//===-- ClangExpressionParser.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/DiagnosticIDs.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Version.h"
#include "clang/CodeGen/CodeGenAction.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "clang/Edit/Commit.h"
#include "clang/Edit/EditedSource.h"
#include "clang/Edit/EditsReceiver.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/CompilerInvocation.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Frontend/FrontendPluginRegistry.h"
#include "clang/Frontend/TextDiagnosticBuffer.h"
#include "clang/Frontend/TextDiagnosticPrinter.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Parse/ParseAST.h"
#include "clang/Rewrite/Core/Rewriter.h"
#include "clang/Rewrite/Frontend/FrontendActions.h"
#include "clang/Sema/CodeCompleteConsumer.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaConsumer.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/Support/CrashRecoveryContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Signals.h"
#include "ClangDiagnostic.h"
#include "ClangExpressionParser.h"
#include "ClangUserExpression.h"
#include "ASTUtils.h"
#include "ClangASTSource.h"
#include "ClangDiagnostic.h"
#include "ClangExpressionDeclMap.h"
#include "ClangExpressionHelper.h"
#include "ClangExpressionParser.h"
#include "ClangHost.h"
#include "ClangModulesDeclVendor.h"
#include "ClangPersistentVariables.h"
#include "IRDynamicChecks.h"
#include "IRForTarget.h"
#include "ModuleDependencyCollector.h"
#include "Plugins/TypeSystem/Clang/TypeSystemClang.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Disassembler.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Expression/IRExecutionUnit.h"
#include "lldb/Expression/IRInterpreter.h"
#include "lldb/Host/File.h"
#include "lldb/Host/HostInfo.h"
#include "lldb/Symbol/SymbolVendor.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Language.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/ThreadPlanCallFunction.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/LLDBAssert.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/Reproducer.h"
#include "lldb/Utility/Stream.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/Utility/StringList.h"
#include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h"
#include "Plugins/LanguageRuntime/RenderScript/RenderScriptRuntime/RenderScriptRuntime.h"
#include <cctype>
#include <memory>
using namespace clang;
using namespace llvm;
using namespace lldb_private;
//===----------------------------------------------------------------------===//
// Utility Methods for Clang
//===----------------------------------------------------------------------===//
class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks {
ClangModulesDeclVendor &m_decl_vendor;
ClangPersistentVariables &m_persistent_vars;
clang::SourceManager &m_source_mgr;
StreamString m_error_stream;
bool m_has_errors = false;
public:
LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor,
ClangPersistentVariables &persistent_vars,
clang::SourceManager &source_mgr)
: m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars),
m_source_mgr(source_mgr) {}
void moduleImport(SourceLocation import_location, clang::ModuleIdPath path,
const clang::Module * /*null*/) override {
// Ignore modules that are imported in the wrapper code as these are not
// loaded by the user.
llvm::StringRef filename =
m_source_mgr.getPresumedLoc(import_location).getFilename();
if (filename == ClangExpressionSourceCode::g_prefix_file_name)
return;
SourceModule module;
for (const std::pair<IdentifierInfo *, SourceLocation> &component : path)
module.path.push_back(ConstString(component.first->getName()));
StreamString error_stream;
ClangModulesDeclVendor::ModuleVector exported_modules;
if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream))
m_has_errors = true;
for (ClangModulesDeclVendor::ModuleID module : exported_modules)
m_persistent_vars.AddHandLoadedClangModule(module);
}
bool hasErrors() { return m_has_errors; }
llvm::StringRef getErrorString() { return m_error_stream.GetString(); }
};
static void AddAllFixIts(ClangDiagnostic *diag, const clang::Diagnostic &Info) {
for (auto &fix_it : Info.getFixItHints()) {
if (fix_it.isNull())
continue;
diag->AddFixitHint(fix_it);
}
}
class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer {
public:
ClangDiagnosticManagerAdapter(DiagnosticOptions &opts) {
DiagnosticOptions *options = new DiagnosticOptions(opts);
options->ShowPresumedLoc = true;
options->ShowLevel = false;
m_os = std::make_shared<llvm::raw_string_ostream>(m_output);
m_passthrough =
std::make_shared<clang::TextDiagnosticPrinter>(*m_os, options);
}
void ResetManager(DiagnosticManager *manager = nullptr) {
m_manager = manager;
}
/// Returns the last ClangDiagnostic message that the DiagnosticManager
/// received or a nullptr if the DiagnosticMangager hasn't seen any
/// Clang diagnostics yet.
ClangDiagnostic *MaybeGetLastClangDiag() const {
if (m_manager->Diagnostics().empty())
return nullptr;
lldb_private::Diagnostic *diag = m_manager->Diagnostics().back().get();
ClangDiagnostic *clang_diag = dyn_cast<ClangDiagnostic>(diag);
return clang_diag;
}
void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
const clang::Diagnostic &Info) override {
if (!m_manager) {
// We have no DiagnosticManager before/after parsing but we still could
// receive diagnostics (e.g., by the ASTImporter failing to copy decls
// when we move the expression result ot the ScratchASTContext). Let's at
// least log these diagnostics until we find a way to properly render
// them and display them to the user.
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
if (log) {
llvm::SmallVector<char, 32> diag_str;
Info.FormatDiagnostic(diag_str);
diag_str.push_back('\0');
const char *plain_diag = diag_str.data();
LLDB_LOG(log, "Received diagnostic outside parsing: {0}", plain_diag);
}
return;
}
// Update error/warning counters.
