Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
//===- SyntheticSection.h ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Synthetic sections represent chunks of linker-created data. If you
// need to create a chunk of data that to be included in some section
// in the result, you probably want to create that as a synthetic section.
//
// Synthetic sections are designed as input sections as opposed to
// output sections because we want to allow them to be manipulated
// using linker scripts just like other input sections from regular
// files.
//
//===----------------------------------------------------------------------===//

#ifndef LLD_ELF_SYNTHETIC_SECTIONS_H
#define LLD_ELF_SYNTHETIC_SECTIONS_H

#include "DWARF.h"
#include "EhFrame.h"
#include "InputSection.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Support/Endian.h"
#include <functional>

namespace lld {
namespace elf {
class Defined;
struct PhdrEntry;
class SymbolTableBaseSection;
class VersionNeedBaseSection;

class SyntheticSection : public InputSection {
public:
  SyntheticSection(uint64_t flags, uint32_t type, uint32_t alignment,
                   StringRef name)
      : InputSection(nullptr, flags, type, alignment, {}, name,
                     InputSectionBase::Synthetic) {
    markLive();
  }

  virtual ~SyntheticSection() = default;
  virtual void writeTo(uint8_t *buf) = 0;
  virtual size_t getSize() const = 0;
  virtual void finalizeContents() {}
  // If the section has the SHF_ALLOC flag and the size may be changed if
  // thunks are added, update the section size.
  virtual bool updateAllocSize() { return false; }
  virtual bool isNeeded() const { return true; }

  static bool classof(const SectionBase *d) {
    return d->kind() == InputSectionBase::Synthetic;
  }
};

struct CieRecord {
  EhSectionPiece *cie = nullptr;
  std::vector<EhSectionPiece *> fdes;
};

// Section for .eh_frame.
class EhFrameSection final : public SyntheticSection {
public:
  EhFrameSection();
  void writeTo(uint8_t *buf) override;
  void finalizeContents() override;
  bool isNeeded() const override { return !sections.empty(); }
  size_t getSize() const override { return size; }

  static bool classof(const SectionBase *d) {
    return SyntheticSection::classof(d) && d->name == ".eh_frame";
  }

  void addSection(EhInputSection *sec);

  std::vector<EhInputSection *> sections;
  size_t numFdes = 0;

  struct FdeData {
    uint32_t pcRel;
    uint32_t fdeVARel;
  };

  std::vector<FdeData> getFdeData() const;
  ArrayRef<CieRecord *> getCieRecords() const { return cieRecords; }

private:
  // This is used only when parsing EhInputSection. We keep it here to avoid
  // allocating one for each EhInputSection.
  llvm::DenseMap<size_t, CieRecord *> offsetToCie;

  uint64_t size = 0;

  template <class ELFT, class RelTy>
  void addRecords(EhInputSection *s, llvm::ArrayRef<RelTy> rels);
  template <class ELFT>
  void addSectionAux(EhInputSection *s);

  template <class ELFT, class RelTy>
  CieRecord *addCie(EhSectionPiece &piece, ArrayRef<RelTy> rels);

  template <class ELFT, class RelTy>
  bool isFdeLive(EhSectionPiece &piece, ArrayRef<RelTy> rels);

  uint64_t getFdePc(uint8_t *buf, size_t off, uint8_t enc) const;

  std::vector<CieRecord *> cieRecords;

  // CIE records are uniquified by their contents and personality functions.
  llvm::DenseMap<std::pair<ArrayRef<uint8_t>, Symbol *>, CieRecord *> cieMap;
};

class GotSection : public SyntheticSection {
public:
  GotSection();
  size_t getSize() const override { return size; }
  void finalizeContents() override;
  bool isNeeded() const override;
  void writeTo(uint8_t *buf) override;

  void addEntry(Symbol &sym);
  bool addDynTlsEntry(Symbol &sym);
  bool addTlsIndex();
  uint64_t getGlobalDynAddr(const Symbol &b) const;
  uint64_t getGlobalDynOffset(const Symbol &b) const;

  uint64_t getTlsIndexVA() { return this->getVA() + tlsIndexOff; }
  uint32_t getTlsIndexOff() const { return tlsIndexOff; }

  // Flag to force GOT to be in output if we have relocations
  // that relies on its address.
  bool hasGotOffRel = false;

protected:
  size_t numEntries = 0;
  uint32_t tlsIndexOff = -1;
  uint64_t size = 0;
};

// .note.GNU-stack section.
class GnuStackSection : public SyntheticSection {
public:
  GnuStackSection()
      : SyntheticSection(0, llvm::ELF::SHT_PROGBITS, 1, ".note.GNU-stack") {}
  void writeTo(uint8_t *buf) override {}
  size_t getSize() const override { return 0; }
};

class GnuPropertySection : public SyntheticSection {
public:
  GnuPropertySection();
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override;
};

// .note.gnu.build-id section.
class BuildIdSection : public SyntheticSection {
  // First 16 bytes are a header.
  static const unsigned headerSize = 16;

public:
  const size_t hashSize;
  BuildIdSection();
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override { return headerSize + hashSize; }
  void writeBuildId(llvm::ArrayRef<uint8_t> buf);

private:
  uint8_t *hashBuf;
};

