I386_DIR32)
      return IMAGE_REL_BASED_HIGHLOW;
    return IMAGE_REL_BASED_ABSOLUTE;
  case ARMNT:
    if (rel.Type == IMAGE_REL_ARM_ADDR32)
      return IMAGE_REL_BASED_HIGHLOW;
    if (rel.Type == IMAGE_REL_ARM_MOV32T)
      return IMAGE_REL_BASED_ARM_MOV32T;
    return IMAGE_REL_BASED_ABSOLUTE;
  case ARM64:
    if (rel.Type == IMAGE_REL_ARM64_ADDR64)
      return IMAGE_REL_BASED_DIR64;
    return IMAGE_REL_BASED_ABSOLUTE;
  default:
    llvm_unreachable("unknown machine type");
  }
}

// Windows-specific.
// Collect all locations that contain absolute addresses, which need to be
// fixed by the loader if load-time relocation is needed.
// Only called when base relocation is enabled.
void SectionChunk::getBaserels(std::vector<Baserel> *res) {
  for (size_t i = 0, e = relocsSize; i < e; i++) {
    const coff_relocation &rel = relocsData[i];
    uint8_t ty = getBaserelType(rel);
    if (ty == IMAGE_REL_BASED_ABSOLUTE)
      continue;
    Symbol *target = file->getSymbol(rel.SymbolTableIndex);
    if (!target || isa<DefinedAbsolute>(target))
      continue;
    res->emplace_back(rva + rel.VirtualAddress, ty);
  }
}

// MinGW specific.
// Check whether a static relocation of type Type can be deferred and
// handled at runtime as a pseudo relocation (for references to a module
// local variable, which turned out to actually need to be imported from
// another DLL) This returns the size the relocation is supposed to update,
// in bits, or 0 if the relocation cannot be handled as a runtime pseudo
// relocation.
static int getRuntimePseudoRelocSize(uint16_t type) {
  // Relocations that either contain an absolute address, or a plain
  // relative offset, since the runtime pseudo reloc implementation
  // adds 8/16/32/64 bit values to a memory address.
  //
  // Given a pseudo relocation entry,
  //
  // typedef struct {
  //   DWORD sym;
  //   DWORD target;
  //   DWORD flags;
  // } runtime_pseudo_reloc_item_v2;
  //
  // the runtime relocation performs this adjustment:
  //     *(base + .target) += *(base + .sym) - (base + .sym)
  //
  // This works for both absolute addresses (IMAGE_REL_*_ADDR32/64,
  // IMAGE_REL_I386_DIR32, where the memory location initially contains
  // the address of the IAT slot, and for relative addresses (IMAGE_REL*_REL32),
  // where the memory location originally contains the relative offset to the
  // IAT slot.
  //
  // This requires the target address to be writable, either directly out of
  // the image, or temporarily changed at runtime with VirtualProtect.
  // Since this only operates on direct address values, it doesn't work for
  // ARM/ARM64 relocations, other than the plain ADDR32/ADDR64 relocations.
  switch (config->machine) {
  case AMD64:
    switch (type) {
    case IMAGE_REL_AMD64_ADDR64:
      return 64;
    case IMAGE_REL_AMD64_ADDR32:
    case IMAGE_REL_AMD64_REL32:
    case IMAGE_REL_AMD64_REL32_1:
    case IMAGE_REL_AMD64_REL32_2:
    case IMAGE_REL_AMD64_REL32_3:
    case IMAGE_REL_AMD64_REL32_4:
    case IMAGE_REL_AMD64_REL32_5:
      return 32;
    default:
      return 0;
    }
  case I386:
    switch (type) {
    case IMAGE_REL_I386_DIR32:
    case IMAGE_REL_I386_REL32:
      return 32;
    default:
      return 0;
    }
  case ARMNT:
    switch (type) {
    case IMAGE_REL_ARM_ADDR32:
      return 32;
    default:
      return 0;
    }
  case ARM64:
    switch (type) {
    case IMAGE_REL_ARM64_ADDR64:
      return 64;
    case IMAGE_REL_ARM64_ADDR32:
      return 32;
    default:
      return 0;
    }
  default:
    llvm_unreachable("unknown machine type");
  }
}