DiagnosticConsumer::HandleDiagnostic(DiagLevel, Info);
// Render diagnostic message to m_output.
m_output.clear();
m_passthrough->HandleDiagnostic(DiagLevel, Info);
m_os->flush();
lldb_private::DiagnosticSeverity severity;
bool make_new_diagnostic = true;
switch (DiagLevel) {
case DiagnosticsEngine::Level::Fatal:
case DiagnosticsEngine::Level::Error:
severity = eDiagnosticSeverityError;
break;
case DiagnosticsEngine::Level::Warning:
severity = eDiagnosticSeverityWarning;
break;
case DiagnosticsEngine::Level::Remark:
case DiagnosticsEngine::Level::Ignored:
severity = eDiagnosticSeverityRemark;
break;
case DiagnosticsEngine::Level::Note:
m_manager->AppendMessageToDiagnostic(m_output);
make_new_diagnostic = false;
// 'note:' diagnostics for errors and warnings can also contain Fix-Its.
// We add these Fix-Its to the last error diagnostic to make sure
// that we later have all Fix-Its related to an 'error' diagnostic when
// we apply them to the user expression.
auto *clang_diag = MaybeGetLastClangDiag();
// If we don't have a previous diagnostic there is nothing to do.
// If the previous diagnostic already has its own Fix-Its, assume that
// the 'note:' Fix-It is just an alternative way to solve the issue and
// ignore these Fix-Its.
if (!clang_diag || clang_diag->HasFixIts())
break;
// Ignore all Fix-Its that are not associated with an error.
if (clang_diag->GetSeverity() != eDiagnosticSeverityError)
break;
AddAllFixIts(clang_diag, Info);
break;
}
if (make_new_diagnostic) {
// ClangDiagnostic messages are expected to have no whitespace/newlines
// around them.
std::string stripped_output =
std::string(llvm::StringRef(m_output).trim());
auto new_diagnostic = std::make_unique<ClangDiagnostic>(
stripped_output, severity, Info.getID());
// Don't store away warning fixits, since the compiler doesn't have
// enough context in an expression for the warning to be useful.
// FIXME: Should we try to filter out FixIts that apply to our generated
// code, and not the user's expression?
if (severity == eDiagnosticSeverityError)
AddAllFixIts(new_diagnostic.get(), Info);
m_manager->AddDiagnostic(std::move(new_diagnostic));
}
}
void BeginSourceFile(const LangOptions &LO, const Preprocessor *PP) override {
m_passthrough->BeginSourceFile(LO, PP);
}
void EndSourceFile() override { m_passthrough->EndSourceFile(); }
private:
DiagnosticManager *m_manager = nullptr;
std::shared_ptr<clang::TextDiagnosticPrinter> m_passthrough;
/// Output stream of m_passthrough.
std::shared_ptr<llvm::raw_string_ostream> m_os;
/// Output string filled by m_os.
std::string m_output;
};
static void SetupModuleHeaderPaths(CompilerInstance *compiler,
std::vector<std::string> include_directories,
lldb::TargetSP target_sp) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts();
for (const std::string &dir : include_directories) {
search_opts.AddPath(dir, frontend::System, false, true);
LLDB_LOG(log, "Added user include dir: {0}", dir);
}
llvm::SmallString<128> module_cache;
const auto &props = ModuleList::GetGlobalModuleListProperties();
props.GetClangModulesCachePath().GetPath(module_cache);
search_opts.ModuleCachePath = std::string(module_cache.str());
LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str());
search_opts.ResourceDir = GetClangResourceDir().GetPath();
search_opts.ImplicitModuleMaps = true;
}
//===----------------------------------------------------------------------===//
// Implementation of ClangExpressionParser
//===----------------------------------------------------------------------===//
ClangExpressionParser::ClangExpressionParser(
ExecutionContextScope *exe_scope, Expression &expr,
bool generate_debug_info, std::vector<std::string> include_directories,
std::string filename)
: ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(),
m_pp_callbacks(nullptr),
m_include_directories(std::move(include_directories)),
m_filename(std::move(filename)) {
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
// We can't compile expressions without a target. So if the exe_scope is
// null or doesn't have a target, then we just need to get out of here. I'll
// lldbassert and not make any of the compiler objects since
// I can't return errors directly from the constructor. Further calls will
// check if the compiler was made and
// bag out if it wasn't.
if (!exe_scope) {
lldbassert(exe_scope &&
"Can't make an expression parser with a null scope.");
return;
}
lldb::TargetSP target_sp;
target_sp = exe_scope->CalculateTarget();
if (!target_sp) {
lldbassert(target_sp.get() &&
"Can't make an expression parser with a null target.");
return;
}
// 1. Create a new compiler instance.
m_compiler = std::make_unique<CompilerInstance>();
// When capturing a reproducer, hook up the file collector with clang to
// collector modules and headers.
if (repro::Generator *g = repro::Reproducer::Instance().GetGenerator()) {
repro::FileProvider &fp = g->GetOrCreate<repro::FileProvider>();
m_compiler->setModuleDepCollector(
std::make_shared<ModuleDependencyCollectorAdaptor>(
fp.GetFileCollector()));
DependencyOutputOptions &opts = m_compiler->getDependencyOutputOpts();
opts.IncludeSystemHeaders = true;
opts.IncludeModuleFiles = true;
}
// Make sure clang uses the same VFS as LLDB.
m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem());
lldb::LanguageType frame_lang =
expr.Language(); // defaults to lldb::eLanguageTypeUnknown
bool overridden_target_opts = false;
lldb_private::LanguageRuntime *lang_rt = nullptr;
std::string abi;
ArchSpec target_arch;
target_arch = target_sp->GetArchitecture();
const auto target_machine = target_arch.GetMachine();
// If the expression is being evaluated in the context of an existing stack
// frame, we introspect to see if the language runtime is available.
lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame();
lldb::ProcessSP process_sp = exe_scope->CalculateProcess();
// Make sure the user hasn't provided a preferred execution language with
// `expression --language X -- ...`
if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown)
frame_lang = frame_sp->GetLanguage();
if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) {
lang_rt = process_sp->GetLanguageRuntime(frame_lang);
LLDB_LOGF(log, "Frame has language of type %s",
Language::GetNameForLanguageType(frame_lang));
}
// 2. Configure the compiler with a set of default options that are
// appropriate for most situations.
if (target_arch.IsValid()) {
std::string triple = target_arch.GetTriple().str();
m_compiler->getTargetOpts().Triple = triple;
LLDB_LOGF(log, "Using %s as the target triple",
m_compiler->getTargetOpts().Triple.c_str());
} else {
// If we get here we don't have a valid target and just have to guess.
