Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
//===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Replaces repeated sequences of instructions with function calls.
///
/// This works by placing every instruction from every basic block in a
/// suffix tree, and repeatedly querying that tree for repeated sequences of
/// instructions. If a sequence of instructions appears often, then it ought
/// to be beneficial to pull out into a function.
///
/// The MachineOutliner communicates with a given target using hooks defined in
/// TargetInstrInfo.h. The target supplies the outliner with information on how
/// a specific sequence of instructions should be outlined. This information
/// is used to deduce the number of instructions necessary to
///
/// * Create an outlined function
/// * Call that outlined function
///
/// Targets must implement
///   * getOutliningCandidateInfo
///   * buildOutlinedFrame
///   * insertOutlinedCall
///   * isFunctionSafeToOutlineFrom
///
/// in order to make use of the MachineOutliner.
///
/// This was originally presented at the 2016 LLVM Developers' Meeting in the
/// talk "Reducing Code Size Using Outlining". For a high-level overview of
/// how this pass works, the talk is available on YouTube at
///
/// https://www.youtube.com/watch?v=yorld-WSOeU
///
/// The slides for the talk are available at
///
/// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
///
/// The talk provides an overview of how the outliner finds candidates and
/// ultimately outlines them. It describes how the main data structure for this
/// pass, the suffix tree, is queried and purged for candidates. It also gives
/// a simplified suffix tree construction algorithm for suffix trees based off
/// of the algorithm actually used here, Ukkonen's algorithm.
///
/// For the original RFC for this pass, please see
///
/// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
///
/// For more information on the suffix tree data structure, please see
/// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
///
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineOutliner.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Mangler.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/SuffixTree.h"
#include "llvm/Support/raw_ostream.h"
#include <functional>
#include <tuple>
#include <vector>

#define DEBUG_TYPE "machine-outliner"

using namespace llvm;
using namespace ore;
using namespace outliner;

STATISTIC(NumOutlined, "Number of candidates outlined");
STATISTIC(FunctionsCreated, "Number of functions created");

// Set to true if the user wants the outliner to run on linkonceodr linkage
// functions. This is false by default because the linker can dedupe linkonceodr
// functions. Since the outliner is confined to a single module (modulo LTO),
// this is off by default. It should, however, be the default behaviour in
// LTO.
static cl::opt<bool> EnableLinkOnceODROutlining(
    "enable-linkonceodr-outlining", cl::Hidden,
    cl::desc("Enable the machine outliner on linkonceodr functions"),
    cl::init(false));

/// Number of times to re-run the outliner. This is not the total number of runs
/// as the outliner will run at least one time. The default value is set to 0,
/// meaning the outliner will run one time and rerun zero times after that.
static cl::opt<unsigned> OutlinerReruns(
    "machine-outliner-reruns", cl::init(0), cl::Hidden,
    cl::desc(
        "Number of times to rerun the outliner after the initial outline"));

namespace {

/// Maps \p MachineInstrs to unsigned integers and stores the mappings.
struct InstructionMapper {

  /// The next available integer to assign to a \p MachineInstr that
  /// cannot be outlined.
  ///
  /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
  unsigned IllegalInstrNumber = -3;

  /// The next available integer to assign to a \p MachineInstr that can
  /// be outlined.
  unsigned LegalInstrNumber = 0;

  /// Correspondence from \p MachineInstrs to unsigned integers.
  DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
      InstructionIntegerMap;

  /// Correspondence between \p MachineBasicBlocks and target-defined flags.
  DenseMap<MachineBasicBlock *, unsigned> MBBFlagsMap;

  /// The vector of unsigned integers that the module is mapped to.
  std::vector<unsigned> UnsignedVec;

  /// Stores the location of the instruction associated with the integer
  /// at index i in \p UnsignedVec for each index i.
  std::vector<MachineBasicBlock::iterator> InstrList;

  // Set if we added an illegal number in the previous step.
  // Since each illegal number is unique, we only need one of them between
  // each range of legal numbers. This lets us make sure we don't add more
  // than one illegal number per range.
  bool AddedIllegalLastTime = false;