// BssSection is used to reserve space for copy relocations and common symbols.
// We create three instances of this class for .bss, .bss.rel.ro and "COMMON",
// that are used for writable symbols, read-only symbols and common symbols,
// respectively.
class BssSection final : public SyntheticSection {
public:
  BssSection(StringRef name, uint64_t size, uint32_t alignment);
  void writeTo(uint8_t *) override {
    llvm_unreachable("unexpected writeTo() call for SHT_NOBITS section");
  }
  bool isNeeded() const override { return size != 0; }
  size_t getSize() const override { return size; }

  static bool classof(const SectionBase *s) { return s->bss; }
  uint64_t size;
};

class MipsGotSection final : public SyntheticSection {
public:
  MipsGotSection();
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override { return size; }
  bool updateAllocSize() override;
  void finalizeContents() override;
  bool isNeeded() const override;

  // Join separate GOTs built for each input file to generate
  // primary and optional multiple secondary GOTs.
  void build();

  void addEntry(InputFile &file, Symbol &sym, int64_t addend, RelExpr expr);
  void addDynTlsEntry(InputFile &file, Symbol &sym);
  void addTlsIndex(InputFile &file);

  uint64_t getPageEntryOffset(const InputFile *f, const Symbol &s,
                              int64_t addend) const;
  uint64_t getSymEntryOffset(const InputFile *f, const Symbol &s,
                             int64_t addend) const;
  uint64_t getGlobalDynOffset(const InputFile *f, const Symbol &s) const;
  uint64_t getTlsIndexOffset(const InputFile *f) const;

  // Returns the symbol which corresponds to the first entry of the global part
  // of GOT on MIPS platform. It is required to fill up MIPS-specific dynamic
  // table properties.
  // Returns nullptr if the global part is empty.
  const Symbol *getFirstGlobalEntry() const;

  // Returns the number of entries in the local part of GOT including
  // the number of reserved entries.
  unsigned getLocalEntriesNum() const;

  // Return _gp value for primary GOT (nullptr) or particular input file.
  uint64_t getGp(const InputFile *f = nullptr) const;

private:
  // MIPS GOT consists of three parts: local, global and tls. Each part
  // contains different types of entries. Here is a layout of GOT:
  // - Header entries                |
  // - Page entries                  |   Local part
  // - Local entries (16-bit access) |
  // - Local entries (32-bit access) |
  // - Normal global entries         ||  Global part
  // - Reloc-only global entries     ||
  // - TLS entries                   ||| TLS part
  //
  // Header:
  //   Two entries hold predefined value 0x0 and 0x80000000.
  // Page entries:
  //   These entries created by R_MIPS_GOT_PAGE relocation and R_MIPS_GOT16
  //   relocation against local symbols. They are initialized by higher 16-bit
  //   of the corresponding symbol's value. So each 64kb of address space
  //   requires a single GOT entry.
  // Local entries (16-bit access):
  //   These entries created by GOT relocations against global non-preemptible
  //   symbols so dynamic linker is not necessary to resolve the symbol's
  //   values. "16-bit access" means that corresponding relocations address
  //   GOT using 16-bit index. Each unique Symbol-Addend pair has its own
  //   GOT entry.
  // Local entries (32-bit access):
  //   These entries are the same as above but created by relocations which
  //   address GOT using 32-bit index (R_MIPS_GOT_HI16/LO16 etc).
  // Normal global entries:
  //   These entries created by GOT relocations against preemptible global
  //   symbols. They need to be initialized by dynamic linker and they ordered
  //   exactly as the corresponding entries in the dynamic symbols table.
  // Reloc-only global entries:
  //   These entries created for symbols that are referenced by dynamic
  //   relocations R_MIPS_REL32. These entries are not accessed with gp-relative
  //   addressing, but MIPS ABI requires that these entries be present in GOT.
  // TLS entries:
  //   Entries created by TLS relocations.
  //
  // If the sum of local, global and tls entries is less than 64K only single
  // got is enough. Otherwise, multi-got is created. Series of primary and
  // multiple secondary GOTs have the following layout:
  // - Primary GOT
  //     Header
  //     Local entries
  //     Global entries
  //     Relocation only entries
  //     TLS entries
  //
  // - Secondary GOT
  //     Local entries
  //     Global entries
  //     TLS entries
  // ...
  //
  // All GOT entries required by relocations from a single input file entirely
  // belong to either primary or one of secondary GOTs. To reference GOT entries
  // each GOT has its own _gp value points to the "middle" of the GOT.
  // In the code this value loaded to the register which is used for GOT access.
  //
  // MIPS 32 function's prologue:
  //   lui     v0,0x0
  //   0: R_MIPS_HI16  _gp_disp
  //   addiu   v0,v0,0
  //   4: R_MIPS_LO16  _gp_disp
  //
  // MIPS 64:
  //   lui     at,0x0
  //   14: R_MIPS_GPREL16  main
  //
  // Dynamic linker does not know anything about secondary GOTs and cannot
  // use a regular MIPS mechanism for GOT entries initialization. So we have
  // to use an approach accepted by other architectures and create dynamic
  // relocations R_MIPS_REL32 to initialize global entries (and local in case
  // of PIC code) in secondary GOTs. But ironically MIPS dynamic linker
  // requires GOT entries and correspondingly ordered dynamic symbol table
  // entries to deal with dynamic relocations. To handle this problem
  // relocation-only section in the primary GOT contains entries for all
  // symbols referenced in global parts of secondary GOTs. Although the sum
  // of local and normal global entries of the primary got should be less
  // than 64K, the size of the primary got (including relocation-only entries
  // can be greater than 64K, because parts of the primary got that overflow
  // the 64K limit are used only by the dynamic linker at dynamic link-time
  // and not by 16-bit gp-relative addressing at run-time.
  //
  // For complete multi-GOT description see the following link
  // https://dmz-portal.mips.com/wiki/MIPS_Multi_GOT