// Sometimes this will be ok to just use the host target triple (when we
// evaluate say "2+3", but other expressions like breakpoint conditions and
// other things that _are_ target specific really shouldn't just be using
// the host triple. In such a case the language runtime should expose an
// overridden options set (3), below.
m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple();
LLDB_LOGF(log, "Using default target triple of %s",
m_compiler->getTargetOpts().Triple.c_str());
}
// Now add some special fixes for known architectures: Any arm32 iOS
// environment, but not on arm64
if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos &&
m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos &&
m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) {
m_compiler->getTargetOpts().ABI = "apcs-gnu";
}
// Supported subsets of x86
if (target_machine == llvm::Triple::x86 ||
target_machine == llvm::Triple::x86_64) {
m_compiler->getTargetOpts().Features.push_back("+sse");
m_compiler->getTargetOpts().Features.push_back("+sse2");
}
// Set the target CPU to generate code for. This will be empty for any CPU
// that doesn't really need to make a special
// CPU string.
m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU();
// Set the target ABI
abi = GetClangTargetABI(target_arch);
if (!abi.empty())
m_compiler->getTargetOpts().ABI = abi;
// 3. Now allow the runtime to provide custom configuration options for the
// target. In this case, a specialized language runtime is available and we
// can query it for extra options. For 99% of use cases, this will not be
// needed and should be provided when basic platform detection is not enough.
// FIXME: Generalize this. Only RenderScriptRuntime currently supports this
// currently. Hardcoding this isn't ideal but it's better than LanguageRuntime
// having knowledge of clang::TargetOpts.
if (auto *renderscript_rt =
llvm::dyn_cast_or_null<RenderScriptRuntime>(lang_rt))
overridden_target_opts =
renderscript_rt->GetOverrideExprOptions(m_compiler->getTargetOpts());
if (overridden_target_opts)
if (log && log->GetVerbose()) {
LLDB_LOGV(
log, "Using overridden target options for the expression evaluation");
auto opts = m_compiler->getTargetOpts();
LLDB_LOGV(log, "Triple: '{0}'", opts.Triple);
LLDB_LOGV(log, "CPU: '{0}'", opts.CPU);
LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath);
LLDB_LOGV(log, "ABI: '{0}'", opts.ABI);
LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion);
StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten");
StringList::LogDump(log, opts.Features, "Features");
}
// 4. Create and install the target on the compiler.
m_compiler->createDiagnostics();
auto target_info = TargetInfo::CreateTargetInfo(
m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts);
if (log) {
LLDB_LOGF(log, "Using SIMD alignment: %d",
target_info->getSimdDefaultAlign());
LLDB_LOGF(log, "Target datalayout string: '%s'",
target_info->getDataLayout().getStringRepresentation().c_str());
LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str());
LLDB_LOGF(log, "Target vector alignment: %d",
target_info->getMaxVectorAlign());
}
m_compiler->setTarget(target_info);
assert(m_compiler->hasTarget());
// 5. Set language options.
lldb::LanguageType language = expr.Language();
LangOptions &lang_opts = m_compiler->getLangOpts();
switch (language) {
case lldb::eLanguageTypeC:
case lldb::eLanguageTypeC89:
case lldb::eLanguageTypeC99:
case lldb::eLanguageTypeC11:
// FIXME: the following language option is a temporary workaround,
// to "ask for C, get C++."
// For now, the expression parser must use C++ anytime the language is a C
// family language, because the expression parser uses features of C++ to
// capture values.
lang_opts.CPlusPlus = true;
break;
case lldb::eLanguageTypeObjC:
lang_opts.ObjC = true;
// FIXME: the following language option is a temporary workaround,
// to "ask for ObjC, get ObjC++" (see comment above).
lang_opts.CPlusPlus = true;
// Clang now sets as default C++14 as the default standard (with
// GNU extensions), so we do the same here to avoid mismatches that
// cause compiler error when evaluating expressions (e.g. nullptr not found
// as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see
// two lines below) so we decide to be consistent with that, but this could
// be re-evaluated in the future.
lang_opts.CPlusPlus11 = true;
break;
case lldb::eLanguageTypeC_plus_plus:
case lldb::eLanguageTypeC_plus_plus_11:
case lldb::eLanguageTypeC_plus_plus_14:
lang_opts.CPlusPlus11 = true;
m_compiler->getHeaderSearchOpts().UseLibcxx = true;
LLVM_FALLTHROUGH;
case lldb::eLanguageTypeC_plus_plus_03:
lang_opts.CPlusPlus = true;
if (process_sp)
lang_opts.ObjC =
process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr;
break;
case lldb::eLanguageTypeObjC_plus_plus:
case lldb::eLanguageTypeUnknown:
default:
lang_opts.ObjC = true;
lang_opts.CPlusPlus = true;
lang_opts.CPlusPlus11 = true;
m_compiler->getHeaderSearchOpts().UseLibcxx = true;
break;
}
lang_opts.Bool = true;
lang_opts.WChar = true;
lang_opts.Blocks = true;
lang_opts.DebuggerSupport =
true; // Features specifically for debugger clients
if (expr.DesiredResultType() == Expression::eResultTypeId)
lang_opts.DebuggerCastResultToId = true;
lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str())
.CharIsSignedByDefault();
// Spell checking is a nice feature, but it ends up completing a lot of types
// that we didn't strictly speaking need to complete. As a result, we spend a
// long time parsing and importing debug information.
lang_opts.SpellChecking = false;
auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr);
if (clang_expr && clang_expr->DidImportCxxModules()) {
LLDB_LOG(log, "Adding lang options for importing C++ modules");
lang_opts.Modules = true;
// We want to implicitly build modules.
lang_opts.ImplicitModules = true;
// To automatically import all submodules when we import 'std'.
lang_opts.ModulesLocalVisibility = false;
// We use the @import statements, so we need this:
// FIXME: We could use the modules-ts, but that currently doesn't work.
lang_opts.ObjC = true;
// Options we need to parse libc++ code successfully.