// MinGW specific.
// Append information to the provided vector about all relocations that
// need to be handled at runtime as runtime pseudo relocations (references
// to a module local variable, which turned out to actually need to be
// imported from another DLL).
void SectionChunk::getRuntimePseudoRelocs(
    std::vector<RuntimePseudoReloc> &res) {
  for (const coff_relocation &rel : getRelocs()) {
    auto *target =
        dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex));
    if (!target || !target->isRuntimePseudoReloc)
      continue;
    int sizeInBits = getRuntimePseudoRelocSize(rel.Type);
    if (sizeInBits == 0) {
      error("unable to automatically import from " + target->getName() +
            " with relocation type " +
            file->getCOFFObj()->getRelocationTypeName(rel.Type) + " in " +
            toString(file));
      continue;
    }
    // sizeInBits is used to initialize the Flags field; currently no
    // other flags are defined.
    res.emplace_back(
        RuntimePseudoReloc(target, this, rel.VirtualAddress, sizeInBits));
  }
}

bool SectionChunk::isCOMDAT() const {
  return header->Characteristics & IMAGE_SCN_LNK_COMDAT;
}

void SectionChunk::printDiscardedMessage() const {
  // Removed by dead-stripping. If it's removed by ICF, ICF already
  // printed out the name, so don't repeat that here.
  if (sym && this == repl)
    message("Discarded " + sym->getName());
}

StringRef SectionChunk::getDebugName() const {
  if (sym)
    return sym->getName();
  return "";
}

ArrayRef<uint8_t> SectionChunk::getContents() const {
  ArrayRef<uint8_t> a;
  cantFail(file->getCOFFObj()->getSectionContents(header, a));
  return a;
}

ArrayRef<uint8_t> SectionChunk::consumeDebugMagic() {
  assert(isCodeView());
  return consumeDebugMagic(getContents(), getSectionName());
}

ArrayRef<uint8_t> SectionChunk::consumeDebugMagic(ArrayRef<uint8_t> data,
                                                  StringRef sectionName) {
  if (data.empty())
    return {};

  // First 4 bytes are section magic.
  if (data.size() < 4)
    fatal("the section is too short: " + sectionName);

  if (!sectionName.startswith(".debug$"))
    fatal("invalid section: " + sectionName);

  uint32_t magic = support::endian::read32le(data.data());
  uint32_t expectedMagic = sectionName == ".debug$H"
                               ? DEBUG_HASHES_SECTION_MAGIC
                               : DEBUG_SECTION_MAGIC;
  if (magic != expectedMagic) {
    warn("ignoring section " + sectionName + " with unrecognized magic 0x" +
         utohexstr(magic));
    return {};
  }
  return data.slice(4);
}

SectionChunk *SectionChunk::findByName(ArrayRef<SectionChunk *> sections,
                                       StringRef name) {
  for (SectionChunk *c : sections)
    if (c->getSectionName() == name)
      return c;
  return nullptr;
}

void SectionChunk::replace(SectionChunk *other) {
  p2Align = std::max(p2Align, other->p2Align);
  other->repl = repl;
  other->live = false;
}

uint32_t SectionChunk::getSectionNumber() const {
  DataRefImpl r;
  r.p = reinterpret_cast<uintptr_t>(header);
  SectionRef s(r, file->getCOFFObj());
  return s.getIndex() + 1;
}

CommonChunk::CommonChunk(const COFFSymbolRef s) : sym(s) {
  // The value of a common symbol is its size. Align all common symbols smaller
  // than 32 bytes naturally, i.e. round the size up to the next power of two.
  // This is what MSVC link.exe does.
  setAlignment(std::min(32U, uint32_t(PowerOf2Ceil(sym.getValue()))));
  hasData = false;
}

uint32_t CommonChunk::getOutputCharacteristics() const {
  return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ |
         IMAGE_SCN_MEM_WRITE;
}

void StringChunk::writeTo(uint8_t *buf) const {
  memcpy(buf, str.data(), str.size());
  buf[str.size()] = '\0';
}

ImportThunkChunkX64::ImportThunkChunkX64(Defined *s) : ImportThunkChunk(s) {
  // Intel Optimization Manual says that all branch targets
  // should be 16-byte aligned. MSVC linker does this too.
  setAlignment(16);
}

void ImportThunkChunkX64::writeTo(uint8_t *buf) const {
  memcpy(buf, importThunkX86, sizeof(importThunkX86));
  // The first two bytes is a JMP instruction. Fill its operand.
  write32le(buf + 2, impSymbol->getRVA() - rva - getSize());
}

void ImportThunkChunkX86::getBaserels(std::vector<Baserel> *res) {
  res->emplace_back(getRVA() + 2);
}