  /// Maps \p *It to a legal integer.
  ///
  /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB,
  /// \p UnsignedVecForMBB, \p InstructionIntegerMap, and \p LegalInstrNumber.
  ///
  /// \returns The integer that \p *It was mapped to.
  unsigned mapToLegalUnsigned(
      MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr,
      bool &HaveLegalRange, unsigned &NumLegalInBlock,
      std::vector<unsigned> &UnsignedVecForMBB,
      std::vector<MachineBasicBlock::iterator> &InstrListForMBB) {
    // We added something legal, so we should unset the AddedLegalLastTime
    // flag.
    AddedIllegalLastTime = false;

    // If we have at least two adjacent legal instructions (which may have
    // invisible instructions in between), remember that.
    if (CanOutlineWithPrevInstr)
      HaveLegalRange = true;
    CanOutlineWithPrevInstr = true;

    // Keep track of the number of legal instructions we insert.
    NumLegalInBlock++;

    // Get the integer for this instruction or give it the current
    // LegalInstrNumber.
    InstrListForMBB.push_back(It);
    MachineInstr &MI = *It;
    bool WasInserted;
    DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
        ResultIt;
    std::tie(ResultIt, WasInserted) =
        InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
    unsigned MINumber = ResultIt->second;

    // There was an insertion.
    if (WasInserted)
      LegalInstrNumber++;

    UnsignedVecForMBB.push_back(MINumber);

    // Make sure we don't overflow or use any integers reserved by the DenseMap.
    if (LegalInstrNumber >= IllegalInstrNumber)
      report_fatal_error("Instruction mapping overflow!");

    assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
           "Tried to assign DenseMap tombstone or empty key to instruction.");
    assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
           "Tried to assign DenseMap tombstone or empty key to instruction.");

    return MINumber;
  }

  /// Maps \p *It to an illegal integer.
  ///
  /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p
  /// IllegalInstrNumber.
  ///
  /// \returns The integer that \p *It was mapped to.
  unsigned mapToIllegalUnsigned(
      MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr,
      std::vector<unsigned> &UnsignedVecForMBB,
      std::vector<MachineBasicBlock::iterator> &InstrListForMBB) {
    // Can't outline an illegal instruction. Set the flag.
    CanOutlineWithPrevInstr = false;

    // Only add one illegal number per range of legal numbers.
    if (AddedIllegalLastTime)
      return IllegalInstrNumber;

    // Remember that we added an illegal number last time.
    AddedIllegalLastTime = true;
    unsigned MINumber = IllegalInstrNumber;

    InstrListForMBB.push_back(It);
    UnsignedVecForMBB.push_back(IllegalInstrNumber);
    IllegalInstrNumber--;

    assert(LegalInstrNumber < IllegalInstrNumber &&
           "Instruction mapping overflow!");

    assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
           "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");

    assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
           "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");

    return MINumber;
  }

  /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
  /// and appends it to \p UnsignedVec and \p InstrList.
  ///
  /// Two instructions are assigned the same integer if they are identical.
  /// If an instruction is deemed unsafe to outline, then it will be assigned an
  /// unique integer. The resulting mapping is placed into a suffix tree and
  /// queried for candidates.
  ///
  /// \param MBB The \p MachineBasicBlock to be translated into integers.
  /// \param TII \p TargetInstrInfo for the function.
  void convertToUnsignedVec(MachineBasicBlock &MBB,
                            const TargetInstrInfo &TII) {
    unsigned Flags = 0;

    // Don't even map in this case.
    if (!TII.isMBBSafeToOutlineFrom(MBB, Flags))
      return;

    // Store info for the MBB for later outlining.
    MBBFlagsMap[&MBB] = Flags;

    MachineBasicBlock::iterator It = MBB.begin();

    // The number of instructions in this block that will be considered for
    // outlining.
    unsigned NumLegalInBlock = 0;

    // True if we have at least two legal instructions which aren't separated
    // by an illegal instruction.
    bool HaveLegalRange = false;

    // True if we can perform outlining given the last mapped (non-invisible)
    // instruction. This lets us know if we have a legal range.
    bool CanOutlineWithPrevInstr = false;

    // FIXME: Should this all just be handled in the target, rather than using
    // repeated calls to getOutliningType?
    std::vector<unsigned> UnsignedVecForMBB;
    std::vector<MachineBasicBlock::iterator> InstrListForMBB;

    for (MachineBasicBlock::iterator Et = MBB.end(); It != Et; ++It) {
      // Keep track of where this instruction is in the module.
      switch (TII.getOutliningType(It, Flags)) {
      case InstrType::Illegal:
        mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
                             InstrListForMBB);
        break;

      case InstrType::Legal:
        mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
                           NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB);
        break;

      case InstrType::LegalTerminator:
        mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
                           NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB);
        // The instruction also acts as a terminator, so we have to record that
        // in the string.
        mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
                             InstrListForMBB);
        break;

      case InstrType::Invisible:
        // Normally this is set by mapTo(Blah)Unsigned, but we just want to
        // skip this instruction. So, unset the flag here.
        AddedIllegalLastTime = false;
        break;
      }
    }