// FIXME: We should ask the driver for the appropriate default flags.
lang_opts.GNUMode = true;
lang_opts.GNUKeywords = true;
lang_opts.DoubleSquareBracketAttributes = true;
lang_opts.CPlusPlus11 = true;
// The Darwin libc expects this macro to be set.
lang_opts.GNUCVersion = 40201;
SetupModuleHeaderPaths(m_compiler.get(), m_include_directories,
target_sp);
}
if (process_sp && lang_opts.ObjC) {
if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) {
if (runtime->GetRuntimeVersion() ==
ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2)
lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7));
else
lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX,
VersionTuple(10, 7));
if (runtime->HasNewLiteralsAndIndexing())
lang_opts.DebuggerObjCLiteral = true;
}
}
lang_opts.ThreadsafeStatics = false;
lang_opts.AccessControl = false; // Debuggers get universal access
lang_opts.DollarIdents = true; // $ indicates a persistent variable name
// We enable all builtin functions beside the builtins from libc/libm (e.g.
// 'fopen'). Those libc functions are already correctly handled by LLDB, and
// additionally enabling them as expandable builtins is breaking Clang.
lang_opts.NoBuiltin = true;
// Set CodeGen options
m_compiler->getCodeGenOpts().EmitDeclMetadata = true;
m_compiler->getCodeGenOpts().InstrumentFunctions = false;
m_compiler->getCodeGenOpts().setFramePointer(
CodeGenOptions::FramePointerKind::All);
if (generate_debug_info)
m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo);
else
m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo);
// Disable some warnings.
m_compiler->getDiagnostics().setSeverityForGroup(
clang::diag::Flavor::WarningOrError, "unused-value",
clang::diag::Severity::Ignored, SourceLocation());
m_compiler->getDiagnostics().setSeverityForGroup(
clang::diag::Flavor::WarningOrError, "odr",
clang::diag::Severity::Ignored, SourceLocation());
// Inform the target of the language options
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
m_compiler->getTarget().adjust(m_compiler->getLangOpts());
// 6. Set up the diagnostic buffer for reporting errors
auto diag_mgr = new ClangDiagnosticManagerAdapter(
m_compiler->getDiagnostics().getDiagnosticOptions());
m_compiler->getDiagnostics().setClient(diag_mgr);
// 7. Set up the source management objects inside the compiler
m_compiler->createFileManager();
if (!m_compiler->hasSourceManager())
m_compiler->createSourceManager(m_compiler->getFileManager());
m_compiler->createPreprocessor(TU_Complete);
if (ClangModulesDeclVendor *decl_vendor =
target_sp->GetClangModulesDeclVendor()) {
if (auto *clang_persistent_vars = llvm::cast<ClangPersistentVariables>(
target_sp->GetPersistentExpressionStateForLanguage(
lldb::eLanguageTypeC))) {
std::unique_ptr<PPCallbacks> pp_callbacks(
new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars,
m_compiler->getSourceManager()));
m_pp_callbacks =
static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get());
m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks));
}
}
// 8. Most of this we get from the CompilerInstance, but we also want to give
// the context an ExternalASTSource.
auto &PP = m_compiler->getPreprocessor();
auto &builtin_context = PP.getBuiltinInfo();
builtin_context.initializeBuiltins(PP.getIdentifierTable(),
m_compiler->getLangOpts());
m_compiler->createASTContext();
clang::ASTContext &ast_context = m_compiler->getASTContext();
m_ast_context = std::make_unique<TypeSystemClang>(
"Expression ASTContext for '" + m_filename + "'", ast_context);
std::string module_name("$__lldb_module");
m_llvm_context = std::make_unique<LLVMContext>();
m_code_generator.reset(CreateLLVMCodeGen(
m_compiler->getDiagnostics(), module_name,
m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(),
m_compiler->getCodeGenOpts(), *m_llvm_context));
}
ClangExpressionParser::~ClangExpressionParser() {}
namespace {
/// \class CodeComplete
///
/// A code completion consumer for the clang Sema that is responsible for
/// creating the completion suggestions when a user requests completion
/// of an incomplete `expr` invocation.
class CodeComplete : public CodeCompleteConsumer {
CodeCompletionTUInfo m_info;
std::string m_expr;
unsigned m_position = 0;
/// The printing policy we use when printing declarations for our completion
/// descriptions.
clang::PrintingPolicy m_desc_policy;
struct CompletionWithPriority {
CompletionResult::Completion completion;
/// See CodeCompletionResult::Priority;
unsigned Priority;
/// Establishes a deterministic order in a list of CompletionWithPriority.
/// The order returned here is the order in which the completions are
/// displayed to the user.
bool operator<(const CompletionWithPriority &o) const {
// High priority results should come first.
if (Priority != o.Priority)
return Priority > o.Priority;
// Identical priority, so just make sure it's a deterministic order.
return completion.GetUniqueKey() < o.completion.GetUniqueKey();
}
};
/// The stored completions.