void ImportThunkChunkX86::writeTo(uint8_t *buf) const {
  memcpy(buf, importThunkX86, sizeof(importThunkX86));
  // The first two bytes is a JMP instruction. Fill its operand.
  write32le(buf + 2,
            impSymbol->getRVA() + config->imageBase);
}

void ImportThunkChunkARM::getBaserels(std::vector<Baserel> *res) {
  res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T);
}

void ImportThunkChunkARM::writeTo(uint8_t *buf) const {
  memcpy(buf, importThunkARM, sizeof(importThunkARM));
  // Fix mov.w and mov.t operands.
  applyMOV32T(buf, impSymbol->getRVA() + config->imageBase);
}

void ImportThunkChunkARM64::writeTo(uint8_t *buf) const {
  int64_t off = impSymbol->getRVA() & 0xfff;
  memcpy(buf, importThunkARM64, sizeof(importThunkARM64));
  applyArm64Addr(buf, impSymbol->getRVA(), rva, 12);
  applyArm64Ldr(buf + 4, off);
}

// A Thumb2, PIC, non-interworking range extension thunk.
const uint8_t armThunk[] = {
    0x40, 0xf2, 0x00, 0x0c, // P:  movw ip,:lower16:S - (P + (L1-P) + 4)
    0xc0, 0xf2, 0x00, 0x0c, //     movt ip,:upper16:S - (P + (L1-P) + 4)
    0xe7, 0x44,             // L1: add  pc, ip
};

size_t RangeExtensionThunkARM::getSize() const {
  assert(config->machine == ARMNT);
  return sizeof(armThunk);
}

void RangeExtensionThunkARM::writeTo(uint8_t *buf) const {
  assert(config->machine == ARMNT);
  uint64_t offset = target->getRVA() - rva - 12;
  memcpy(buf, armThunk, sizeof(armThunk));
  applyMOV32T(buf, uint32_t(offset));
}

// A position independent ARM64 adrp+add thunk, with a maximum range of
// +/- 4 GB, which is enough for any PE-COFF.
const uint8_t arm64Thunk[] = {
    0x10, 0x00, 0x00, 0x90, // adrp x16, Dest
    0x10, 0x02, 0x00, 0x91, // add  x16, x16, :lo12:Dest
    0x00, 0x02, 0x1f, 0xd6, // br   x16
};

size_t RangeExtensionThunkARM64::getSize() const {
  assert(config->machine == ARM64);
  return sizeof(arm64Thunk);
}

void RangeExtensionThunkARM64::writeTo(uint8_t *buf) const {
  assert(config->machine == ARM64);
  memcpy(buf, arm64Thunk, sizeof(arm64Thunk));
  applyArm64Addr(buf + 0, target->getRVA(), rva, 12);
  applyArm64Imm(buf + 4, target->getRVA() & 0xfff, 0);
}

void LocalImportChunk::getBaserels(std::vector<Baserel> *res) {
  res->emplace_back(getRVA());
}

size_t LocalImportChunk::getSize() const { return config->wordsize; }

void LocalImportChunk::writeTo(uint8_t *buf) const {
  if (config->is64()) {
    write64le(buf, sym->getRVA() + config->imageBase);
  } else {
    write32le(buf, sym->getRVA() + config->imageBase);
  }
}

void RVATableChunk::writeTo(uint8_t *buf) const {
  ulittle32_t *begin = reinterpret_cast<ulittle32_t *>(buf);
  size_t cnt = 0;
  for (const ChunkAndOffset &co : syms)
    begin[cnt++] = co.inputChunk->getRVA() + co.offset;
  std::sort(begin, begin + cnt);
  assert(std::unique(begin, begin + cnt) == begin + cnt &&
         "RVA tables should be de-duplicated");
}

// MinGW specific, for the "automatic import of variables from DLLs" feature.
size_t PseudoRelocTableChunk::getSize() const {
  if (relocs.empty())
    return 0;
  return 12 + 12 * relocs.size();
}

// MinGW specific.
void PseudoRelocTableChunk::writeTo(uint8_t *buf) const {
  if (relocs.empty())
    return;

  ulittle32_t *table = reinterpret_cast<ulittle32_t *>(buf);
  // This is the list header, to signal the runtime pseudo relocation v2
  // format.
  table[0] = 0;
  table[1] = 0;
  table[2] = 1;

  size_t idx = 3;
  for (const RuntimePseudoReloc &rpr : relocs) {
    table[idx + 0] = rpr.sym->getRVA();
    table[idx + 1] = rpr.target->getRVA() + rpr.targetOffset;
    table[idx + 2] = rpr.flags;
    idx += 3;
  }
}