  // Number of "Header" entries.
  static const unsigned headerEntriesNum = 2;

  uint64_t size = 0;

  // Symbol and addend.
  using GotEntry = std::pair<Symbol *, int64_t>;

  struct FileGot {
    InputFile *file = nullptr;
    size_t startIndex = 0;

    struct PageBlock {
      size_t firstIndex;
      size_t count;
      PageBlock() : firstIndex(0), count(0) {}
    };

    // Map output sections referenced by MIPS GOT relocations
    // to the description (index/count) "page" entries allocated
    // for this section.
    llvm::SmallMapVector<const OutputSection *, PageBlock, 16> pagesMap;
    // Maps from Symbol+Addend pair or just Symbol to the GOT entry index.
    llvm::MapVector<GotEntry, size_t> local16;
    llvm::MapVector<GotEntry, size_t> local32;
    llvm::MapVector<Symbol *, size_t> global;
    llvm::MapVector<Symbol *, size_t> relocs;
    llvm::MapVector<Symbol *, size_t> tls;
    // Set of symbols referenced by dynamic TLS relocations.
    llvm::MapVector<Symbol *, size_t> dynTlsSymbols;

    // Total number of all entries.
    size_t getEntriesNum() const;
    // Number of "page" entries.
    size_t getPageEntriesNum() const;
    // Number of entries require 16-bit index to access.
    size_t getIndexedEntriesNum() const;
  };

  // Container of GOT created for each input file.
  // After building a final series of GOTs this container
  // holds primary and secondary GOT's.
  std::vector<FileGot> gots;

  // Return (and create if necessary) `FileGot`.
  FileGot &getGot(InputFile &f);

  // Try to merge two GOTs. In case of success the `Dst` contains
  // result of merging and the function returns true. In case of
  // overflow the `Dst` is unchanged and the function returns false.
  bool tryMergeGots(FileGot & dst, FileGot & src, bool isPrimary);
};

class GotPltSection final : public SyntheticSection {
public:
  GotPltSection();
  void addEntry(Symbol &sym);
  size_t getSize() const override;
  void writeTo(uint8_t *buf) override;
  bool isNeeded() const override;

  // Flag to force GotPlt to be in output if we have relocations
  // that relies on its address.
  bool hasGotPltOffRel = false;

private:
  std::vector<const Symbol *> entries;
};

// The IgotPltSection is a Got associated with the PltSection for GNU Ifunc
// Symbols that will be relocated by Target->IRelativeRel.
// On most Targets the IgotPltSection will immediately follow the GotPltSection
// on ARM the IgotPltSection will immediately follow the GotSection.
class IgotPltSection final : public SyntheticSection {
public:
  IgotPltSection();
  void addEntry(Symbol &sym);
  size_t getSize() const override;
  void writeTo(uint8_t *buf) override;
  bool isNeeded() const override { return !entries.empty(); }

private:
  std::vector<const Symbol *> entries;
};

class StringTableSection final : public SyntheticSection {
public:
  StringTableSection(StringRef name, bool dynamic);
  unsigned addString(StringRef s, bool hashIt = true);
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override { return size; }
  bool isDynamic() const { return dynamic; }

private:
  const bool dynamic;

  uint64_t size = 0;

  llvm::DenseMap<StringRef, unsigned> stringMap;
  std::vector<StringRef> strings;
};

class DynamicReloc {
public:
  DynamicReloc(RelType type, const InputSectionBase *inputSec,
               uint64_t offsetInSec, bool useSymVA, Symbol *sym, int64_t addend)
      : type(type), sym(sym), inputSec(inputSec), offsetInSec(offsetInSec),
        useSymVA(useSymVA), addend(addend), outputSec(nullptr) {}
  // This constructor records dynamic relocation settings used by MIPS
  // multi-GOT implementation. It's to relocate addresses of 64kb pages
  // lie inside the output section.
  DynamicReloc(RelType type, const InputSectionBase *inputSec,
               uint64_t offsetInSec, const OutputSection *outputSec,
               int64_t addend)
      : type(type), sym(nullptr), inputSec(inputSec), offsetInSec(offsetInSec),
        useSymVA(false), addend(addend), outputSec(outputSec) {}

  uint64_t getOffset() const;
  uint32_t getSymIndex(SymbolTableBaseSection *symTab) const;