/// Warning: These are in a non-deterministic order until they are sorted
/// and returned back to the caller.
std::vector<CompletionWithPriority> m_completions;
/// Returns true if the given character can be used in an identifier.
/// This also returns true for numbers because for completion we usually
/// just iterate backwards over iterators.
///
/// Note: lldb uses '$' in its internal identifiers, so we also allow this.
static bool IsIdChar(char c) {
return c == '_' || std::isalnum(c) || c == '$';
}
/// Returns true if the given character is used to separate arguments
/// in the command line of lldb.
static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; }
/// Drops all tokens in front of the expression that are unrelated for
/// the completion of the cmd line. 'unrelated' means here that the token
/// is not interested for the lldb completion API result.
StringRef dropUnrelatedFrontTokens(StringRef cmd) const {
if (cmd.empty())
return cmd;
// If we are at the start of a word, then all tokens are unrelated to
// the current completion logic.
if (IsTokenSeparator(cmd.back()))
return StringRef();
// Remove all previous tokens from the string as they are unrelated
// to completing the current token.
StringRef to_remove = cmd;
while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) {
to_remove = to_remove.drop_back();
}
cmd = cmd.drop_front(to_remove.size());
return cmd;
}
/// Removes the last identifier token from the given cmd line.
StringRef removeLastToken(StringRef cmd) const {
while (!cmd.empty() && IsIdChar(cmd.back())) {
cmd = cmd.drop_back();
}
return cmd;
}
/// Attempts to merge the given completion from the given position into the
/// existing command. Returns the completion string that can be returned to
/// the lldb completion API.
std::string mergeCompletion(StringRef existing, unsigned pos,
StringRef completion) const {
StringRef existing_command = existing.substr(0, pos);
// We rewrite the last token with the completion, so let's drop that
// token from the command.
existing_command = removeLastToken(existing_command);
// We also should remove all previous tokens from the command as they
// would otherwise be added to the completion that already has the
// completion.
existing_command = dropUnrelatedFrontTokens(existing_command);
return existing_command.str() + completion.str();
}
public:
/// Constructs a CodeComplete consumer that can be attached to a Sema.
///
/// \param[out] expr
/// The whole expression string that we are currently parsing. This
/// string needs to be equal to the input the user typed, and NOT the
/// final code that Clang is parsing.
/// \param[out] position
/// The character position of the user cursor in the `expr` parameter.
///
CodeComplete(clang::LangOptions ops, std::string expr, unsigned position)
: CodeCompleteConsumer(CodeCompleteOptions()),
m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr),
m_position(position), m_desc_policy(ops) {
// Ensure that the printing policy is producing a description that is as
// short as possible.
m_desc_policy.SuppressScope = true;
m_desc_policy.SuppressTagKeyword = true;
m_desc_policy.FullyQualifiedName = false;
m_desc_policy.TerseOutput = true;
m_desc_policy.IncludeNewlines = false;
m_desc_policy.UseVoidForZeroParams = false;
m_desc_policy.Bool = true;
}
/// \name Code-completion filtering
/// Check if the result should be filtered out.
bool isResultFilteredOut(StringRef Filter,
CodeCompletionResult Result) override {
// This code is mostly copied from CodeCompleteConsumer.
switch (Result.Kind) {
case CodeCompletionResult::RK_Declaration:
return !(
Result.Declaration->getIdentifier() &&
Result.Declaration->getIdentifier()->getName().startswith(Filter));
case CodeCompletionResult::RK_Keyword:
return !StringRef(Result.Keyword).startswith(Filter);
case CodeCompletionResult::RK_Macro:
return !Result.Macro->getName().startswith(Filter);
case CodeCompletionResult::RK_Pattern:
return !StringRef(Result.Pattern->getAsString()).startswith(Filter);
}
// If we trigger this assert or the above switch yields a warning, then
// CodeCompletionResult has been enhanced with more kinds of completion
// results. Expand the switch above in this case.
assert(false && "Unknown completion result type?");
// If we reach this, then we should just ignore whatever kind of unknown
// result we got back. We probably can't turn it into any kind of useful
// completion suggestion with the existing code.
return true;
}
private:
/// Generate the completion strings for the given CodeCompletionResult.
/// Note that this function has to process results that could come in
/// non-deterministic order, so this function should have no side effects.
/// To make this easier to enforce, this function and all its parameters
/// should always be const-qualified.
/// \return Returns llvm::None if no completion should be provided for the
/// given CodeCompletionResult.
llvm::Optional<CompletionWithPriority>
getCompletionForResult(const CodeCompletionResult &R) const {
std::string ToInsert;
std::string Description;
// Handle the different completion kinds that come from the Sema.
switch (R.Kind) {
case CodeCompletionResult::RK_Declaration: {
const NamedDecl *D = R.Declaration;
ToInsert = R.Declaration->getNameAsString();
// If we have a function decl that has no arguments we want to
// complete the empty parantheses for the user. If the function has
// arguments, we at least complete the opening bracket.
if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) {
if (F->getNumParams() == 0)
ToInsert += "()";
else
ToInsert += "(";
raw_string_ostream OS(Description);
F->print(OS, m_desc_policy, false);
OS.flush();
} else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
Description = V->getType().getAsString(m_desc_policy);
} else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) {
Description = F->getType().getAsString(m_desc_policy);
} else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) {
// If we try to complete a namespace, then we can directly append
// the '::'.
if (!N->isAnonymousNamespace())
ToInsert += "::";
}
break;
}
case CodeCompletionResult::RK_Keyword:
ToInsert = R.Keyword;
break;
case CodeCompletionResult::RK_Macro:
ToInsert = R.Macro->getName().str();
break;
case CodeCompletionResult::RK_Pattern:
ToInsert = R.Pattern->getTypedText();
break;
}
// We also filter some internal lldb identifiers here. The user
// shouldn't see these.