// Windows-specific. This class represents a block in .reloc section.
// The format is described here.
//
// On Windows, each DLL is linked against a fixed base address and
// usually loaded to that address. However, if there's already another
// DLL that overlaps, the loader has to relocate it. To do that, DLLs
// contain .reloc sections which contain offsets that need to be fixed
// up at runtime. If the loader finds that a DLL cannot be loaded to its
// desired base address, it loads it to somewhere else, and add <actual
// base address> - <desired base address> to each offset that is
// specified by the .reloc section. In ELF terms, .reloc sections
// contain relative relocations in REL format (as opposed to RELA.)
//
// This already significantly reduces the size of relocations compared
// to ELF .rel.dyn, but Windows does more to reduce it (probably because
// it was invented for PCs in the late '80s or early '90s.)  Offsets in
// .reloc are grouped by page where the page size is 12 bits, and
// offsets sharing the same page address are stored consecutively to
// represent them with less space. This is very similar to the page
// table which is grouped by (multiple stages of) pages.
//
// For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00,
// 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4
// bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they
// are represented like this:
//
//   0x00000  -- page address (4 bytes)
//   16       -- size of this block (4 bytes)
//     0xA030 -- entries (2 bytes each)
//     0xA500
//     0xA700
//     0xAA00
//   0x20000  -- page address (4 bytes)
//   12       -- size of this block (4 bytes)
//     0xA004 -- entries (2 bytes each)
//     0xA008
//
// Usually we have a lot of relocations for each page, so the number of
// bytes for one .reloc entry is close to 2 bytes on average.
BaserelChunk::BaserelChunk(uint32_t page, Baserel *begin, Baserel *end) {
  // Block header consists of 4 byte page RVA and 4 byte block size.
  // Each entry is 2 byte. Last entry may be padding.
  data.resize(alignTo((end - begin) * 2 + 8, 4));
  uint8_t *p = data.data();
  write32le(p, page);
  write32le(p + 4, data.size());
  p += 8;
  for (Baserel *i = begin; i != end; ++i) {
    write16le(p, (i->type << 12) | (i->rva - page));
    p += 2;
  }
}

void BaserelChunk::writeTo(uint8_t *buf) const {
  memcpy(buf, data.data(), data.size());
}

uint8_t Baserel::getDefaultType() {
  switch (config->machine) {
  case AMD64:
  case ARM64:
    return IMAGE_REL_BASED_DIR64;
  case I386:
  case ARMNT:
    return IMAGE_REL_BASED_HIGHLOW;
  default:
    llvm_unreachable("unknown machine type");
  }
}

MergeChunk *MergeChunk::instances[Log2MaxSectionAlignment + 1] = {};

MergeChunk::MergeChunk(uint32_t alignment)
    : builder(StringTableBuilder::RAW, alignment) {
  setAlignment(alignment);
}

void MergeChunk::addSection(SectionChunk *c) {
  assert(isPowerOf2_32(c->getAlignment()));
  uint8_t p2Align = llvm::Log2_32(c->getAlignment());
  assert(p2Align < array_lengthof(instances));
  auto *&mc = instances[p2Align];
  if (!mc)
    mc = make<MergeChunk>(c->getAlignment());
  mc->sections.push_back(c);
}

void MergeChunk::finalizeContents() {
  assert(!finalized && "should only finalize once");
  for (SectionChunk *c : sections)
    if (c->live)
      builder.add(toStringRef(c->getContents()));
  builder.finalize();
  finalized = true;
}

void MergeChunk::assignSubsectionRVAs() {
  for (SectionChunk *c : sections) {
    if (!c->live)
      continue;
    size_t off = builder.getOffset(toStringRef(c->getContents()));
    c->setRVA(rva + off);
  }
}

uint32_t MergeChunk::getOutputCharacteristics() const {
  return IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA;
}

size_t MergeChunk::getSize() const {
  return builder.getSize();
}

void MergeChunk::writeTo(uint8_t *buf) const {
  builder.write(buf);
}

// MinGW specific.
size_t AbsolutePointerChunk::getSize() const { return config->wordsize; }

void AbsolutePointerChunk::writeTo(uint8_t *buf) const {
  if (config->is64()) {
    write64le(buf, value);
  } else {
    write32le(buf, value);
  }
}

} // namespace coff
} // namespace lld