  // Computes the addend of the dynamic relocation. Note that this is not the
  // same as the addend member variable as it also includes the symbol address
  // if useSymVA is true.
  int64_t computeAddend() const;

  RelType type;

  Symbol *sym;
  const InputSectionBase *inputSec = nullptr;
  uint64_t offsetInSec;
  // If this member is true, the dynamic relocation will not be against the
  // symbol but will instead be a relative relocation that simply adds the
  // load address. This means we need to write the symbol virtual address
  // plus the original addend as the final relocation addend.
  bool useSymVA;
  int64_t addend;
  const OutputSection *outputSec;
};

template <class ELFT> class DynamicSection final : public SyntheticSection {
  using Elf_Dyn = typename ELFT::Dyn;
  using Elf_Rel = typename ELFT::Rel;
  using Elf_Rela = typename ELFT::Rela;
  using Elf_Relr = typename ELFT::Relr;
  using Elf_Shdr = typename ELFT::Shdr;
  using Elf_Sym = typename ELFT::Sym;

  // finalizeContents() fills this vector with the section contents.
  std::vector<std::pair<int32_t, std::function<uint64_t()>>> entries;

public:
  DynamicSection();
  void finalizeContents() override;
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override { return size; }

private:
  void add(int32_t tag, std::function<uint64_t()> fn);
  void addInt(int32_t tag, uint64_t val);
  void addInSec(int32_t tag, InputSection *sec);
  void addInSecRelative(int32_t tag, InputSection *sec);
  void addOutSec(int32_t tag, OutputSection *sec);
  void addSize(int32_t tag, OutputSection *sec);
  void addSym(int32_t tag, Symbol *sym);

  uint64_t size = 0;
};

class RelocationBaseSection : public SyntheticSection {
public:
  RelocationBaseSection(StringRef name, uint32_t type, int32_t dynamicTag,
                        int32_t sizeDynamicTag);
  void addReloc(RelType dynType, InputSectionBase *isec, uint64_t offsetInSec,
                Symbol *sym);
  // Add a dynamic relocation that might need an addend. This takes care of
  // writing the addend to the output section if needed.
  void addReloc(RelType dynType, InputSectionBase *inputSec,
                uint64_t offsetInSec, Symbol *sym, int64_t addend, RelExpr expr,
                RelType type);
  void addReloc(const DynamicReloc &reloc);
  bool isNeeded() const override { return !relocs.empty(); }
  size_t getSize() const override { return relocs.size() * this->entsize; }
  size_t getRelativeRelocCount() const { return numRelativeRelocs; }
  void finalizeContents() override;
  int32_t dynamicTag, sizeDynamicTag;
  std::vector<DynamicReloc> relocs;

protected:
  size_t numRelativeRelocs = 0;
};

template <class ELFT>
class RelocationSection final : public RelocationBaseSection {
  using Elf_Rel = typename ELFT::Rel;
  using Elf_Rela = typename ELFT::Rela;

public:
  RelocationSection(StringRef name, bool sort);
  void writeTo(uint8_t *buf) override;

private:
  bool sort;
};

template <class ELFT>
class AndroidPackedRelocationSection final : public RelocationBaseSection {
  using Elf_Rel = typename ELFT::Rel;
  using Elf_Rela = typename ELFT::Rela;

public:
  AndroidPackedRelocationSection(StringRef name);

  bool updateAllocSize() override;
  size_t getSize() const override { return relocData.size(); }
  void writeTo(uint8_t *buf) override {
    memcpy(buf, relocData.data(), relocData.size());
  }

private:
  SmallVector<char, 0> relocData;
};

struct RelativeReloc {
  uint64_t getOffset() const { return inputSec->getVA(offsetInSec); }

  const InputSectionBase *inputSec;
  uint64_t offsetInSec;
};

class RelrBaseSection : public SyntheticSection {
public:
  RelrBaseSection();
  bool isNeeded() const override { return !relocs.empty(); }
  std::vector<RelativeReloc> relocs;
};

// RelrSection is used to encode offsets for relative relocations.
// Proposal for adding SHT_RELR sections to generic-abi is here:
//   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
// For more details, see the comment in RelrSection::updateAllocSize().
template <class ELFT> class RelrSection final : public RelrBaseSection {
  using Elf_Relr = typename ELFT::Relr;

public:
  RelrSection();

  bool updateAllocSize() override;
  size_t getSize() const override { return relrRelocs.size() * this->entsize; }
  void writeTo(uint8_t *buf) override {
    memcpy(buf, relrRelocs.data(), getSize());
  }

private:
  std::vector<Elf_Relr> relrRelocs;
};

struct SymbolTableEntry {
  Symbol *sym;
  size_t strTabOffset;
};

class SymbolTableBaseSection : public SyntheticSection {
public:
  SymbolTableBaseSection(StringTableSection &strTabSec);
  void finalizeContents() override;
  size_t getSize() const override { return getNumSymbols() * entsize; }
  void addSymbol(Symbol *sym);
  unsigned getNumSymbols() const { return symbols.size() + 1; }
  size_t getSymbolIndex(Symbol *sym);
  ArrayRef<SymbolTableEntry> getSymbols() const { return symbols; }

protected:
  void sortSymTabSymbols();