if (llvm::StringRef(ToInsert).startswith("$__lldb_"))
return llvm::None;
if (ToInsert.empty())
return llvm::None;
// Merge the suggested Token into the existing command line to comply
// with the kind of result the lldb API expects.
std::string CompletionSuggestion =
mergeCompletion(m_expr, m_position, ToInsert);
CompletionResult::Completion completion(CompletionSuggestion, Description,
CompletionMode::Normal);
return {{completion, R.Priority}};
}
public:
/// Adds the completions to the given CompletionRequest.
void GetCompletions(CompletionRequest &request) {
// Bring m_completions into a deterministic order and pass it on to the
// CompletionRequest.
llvm::sort(m_completions);
for (const CompletionWithPriority &C : m_completions)
request.AddCompletion(C.completion.GetCompletion(),
C.completion.GetDescription(),
C.completion.GetMode());
}
/// \name Code-completion callbacks
/// Process the finalized code-completion results.
void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context,
CodeCompletionResult *Results,
unsigned NumResults) override {
// The Sema put the incomplete token we try to complete in here during
// lexing, so we need to retrieve it here to know what we are completing.
StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter();
// Iterate over all the results. Filter out results we don't want and
// process the rest.
for (unsigned I = 0; I != NumResults; ++I) {
// Filter the results with the information from the Sema.
if (!Filter.empty() && isResultFilteredOut(Filter, Results[I]))
continue;
CodeCompletionResult &R = Results[I];
llvm::Optional<CompletionWithPriority> CompletionAndPriority =
getCompletionForResult(R);
if (!CompletionAndPriority)
continue;
m_completions.push_back(*CompletionAndPriority);
}
}
/// \param S the semantic-analyzer object for which code-completion is being
/// done.
///
/// \param CurrentArg the index of the current argument.
///
/// \param Candidates an array of overload candidates.
///
/// \param NumCandidates the number of overload candidates
void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
OverloadCandidate *Candidates,
unsigned NumCandidates,
SourceLocation OpenParLoc) override {
// At the moment we don't filter out any overloaded candidates.
}
CodeCompletionAllocator &getAllocator() override {
return m_info.getAllocator();
}
CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; }
};
} // namespace
bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line,
unsigned pos, unsigned typed_pos) {
DiagnosticManager mgr;
// We need the raw user expression here because that's what the CodeComplete
// class uses to provide completion suggestions.
// However, the `Text` method only gives us the transformed expression here.
// To actually get the raw user input here, we have to cast our expression to
// the LLVMUserExpression which exposes the right API. This should never fail
// as we always have a ClangUserExpression whenever we call this.
ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr);
CodeComplete CC(m_compiler->getLangOpts(), llvm_expr->GetUserText(),
typed_pos);
// We don't need a code generator for parsing.
m_code_generator.reset();
// Start parsing the expression with our custom code completion consumer.
ParseInternal(mgr, &CC, line, pos);
CC.GetCompletions(request);
return true;
}
unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) {
return ParseInternal(diagnostic_manager);
}
unsigned
ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager,
CodeCompleteConsumer *completion_consumer,
unsigned completion_line,
unsigned completion_column) {
ClangDiagnosticManagerAdapter *adapter =
static_cast<ClangDiagnosticManagerAdapter *>(
m_compiler->getDiagnostics().getClient());
adapter->ResetManager(&diagnostic_manager);
const char *expr_text = m_expr.Text();
clang::SourceManager &source_mgr = m_compiler->getSourceManager();
bool created_main_file = false;
// Clang wants to do completion on a real file known by Clang's file manager,
// so we have to create one to make this work.
// TODO: We probably could also simulate to Clang's file manager that there
// is a real file that contains our code.
bool should_create_file = completion_consumer != nullptr;
// We also want a real file on disk if we generate full debug info.
should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() ==
codegenoptions::FullDebugInfo;
if (should_create_file) {
int temp_fd = -1;
llvm::SmallString<128> result_path;
if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) {
tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr");
std::string temp_source_path = tmpdir_file_spec.GetPath();
llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path);
} else {
llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path);
}
if (temp_fd != -1) {
lldb_private::NativeFile file(temp_fd, File::eOpenOptionWrite, true);
const size_t expr_text_len = strlen(expr_text);
size_t bytes_written = expr_text_len;
if (file.Write(expr_text, bytes_written).Success()) {
if (bytes_written == expr_text_len) {
file.Close();
if (auto fileEntry =
m_compiler->getFileManager().getFile(result_path)) {
source_mgr.setMainFileID(source_mgr.createFileID(
*fileEntry,
SourceLocation(), SrcMgr::C_User));
created_main_file = true;
}
}
}
}
}
if (!created_main_file) {
std::unique_ptr<MemoryBuffer> memory_buffer =
MemoryBuffer::getMemBufferCopy(expr_text, m_filename);
source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer)));
}
adapter->BeginSourceFile(m_compiler->getLangOpts(),
&m_compiler->getPreprocessor());
ClangExpressionHelper *type_system_helper =
dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
// If we want to parse for code completion, we need to attach our code
// completion consumer to the Sema and specify a completion position.
// While parsing the Sema will call this consumer with the provided
// completion suggestions.
if (completion_consumer) {
auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID());
auto &PP = m_compiler->getPreprocessor();
// Lines and columns start at 1 in Clang, but code completion positions are
// indexed from 0, so we need to add 1 to the line and column here.