    // Are there enough legal instructions in the block for outlining to be
    // possible?
    if (HaveLegalRange) {
      // After we're done every insertion, uniquely terminate this part of the
      // "string". This makes sure we won't match across basic block or function
      // boundaries since the "end" is encoded uniquely and thus appears in no
      // repeated substring.
      mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
                           InstrListForMBB);
      InstrList.insert(InstrList.end(), InstrListForMBB.begin(),
                       InstrListForMBB.end());
      UnsignedVec.insert(UnsignedVec.end(), UnsignedVecForMBB.begin(),
                         UnsignedVecForMBB.end());
    }
  }

  InstructionMapper() {
    // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
    // changed.
    assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
           "DenseMapInfo<unsigned>'s empty key isn't -1!");
    assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
           "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
  }
};

/// An interprocedural pass which finds repeated sequences of
/// instructions and replaces them with calls to functions.
///
/// Each instruction is mapped to an unsigned integer and placed in a string.
/// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
/// is then repeatedly queried for repeated sequences of instructions. Each
/// non-overlapping repeated sequence is then placed in its own
/// \p MachineFunction and each instance is then replaced with a call to that
/// function.
struct MachineOutliner : public ModulePass {

  static char ID;

  /// Set to true if the outliner should consider functions with
  /// linkonceodr linkage.
  bool OutlineFromLinkOnceODRs = false;

  /// The current repeat number of machine outlining.
  unsigned OutlineRepeatedNum = 0;

  /// Set to true if the outliner should run on all functions in the module
  /// considered safe for outlining.
  /// Set to true by default for compatibility with llc's -run-pass option.
  /// Set when the pass is constructed in TargetPassConfig.
  bool RunOnAllFunctions = true;

  StringRef getPassName() const override { return "Machine Outliner"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<MachineModuleInfoWrapperPass>();
    AU.addPreserved<MachineModuleInfoWrapperPass>();
    AU.setPreservesAll();
    ModulePass::getAnalysisUsage(AU);
  }

  MachineOutliner() : ModulePass(ID) {
    initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
  }

  /// Remark output explaining that not outlining a set of candidates would be
  /// better than outlining that set.
  void emitNotOutliningCheaperRemark(
      unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
      OutlinedFunction &OF);

  /// Remark output explaining that a function was outlined.
  void emitOutlinedFunctionRemark(OutlinedFunction &OF);

  /// Find all repeated substrings that satisfy the outlining cost model by
  /// constructing a suffix tree.
  ///
  /// If a substring appears at least twice, then it must be represented by
  /// an internal node which appears in at least two suffixes. Each suffix
  /// is represented by a leaf node. To do this, we visit each internal node
  /// in the tree, using the leaf children of each internal node. If an
  /// internal node represents a beneficial substring, then we use each of
  /// its leaf children to find the locations of its substring.
  ///
  /// \param Mapper Contains outlining mapping information.
  /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions
  /// each type of candidate.
  void findCandidates(InstructionMapper &Mapper,
                      std::vector<OutlinedFunction> &FunctionList);

  /// Replace the sequences of instructions represented by \p OutlinedFunctions
  /// with calls to functions.
  ///
  /// \param M The module we are outlining from.
  /// \param FunctionList A list of functions to be inserted into the module.
  /// \param Mapper Contains the instruction mappings for the module.
  bool outline(Module &M, std::vector<OutlinedFunction> &FunctionList,
               InstructionMapper &Mapper, unsigned &OutlinedFunctionNum);

  /// Creates a function for \p OF and inserts it into the module.
  MachineFunction *createOutlinedFunction(Module &M, OutlinedFunction &OF,
                                          InstructionMapper &Mapper,
                                          unsigned Name);

  /// Calls 'doOutline()' 1 + OutlinerReruns times.
  bool runOnModule(Module &M) override;

  /// Construct a suffix tree on the instructions in \p M and outline repeated
  /// strings from that tree.
  bool doOutline(Module &M, unsigned &OutlinedFunctionNum);