  // A vector of symbols and their string table offsets.
  std::vector<SymbolTableEntry> symbols;

  StringTableSection &strTabSec;

  llvm::once_flag onceFlag;
  llvm::DenseMap<Symbol *, size_t> symbolIndexMap;
  llvm::DenseMap<OutputSection *, size_t> sectionIndexMap;
};

template <class ELFT>
class SymbolTableSection final : public SymbolTableBaseSection {
  using Elf_Sym = typename ELFT::Sym;

public:
  SymbolTableSection(StringTableSection &strTabSec);
  void writeTo(uint8_t *buf) override;
};

class SymtabShndxSection final : public SyntheticSection {
public:
  SymtabShndxSection();

  void writeTo(uint8_t *buf) override;
  size_t getSize() const override;
  bool isNeeded() const override;
  void finalizeContents() override;
};

// Outputs GNU Hash section. For detailed explanation see:
// https://blogs.oracle.com/ali/entry/gnu_hash_elf_sections
class GnuHashTableSection final : public SyntheticSection {
public:
  GnuHashTableSection();
  void finalizeContents() override;
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override { return size; }

  // Adds symbols to the hash table.
  // Sorts the input to satisfy GNU hash section requirements.
  void addSymbols(std::vector<SymbolTableEntry> &symbols);

private:
  // See the comment in writeBloomFilter.
  enum { Shift2 = 26 };

  void writeBloomFilter(uint8_t *buf);
  void writeHashTable(uint8_t *buf);

  struct Entry {
    Symbol *sym;
    size_t strTabOffset;
    uint32_t hash;
    uint32_t bucketIdx;
  };

  std::vector<Entry> symbols;
  size_t maskWords;
  size_t nBuckets = 0;
  size_t size = 0;
};

class HashTableSection final : public SyntheticSection {
public:
  HashTableSection();
  void finalizeContents() override;
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override { return size; }

private:
  size_t size = 0;
};

// Used for PLT entries. It usually has a PLT header for lazy binding. Each PLT
// entry is associated with a JUMP_SLOT relocation, which may be resolved lazily
// at runtime.
//
// On PowerPC, this section contains lazy symbol resolvers. A branch instruction
// jumps to a PLT call stub, which will then jump to the target (BIND_NOW) or a
// lazy symbol resolver.
//
// On x86 when IBT is enabled, this section (.plt.sec) contains PLT call stubs.
// A call instruction jumps to a .plt.sec entry, which will then jump to the
// target (BIND_NOW) or a .plt entry.
class PltSection : public SyntheticSection {
public:
  PltSection();
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override;
  bool isNeeded() const override;
  void addSymbols();
  void addEntry(Symbol &sym);
  size_t getNumEntries() const { return entries.size(); }

  size_t headerSize;

  std::vector<const Symbol *> entries;
};

// Used for non-preemptible ifuncs. It does not have a header. Each entry is
// associated with an IRELATIVE relocation, which will be resolved eagerly at
// runtime. PltSection can only contain entries associated with JUMP_SLOT
// relocations, so IPLT entries are in a separate section.
class IpltSection final : public SyntheticSection {
  std::vector<const Symbol *> entries;

public:
  IpltSection();
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override;
  bool isNeeded() const override { return !entries.empty(); }
  void addSymbols();
  void addEntry(Symbol &sym);
};

class PPC32GlinkSection : public PltSection {
public:
  PPC32GlinkSection();
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override;

  std::vector<const Symbol *> canonical_plts;
  static constexpr size_t footerSize = 64;
};

// This is x86-only.
class IBTPltSection : public SyntheticSection {
public:
  IBTPltSection();
  void writeTo(uint8_t *Buf) override;
  size_t getSize() const override;
};

class GdbIndexSection final : public SyntheticSection {
public:
  struct AddressEntry {
    InputSection *section;
    uint64_t lowAddress;
    uint64_t highAddress;
    uint32_t cuIndex;
  };

  struct CuEntry {
    uint64_t cuOffset;
    uint64_t cuLength;
  };

  struct NameAttrEntry {
    llvm::CachedHashStringRef name;
    uint32_t cuIndexAndAttrs;
  };

  struct GdbChunk {
    InputSection *sec;
    std::vector<AddressEntry> addressAreas;
    std::vector<CuEntry> compilationUnits;
  };

  struct GdbSymbol {
    llvm::CachedHashStringRef name;
    std::vector<uint32_t> cuVector;
    uint32_t nameOff;
    uint32_t cuVectorOff;
  };

  GdbIndexSection();
  template <typename ELFT> static GdbIndexSection *create();
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override { return size; }
  bool isNeeded() const override;

private:
  struct GdbIndexHeader {
    llvm::support::ulittle32_t version;
    llvm::support::ulittle32_t cuListOff;
    llvm::support::ulittle32_t cuTypesOff;
    llvm::support::ulittle32_t addressAreaOff;
    llvm::support::ulittle32_t symtabOff;
    llvm::support::ulittle32_t constantPoolOff;
  };

  void initOutputSize();
  size_t computeSymtabSize() const;