++completion_line;
++completion_column;
PP.SetCodeCompletionPoint(main_file, completion_line, completion_column);
}
ASTConsumer *ast_transformer =
type_system_helper->ASTTransformer(m_code_generator.get());
std::unique_ptr<clang::ASTConsumer> Consumer;
if (ast_transformer) {
Consumer = std::make_unique<ASTConsumerForwarder>(ast_transformer);
} else if (m_code_generator) {
Consumer = std::make_unique<ASTConsumerForwarder>(m_code_generator.get());
} else {
Consumer = std::make_unique<ASTConsumer>();
}
clang::ASTContext &ast_context = m_compiler->getASTContext();
m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context,
*Consumer, TU_Complete, completion_consumer));
m_compiler->setASTConsumer(std::move(Consumer));
if (ast_context.getLangOpts().Modules) {
m_compiler->createASTReader();
m_ast_context->setSema(&m_compiler->getSema());
}
ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap();
if (decl_map) {
decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer());
clang::ExternalASTSource *ast_source = decl_map->CreateProxy();
if (ast_context.getExternalSource()) {
auto module_wrapper =
new ExternalASTSourceWrapper(ast_context.getExternalSource());
auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source);
auto multiplexer =
new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper);
IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer);
ast_context.setExternalSource(Source);
} else {
ast_context.setExternalSource(ast_source);
}
decl_map->InstallASTContext(*m_ast_context);
}
// Check that the ASTReader is properly attached to ASTContext and Sema.
if (ast_context.getLangOpts().Modules) {
assert(m_compiler->getASTContext().getExternalSource() &&
"ASTContext doesn't know about the ASTReader?");
assert(m_compiler->getSema().getExternalSource() &&
"Sema doesn't know about the ASTReader?");
}
{
llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema(
&m_compiler->getSema());
ParseAST(m_compiler->getSema(), false, false);
}
// Make sure we have no pointer to the Sema we are about to destroy.
if (ast_context.getLangOpts().Modules)
m_ast_context->setSema(nullptr);
// Destroy the Sema. This is necessary because we want to emulate the
// original behavior of ParseAST (which also destroys the Sema after parsing).
m_compiler->setSema(nullptr);
adapter->EndSourceFile();
unsigned num_errors = adapter->getNumErrors();
if (m_pp_callbacks && m_pp_callbacks->hasErrors()) {
num_errors++;
diagnostic_manager.PutString(eDiagnosticSeverityError,
"while importing modules:");
diagnostic_manager.AppendMessageToDiagnostic(
m_pp_callbacks->getErrorString());
}
if (!num_errors) {
type_system_helper->CommitPersistentDecls();
}
adapter->ResetManager();
return num_errors;
}
std::string
ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) {
std::string abi;
if (target_arch.IsMIPS()) {
switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) {
case ArchSpec::eMIPSABI_N64:
abi = "n64";
break;
case ArchSpec::eMIPSABI_N32:
abi = "n32";
break;
case ArchSpec::eMIPSABI_O32:
abi = "o32";
break;
default:
break;
}
}
return abi;
}
/// Applies the given Fix-It hint to the given commit.
static void ApplyFixIt(const FixItHint &fixit, clang::edit::Commit &commit) {
// This is cobbed from clang::Rewrite::FixItRewriter.
if (fixit.CodeToInsert.empty()) {
if (fixit.InsertFromRange.isValid()) {
commit.insertFromRange(fixit.RemoveRange.getBegin(),
fixit.InsertFromRange, /*afterToken=*/false,
fixit.BeforePreviousInsertions);
return;
}
commit.remove(fixit.RemoveRange);
return;
}
if (fixit.RemoveRange.isTokenRange() ||
fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) {
commit.replace(fixit.RemoveRange, fixit.CodeToInsert);
return;
}
commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert,
/*afterToken=*/false, fixit.BeforePreviousInsertions);
}
bool ClangExpressionParser::RewriteExpression(
DiagnosticManager &diagnostic_manager) {
clang::SourceManager &source_manager = m_compiler->getSourceManager();
clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(),
nullptr);
clang::edit::Commit commit(editor);
clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts());
class RewritesReceiver : public edit::EditsReceiver {
Rewriter &rewrite;
public:
RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {}
void insert(SourceLocation loc, StringRef text) override {
rewrite.InsertText(loc, text);
}
void replace(CharSourceRange range, StringRef text) override {
rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text);
}
};
RewritesReceiver rewrites_receiver(rewriter);
const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics();
size_t num_diags = diagnostics.size();
if (num_diags == 0)
return false;
for (const auto &diag : diagnostic_manager.Diagnostics()) {
const auto *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag.get());
if (!diagnostic)
continue;
if (!diagnostic->HasFixIts())
continue;
for (const FixItHint &fixit : diagnostic->FixIts())
ApplyFixIt(fixit, commit);
}
// FIXME - do we want to try to propagate specific errors here?
if (!commit.isCommitable())
return false;
else if (!editor.commit(commit))
return false;
// Now play all the edits, and stash the result in the diagnostic manager.
editor.applyRewrites(rewrites_receiver);
RewriteBuffer &main_file_buffer =
rewriter.getEditBuffer(source_manager.getMainFileID());
std::string fixed_expression;
llvm::raw_string_ostream out_stream(fixed_expression);
main_file_buffer.write(out_stream);
out_stream.flush();
diagnostic_manager.SetFixedExpression(fixed_expression);
return true;
}
static bool FindFunctionInModule(ConstString &mangled_name,
llvm::Module *module, const char *orig_name) {
for (const auto &func : module->getFunctionList()) {
const StringRef &name = func.getName();
if (name.find(orig_name) != StringRef::npos) {
mangled_name.SetString(name);
return true;
}
}
return false;
}
lldb_private::Status ClangExpressionParser::PrepareForExecution(
lldb::addr_t &func_addr, lldb::addr_t &func_end,
lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx,
bool &can_interpret, ExecutionPolicy execution_policy) {
func_addr = LLDB_INVALID_ADDRESS;
func_end = LLDB_INVALID_ADDRESS;
Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
lldb_private::Status err;
std::unique_ptr<llvm::Module> llvm_module_up(
m_code_generator->ReleaseModule());
if (!llvm_module_up) {
err.SetErrorToGenericError();
err.SetErrorString("IR doesn't contain a module");
return err;
}
ConstString function_name;
if (execution_policy != eExecutionPolicyTopLevel) {
// Find the actual name of the function (it's often mangled somehow)
if (!FindFunctionInModule(function_name, llvm_module_up.get(),
m_expr.FunctionName())) {
err.SetErrorToGenericError();
err.SetErrorStringWithFormat("Couldn't find %s() in the module",
m_expr.FunctionName());
return err;
} else {
LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(),
m_expr.FunctionName());
}
}
SymbolContext sc;
if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) {
sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything);
} else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) {
sc.target_sp = target_sp;
}
LLVMUserExpression::IRPasses custom_passes;
{
auto lang = m_expr.Language();
LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__,
Language::GetNameForLanguageType(lang));
lldb::ProcessSP process_sp = exe_ctx.GetProcessSP();
if (process_sp && lang != lldb::eLanguageTypeUnknown) {
auto runtime = process_sp->GetLanguageRuntime(lang);
if (runtime)
runtime->GetIRPasses(custom_passes);
}
}
if (custom_passes.EarlyPasses) {
LLDB_LOGF(log,
"%s - Running Early IR Passes from LanguageRuntime on "
"expression module '%s'",
__FUNCTION__, m_expr.FunctionName());
custom_passes.EarlyPasses->run(*llvm_module_up);
}
execution_unit_sp = std::make_shared<IRExecutionUnit>(
m_llvm_context, // handed off here
llvm_module_up, // handed off here
function_name, exe_ctx.GetTargetSP(), sc,
m_compiler->getTargetOpts().Features);
ClangExpressionHelper *type_system_helper =
dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
ClangExpressionDeclMap *decl_map =
type_system_helper->DeclMap(); // result can be NULL
if (decl_map) {
StreamString error_stream;
IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(),
*execution_unit_sp, error_stream,
function_name.AsCString());
if (!ir_for_target.runOnModule(*execution_unit_sp->GetModule())) {
err.SetErrorString(error_stream.GetString());
return err;
}
Process *process = exe_ctx.GetProcessPtr();
if (execution_policy != eExecutionPolicyAlways &&
execution_policy != eExecutionPolicyTopLevel) {
lldb_private::Status interpret_error;
bool interpret_function_calls =
!process ? false : process->CanInterpretFunctionCalls();
can_interpret = IRInterpreter::CanInterpret(
*execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(),
interpret_error, interpret_function_calls);
if (!can_interpret && execution_policy == eExecutionPolicyNever) {
err.SetErrorStringWithFormat(
"Can't evaluate the expression without a running target due to: %s",
interpret_error.AsCString());
return err;
}
}
if (!process && execution_policy == eExecutionPolicyAlways) {
err.SetErrorString("Expression needed to run in the target, but the "
"target can't be run");
return err;
}
if (!process && execution_policy == eExecutionPolicyTopLevel) {
err.SetErrorString("Top-level code needs to be inserted into a runnable "
"target, but the target can't be run");
return err;
}
if (execution_policy == eExecutionPolicyAlways ||
(execution_policy != eExecutionPolicyTopLevel && !can_interpret)) {
if (m_expr.NeedsValidation() && process) {
if (!process->GetDynamicCheckers()) {
ClangDynamicCheckerFunctions *dynamic_checkers =
new ClangDynamicCheckerFunctions();
DiagnosticManager install_diagnostics;
if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) {
if (install_diagnostics.Diagnostics().size())
err.SetErrorString(install_diagnostics.GetString().c_str());
else
err.SetErrorString("couldn't install checkers, unknown error");
return err;
}
process->SetDynamicCheckers(dynamic_checkers);
LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] "
"Finished installing dynamic checkers ==");
}
if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>(
process->GetDynamicCheckers())) {
IRDynamicChecks ir_dynamic_checks(*checker_funcs,
function_name.AsCString());
llvm::Module *module = execution_unit_sp->GetModule();
if (!module || !ir_dynamic_checks.runOnModule(*module)) {
err.SetErrorToGenericError();
err.SetErrorString("Couldn't add dynamic checks to the expression");
return err;
}
if (custom_passes.LatePasses) {
LLDB_LOGF(log,
"%s - Running Late IR Passes from LanguageRuntime on "
"expression module '%s'",
__FUNCTION__, m_expr.FunctionName());
custom_passes.LatePasses->run(*module);
}
}
}
}
if (execution_policy == eExecutionPolicyAlways ||
execution_policy == eExecutionPolicyTopLevel || !can_interpret) {
execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
}
} else {
execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
}
return err;
}
lldb_private::Status ClangExpressionParser::RunStaticInitializers(
lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) {
lldb_private::Status err;
lldbassert(execution_unit_sp.get());
lldbassert(exe_ctx.HasThreadScope());
if (!execution_unit_sp.get()) {
err.SetErrorString(
"can't run static initializers for a NULL execution unit");
return err;
}
if (!exe_ctx.HasThreadScope()) {
err.SetErrorString("can't run static initializers without a thread");
return err;
}
std::vector<lldb::addr_t> static_initializers;
execution_unit_sp->GetStaticInitializers(static_initializers);
for (lldb::addr_t static_initializer : static_initializers) {
EvaluateExpressionOptions options;
lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction(
exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(),
llvm::ArrayRef<lldb::addr_t>(), options));
DiagnosticManager execution_errors;
lldb::ExpressionResults results =
exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan(
exe_ctx, call_static_initializer, options, execution_errors);
if (results != lldb::eExpressionCompleted) {
err.SetErrorStringWithFormat("couldn't run static initializer: %s",
execution_errors.GetString().c_str());
return err;
}
}
return err;
}