  // Each chunk contains information gathered from debug sections of a
  // single object file.
  std::vector<GdbChunk> chunks;

  // A symbol table for this .gdb_index section.
  std::vector<GdbSymbol> symbols;

  size_t size;
};

// --eh-frame-hdr option tells linker to construct a header for all the
// .eh_frame sections. This header is placed to a section named .eh_frame_hdr
// and also to a PT_GNU_EH_FRAME segment.
// At runtime the unwinder then can find all the PT_GNU_EH_FRAME segments by
// calling dl_iterate_phdr.
// This section contains a lookup table for quick binary search of FDEs.
// Detailed info about internals can be found in Ian Lance Taylor's blog:
// http://www.airs.com/blog/archives/460 (".eh_frame")
// http://www.airs.com/blog/archives/462 (".eh_frame_hdr")
class EhFrameHeader final : public SyntheticSection {
public:
  EhFrameHeader();
  void write();
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override;
  bool isNeeded() const override;
};

// For more information about .gnu.version and .gnu.version_r see:
// https://www.akkadia.org/drepper/symbol-versioning

// The .gnu.version_d section which has a section type of SHT_GNU_verdef shall
// contain symbol version definitions. The number of entries in this section
// shall be contained in the DT_VERDEFNUM entry of the .dynamic section.
// The section shall contain an array of Elf_Verdef structures, optionally
// followed by an array of Elf_Verdaux structures.
class VersionDefinitionSection final : public SyntheticSection {
public:
  VersionDefinitionSection();
  void finalizeContents() override;
  size_t getSize() const override;
  void writeTo(uint8_t *buf) override;

private:
  enum { EntrySize = 28 };
  void writeOne(uint8_t *buf, uint32_t index, StringRef name, size_t nameOff);
  StringRef getFileDefName();

  unsigned fileDefNameOff;
  std::vector<unsigned> verDefNameOffs;
};

// The .gnu.version section specifies the required version of each symbol in the
// dynamic symbol table. It contains one Elf_Versym for each dynamic symbol
// table entry. An Elf_Versym is just a 16-bit integer that refers to a version
// identifier defined in the either .gnu.version_r or .gnu.version_d section.
// The values 0 and 1 are reserved. All other values are used for versions in
// the own object or in any of the dependencies.
class VersionTableSection final : public SyntheticSection {
public:
  VersionTableSection();
  void finalizeContents() override;
  size_t getSize() const override;
  void writeTo(uint8_t *buf) override;
  bool isNeeded() const override;
};

// The .gnu.version_r section defines the version identifiers used by
// .gnu.version. It contains a linked list of Elf_Verneed data structures. Each
// Elf_Verneed specifies the version requirements for a single DSO, and contains
// a reference to a linked list of Elf_Vernaux data structures which define the
// mapping from version identifiers to version names.
template <class ELFT>
class VersionNeedSection final : public SyntheticSection {
  using Elf_Verneed = typename ELFT::Verneed;
  using Elf_Vernaux = typename ELFT::Vernaux;

  struct Vernaux {
    uint64_t hash;
    uint32_t verneedIndex;
    uint64_t nameStrTab;
  };

  struct Verneed {
    uint64_t nameStrTab;
    std::vector<Vernaux> vernauxs;
  };

  std::vector<Verneed> verneeds;

public:
  VersionNeedSection();
  void finalizeContents() override;
  void writeTo(uint8_t *buf) override;
  size_t getSize() const override;
  bool isNeeded() const override;
};

// MergeSyntheticSection is a class that allows us to put mergeable sections
// with different attributes in a single output sections. To do that
// we put them into MergeSyntheticSection synthetic input sections which are
// attached to regular output sections.
class MergeSyntheticSection : public SyntheticSection {
public:
  void addSection(MergeInputSection *ms);
  std::vector<MergeInputSection *> sections;

protected:
  MergeSyntheticSection(StringRef name, uint32_t type, uint64_t flags,
                        uint32_t alignment)
      : SyntheticSection(flags, type, alignment, name) {}
};

class MergeTailSection final : public MergeSyntheticSection {
public:
  MergeTailSection(StringRef name, uint32_t type, uint64_t flags,
                   uint32_t alignment);

  size_t getSize() const override;
  void writeTo(uint8_t *buf) override;
  void finalizeContents() override;

private:
  llvm::StringTableBuilder builder;
};

class MergeNoTailSection final : public MergeSyntheticSection {
public:
  MergeNoTailSection(StringRef name, uint32_t type, uint64_t flags,
                     uint32_t alignment)
      : MergeSyntheticSection(name, type, flags, alignment) {}

  size_t getSize() const override { return size; }
  void writeTo(uint8_t *buf) override;
  void finalizeContents() override;

private:
  // We use the most significant bits of a hash as a shard ID.
  // The reason why we don't want to use the least significant bits is
  // because DenseMap also uses lower bits to determine a bucket ID.
  // If we use lower bits, it significantly increases the probability of
  // hash collisons.
  size_t getShardId(uint32_t hash) {
    assert((hash >> 31) == 0);
    return hash >> (31 - llvm::countTrailingZeros(numShards));
  }

  // Section size
  size_t size;

  // String table contents
  constexpr static size_t numShards = 32;
  std::vector<llvm::StringTableBuilder> shards;
  size_t shardOffsets[numShards];
};

// .MIPS.abiflags section.
template <class ELFT>
class MipsAbiFlagsSection final : public SyntheticSection {
  using Elf_Mips_ABIFlags = llvm::object::Elf_Mips_ABIFlags<ELFT>;

public:
  static MipsAbiFlagsSection *create();

  MipsAbiFlagsSection(Elf_Mips_ABIFlags flags);
  size_t getSize() const override { return sizeof(Elf_Mips_ABIFlags); }
  void writeTo(uint8_t *buf) override;

private:
  Elf_Mips_ABIFlags flags;
};

// .MIPS.options section.
template <class ELFT> class MipsOptionsSection final : public SyntheticSection {
  using Elf_Mips_Options = llvm::object::Elf_Mips_Options<ELFT>;
  using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>;

public:
  static MipsOptionsSection *create();

  MipsOptionsSection(Elf_Mips_RegInfo reginfo);
  void writeTo(uint8_t *buf) override;

  size_t getSize() const override {
    return sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
  }

private:
  Elf_Mips_RegInfo reginfo;
};

// MIPS .reginfo section.
template <class ELFT> class MipsReginfoSection final : public SyntheticSection {
  using Elf_Mips_RegInfo = llvm::object::Elf_Mips_RegInfo<ELFT>;

public:
  static MipsReginfoSection *create();

  MipsReginfoSection(Elf_Mips_RegInfo reginfo);
  size_t getSize() const override { return sizeof(Elf_Mips_RegInfo); }
  void writeTo(uint8_t *buf) override;

private:
  Elf_Mips_RegInfo reginfo;
};

// This is a MIPS specific section to hold a space within the data segment
// of executable file which is pointed to by the DT_MIPS_RLD_MAP entry.
// See "Dynamic section" in Chapter 5 in the following document:
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
class MipsRldMapSection : public SyntheticSection {
public:
  MipsRldMapSection();
  size_t getSize() const override { return config->wordsize; }
  void writeTo(uint8_t *buf) override {}
};

// Representation of the combined .ARM.Exidx input sections. We process these
// as a SyntheticSection like .eh_frame as we need to merge duplicate entries
// and add terminating sentinel entries.
//
// The .ARM.exidx input sections after SHF_LINK_ORDER processing is done form
// a table that the unwinder can derive (Addresses are encoded as offsets from
// table):
// | Address of function | Unwind instructions for function |
// where the unwind instructions are either a small number of unwind or the
// special EXIDX_CANTUNWIND entry representing no unwinding information.
// When an exception is thrown from an address A, the unwinder searches the
// table for the closest table entry with Address of function <= A. This means
// that for two consecutive table entries:
// | A1 | U1 |
// | A2 | U2 |
// The range of addresses described by U1 is [A1, A2)
//
// There are two cases where we need a linker generated table entry to fixup
// the address ranges in the table
// Case 1:
// - A sentinel entry added with an address higher than all
// executable sections. This was needed to work around libunwind bug pr31091.
// - After address assignment we need to find the highest addressed executable
// section and use the limit of that section so that the unwinder never
// matches it.
// Case 2:
// - InputSections without a .ARM.exidx section (usually from Assembly)
// need a table entry so that they terminate the range of the previously
// function. This is pr40277.
//
// Instead of storing pointers to the .ARM.exidx InputSections from
// InputObjects, we store pointers to the executable sections that need
// .ARM.exidx sections. We can then use the dependentSections of these to
// either find the .ARM.exidx section or know that we need to generate one.
class ARMExidxSyntheticSection : public SyntheticSection {
public:
  ARMExidxSyntheticSection();

  // Add an input section to the ARMExidxSyntheticSection. Returns whether the
  // section needs to be removed from the main input section list.
  bool addSection(InputSection *isec);

  size_t getSize() const override { return size; }
  void writeTo(uint8_t *buf) override;
  bool isNeeded() const override;
  // Sort and remove duplicate entries.
  void finalizeContents() override;
  InputSection *getLinkOrderDep() const;

  static bool classof(const SectionBase *d);

  // Links to the ARMExidxSections so we can transfer the relocations once the
  // layout is known.
  std::vector<InputSection *> exidxSections;

private:
  size_t size = 0;

  // Instead of storing pointers to the .ARM.exidx InputSections from
  // InputObjects, we store pointers to the executable sections that need
  // .ARM.exidx sections. We can then use the dependentSections of these to
  // either find the .ARM.exidx section or know that we need to generate one.
  std::vector<InputSection *> executableSections;

  // The executable InputSection with the highest address to use for the
  // sentinel. We store separately from ExecutableSections as merging of
  // duplicate entries may mean this InputSection is removed from
  // ExecutableSections.
  InputSection *sentinel = nullptr;
};

// A container for one or more linker generated thunks. Instances of these
// thunks including ARM interworking and Mips LA25 PI to non-PI thunks.
class ThunkSection : public SyntheticSection {
public:
  // ThunkSection in OS, with desired outSecOff of Off
  ThunkSection(OutputSection *os, uint64_t off);

  // Add a newly created Thunk to this container:
  // Thunk is given offset from start of this InputSection
  // Thunk defines a symbol in this InputSection that can be used as target
  // of a relocation
  void addThunk(Thunk *t);
  size_t getSize() const override;
  void writeTo(uint8_t *buf) override;
  InputSection *getTargetInputSection() const;
  bool assignOffsets();

  // When true, round up reported size of section to 4 KiB. See comment
  // in addThunkSection() for more details.
  bool roundUpSizeForErrata = false;

private:
  std::vector<Thunk *> thunks;
  size_t size = 0;
};

// Used to compute outSecOff of .got2 in each object file. This is needed to
// synthesize PLT entries for PPC32 Secure PLT ABI.
class PPC32Got2Section final : public SyntheticSection {
public:
  PPC32Got2Section();
  size_t getSize() const override { return 0; }
  bool isNeeded() const override;
  void finalizeContents() override;
  void writeTo(uint8_t *buf) override {}
};

// This section is used to store the addresses of functions that are called
// in range-extending thunks on PowerPC64. When producing position dependent
// code the addresses are link-time constants and the table is written out to
// the binary. When producing position-dependent code the table is allocated and
// filled in by the dynamic linker.
class PPC64LongBranchTargetSection final : public SyntheticSection {
public:
  PPC64LongBranchTargetSection();
  uint64_t getEntryVA(const Symbol *sym, int64_t addend);
  llvm::Optional<uint32_t> addEntry(const Symbol *sym, int64_t addend);
  size_t getSize() const override;
  void writeTo(uint8_t *buf) override;
  bool isNeeded() const override;
  void finalizeContents() override { finalized = true; }

private:
  std::vector<std::pair<const Symbol *, int64_t>> entries;
  llvm::DenseMap<std::pair<const Symbol *, int64_t>, uint32_t> entry_index;
  bool finalized = false;
};

template <typename ELFT>
class PartitionElfHeaderSection : public SyntheticSection {
public:
  PartitionElfHeaderSection();
  size_t getSize() const override;
  void writeTo(uint8_t *buf) override;
};

template <typename ELFT>
class PartitionProgramHeadersSection : public SyntheticSection {
public:
  PartitionProgramHeadersSection();
  size_t getSize() const override;
  void writeTo(uint8_t *buf) override;
};

class PartitionIndexSection : public SyntheticSection {
public:
  PartitionIndexSection();
  size_t getSize() const override;
  void finalizeContents() override;
  void writeTo(uint8_t *buf) override;
};

InputSection *createInterpSection();
MergeInputSection *createCommentSection();
MergeSyntheticSection *createMergeSynthetic(StringRef name, uint32_t type,
                                            uint64_t flags, uint32_t alignment);
template <class ELFT> void splitSections();

template <typename ELFT> void writeEhdr(uint8_t *buf, Partition &part);
template <typename ELFT> void writePhdrs(uint8_t *buf, Partition &part);

Defined *addSyntheticLocal(StringRef name, uint8_t type, uint64_t value,
                           uint64_t size, InputSectionBase &section);

void addVerneed(Symbol *ss);

// Linker generated per-partition sections.
struct Partition {
  StringRef name;
  uint64_t nameStrTab;

  SyntheticSection *elfHeader;
  SyntheticSection *programHeaders;
  std::vector<PhdrEntry *> phdrs;

  ARMExidxSyntheticSection *armExidx;
  BuildIdSection *buildId;
  SyntheticSection *dynamic;
  StringTableSection *dynStrTab;
  SymbolTableBaseSection *dynSymTab;
  EhFrameHeader *ehFrameHdr;
  EhFrameSection *ehFrame;
  GnuHashTableSection *gnuHashTab;
  HashTableSection *hashTab;
  RelocationBaseSection *relaDyn;
  RelrBaseSection *relrDyn;
  VersionDefinitionSection *verDef;
  SyntheticSection *verNeed;
  VersionTableSection *verSym;

  unsigned getNumber() const { return this - &partitions[0] + 1; }
};

extern Partition *mainPart;

inline Partition &SectionBase::getPartition() const {
  assert(isLive());
  return partitions[partition - 1];
}

// Linker generated sections which can be used as inputs and are not specific to
// a partition.
struct InStruct {
  InputSection *armAttributes;
  BssSection *bss;
  BssSection *bssRelRo;
  GotSection *got;
  GotPltSection *gotPlt;
  IgotPltSection *igotPlt;
  PPC64LongBranchTargetSection *ppc64LongBranchTarget;
  MipsGotSection *mipsGot;
  MipsRldMapSection *mipsRldMap;
  SyntheticSection *partEnd;
  SyntheticSection *partIndex;
  PltSection *plt;
  IpltSection *iplt;
  PPC32Got2Section *ppc32Got2;
  IBTPltSection *ibtPlt;
  RelocationBaseSection *relaPlt;
  RelocationBaseSection *relaIplt;
  StringTableSection *shStrTab;
  StringTableSection *strTab;
  SymbolTableBaseSection *symTab;
  SymtabShndxSection *symTabShndx;
};

extern InStruct in;

} // namespace elf
} // namespace lld

#endif