  /// Return a DISubprogram for OF if one exists, and null otherwise. Helper
  /// function for remark emission.
  DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) {
    for (const Candidate &C : OF.Candidates)
      if (MachineFunction *MF = C.getMF())
        if (DISubprogram *SP = MF->getFunction().getSubprogram())
          return SP;
    return nullptr;
  }

  /// Populate and \p InstructionMapper with instruction-to-integer mappings.
  /// These are used to construct a suffix tree.
  void populateMapper(InstructionMapper &Mapper, Module &M,
                      MachineModuleInfo &MMI);

  /// Initialize information necessary to output a size remark.
  /// FIXME: This should be handled by the pass manager, not the outliner.
  /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy
  /// pass manager.
  void initSizeRemarkInfo(const Module &M, const MachineModuleInfo &MMI,
                          StringMap<unsigned> &FunctionToInstrCount);

  /// Emit the remark.
  // FIXME: This should be handled by the pass manager, not the outliner.
  void
  emitInstrCountChangedRemark(const Module &M, const MachineModuleInfo &MMI,
                              const StringMap<unsigned> &FunctionToInstrCount);
};
} // Anonymous namespace.

char MachineOutliner::ID = 0;

namespace llvm {
ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) {
  MachineOutliner *OL = new MachineOutliner();
  OL->RunOnAllFunctions = RunOnAllFunctions;
  return OL;
}

} // namespace llvm

INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
                false)

void MachineOutliner::emitNotOutliningCheaperRemark(
    unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
    OutlinedFunction &OF) {
  // FIXME: Right now, we arbitrarily choose some Candidate from the
  // OutlinedFunction. This isn't necessarily fixed, nor does it have to be.
  // We should probably sort these by function name or something to make sure
  // the remarks are stable.
  Candidate &C = CandidatesForRepeatedSeq.front();
  MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr);
  MORE.emit([&]() {
    MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
                                      C.front()->getDebugLoc(), C.getMBB());
    R << "Did not outline " << NV("Length", StringLen) << " instructions"
      << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size())
      << " locations."
      << " Bytes from outlining all occurrences ("
      << NV("OutliningCost", OF.getOutliningCost()) << ")"
      << " >= Unoutlined instruction bytes ("
      << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")"
      << " (Also found at: ";

    // Tell the user the other places the candidate was found.
    for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) {
      R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
              CandidatesForRepeatedSeq[i].front()->getDebugLoc());
      if (i != e - 1)
        R << ", ";
    }

    R << ")";
    return R;
  });
}

void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) {
  MachineBasicBlock *MBB = &*OF.MF->begin();
  MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr);
  MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction",
                              MBB->findDebugLoc(MBB->begin()), MBB);
  R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by "
    << "outlining " << NV("Length", OF.getNumInstrs()) << " instructions "
    << "from " << NV("NumOccurrences", OF.getOccurrenceCount())
    << " locations. "
    << "(Found at: ";

  // Tell the user the other places the candidate was found.
  for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) {

    R << NV((Twine("StartLoc") + Twine(i)).str(),
            OF.Candidates[i].front()->getDebugLoc());
    if (i != e - 1)
      R << ", ";
  }

  R << ")";

  MORE.emit(R);
}

void MachineOutliner::findCandidates(
    InstructionMapper &Mapper, std::vector<OutlinedFunction> &FunctionList) {
  FunctionList.clear();
  SuffixTree ST(Mapper.UnsignedVec);

  // First, find all of the repeated substrings in the tree of minimum length
  // 2.
  std::vector<Candidate> CandidatesForRepeatedSeq;
  for (auto It = ST.begin(), Et = ST.end(); It != Et; ++It) {
    CandidatesForRepeatedSeq.clear();
    SuffixTree::RepeatedSubstring RS = *It;
    unsigned StringLen = RS.Length;
    for (const unsigned &StartIdx : RS.StartIndices) {
      unsigned EndIdx = StartIdx + StringLen - 1;
      // Trick: Discard some candidates that would be incompatible with the
      // ones we've already found for this sequence. This will save us some
      // work in candidate selection.
      //
      // If two candidates overlap, then we can't outline them both. This
      // happens when we have candidates that look like, say
      //
      // AA (where each "A" is an instruction).
      //
      // We might have some portion of the module that looks like this:
      // AAAAAA (6 A's)
      //
      // In this case, there are 5 different copies of "AA" in this range, but
      // at most 3 can be outlined. If only outlining 3 of these is going to
      // be unbeneficial, then we ought to not bother.
      //
      // Note that two things DON'T overlap when they look like this:
      // start1...end1 .... start2...end2
      // That is, one must either
      // * End before the other starts
      // * Start after the other ends
      if (std::all_of(
              CandidatesForRepeatedSeq.begin(), CandidatesForRepeatedSeq.end(),
              [&StartIdx, &EndIdx](const Candidate &C) {
                return (EndIdx < C.getStartIdx() || StartIdx > C.getEndIdx());
              })) {
        // It doesn't overlap with anything, so we can outline it.
        // Each sequence is over [StartIt, EndIt].
        // Save the candidate and its location.

        MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx];
        MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
        MachineBasicBlock *MBB = StartIt->getParent();

        CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt,
                                              EndIt, MBB, FunctionList.size(),
                                              Mapper.MBBFlagsMap[MBB]);
      }
    }

    // We've found something we might want to outline.
    // Create an OutlinedFunction to store it and check if it'd be beneficial
    // to outline.
    if (CandidatesForRepeatedSeq.size() < 2)
      continue;

    // Arbitrarily choose a TII from the first candidate.
    // FIXME: Should getOutliningCandidateInfo move to TargetMachine?
    const TargetInstrInfo *TII =
        CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo();

    OutlinedFunction OF =
        TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq);

    // If we deleted too many candidates, then there's nothing worth outlining.
    // FIXME: This should take target-specified instruction sizes into account.
    if (OF.Candidates.size() < 2)
      continue;

    // Is it better to outline this candidate than not?
    if (OF.getBenefit() < 1) {
      emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, OF);
      continue;
    }

    FunctionList.push_back(OF);
  }
}

MachineFunction *MachineOutliner::createOutlinedFunction(
    Module &M, OutlinedFunction &OF, InstructionMapper &Mapper, unsigned Name) {

  // Create the function name. This should be unique.
  // FIXME: We should have a better naming scheme. This should be stable,
  // regardless of changes to the outliner's cost model/traversal order.
  std::string FunctionName = "OUTLINED_FUNCTION_";
  if (OutlineRepeatedNum > 0)
    FunctionName += std::to_string(OutlineRepeatedNum + 1) + "_";
  FunctionName += std::to_string(Name);

  // Create the function using an IR-level function.
  LLVMContext &C = M.getContext();
  Function *F = Function::Create(FunctionType::get(Type::getVoidTy(C), false),
                                 Function::ExternalLinkage, FunctionName, M);

  // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
  // which gives us better results when we outline from linkonceodr functions.
  F->setLinkage(GlobalValue::InternalLinkage);
  F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);

  // Set optsize/minsize, so we don't insert padding between outlined
  // functions.
  F->addFnAttr(Attribute::OptimizeForSize);
  F->addFnAttr(Attribute::MinSize);

  // Include target features from an arbitrary candidate for the outlined
  // function. This makes sure the outlined function knows what kinds of
  // instructions are going into it. This is fine, since all parent functions
  // must necessarily support the instructions that are in the outlined region.
  Candidate &FirstCand = OF.Candidates.front();
  const Function &ParentFn = FirstCand.getMF()->getFunction();
  if (ParentFn.hasFnAttribute("target-features"))
    F->addFnAttr(ParentFn.getFnAttribute("target-features"));

  // Set nounwind, so we don't generate eh_frame.
  if (llvm::all_of(OF.Candidates, [](const outliner::Candidate &C) {
        return C.getMF()->getFunction().hasFnAttribute(Attribute::NoUnwind);
      }))
    F->addFnAttr(Attribute::NoUnwind);

  BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
  IRBuilder<> Builder(EntryBB);
  Builder.CreateRetVoid();

  MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
  MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
  MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
  const TargetSubtargetInfo &STI = MF.getSubtarget();
  const TargetInstrInfo &TII = *STI.getInstrInfo();

  // Insert the new function into the module.
  MF.insert(MF.begin(), &MBB);

  MachineFunction *OriginalMF = FirstCand.front()->getMF();
  const std::vector<MCCFIInstruction> &Instrs =
      OriginalMF->getFrameInstructions();
  for (auto I = FirstCand.front(), E = std::next(FirstCand.back()); I != E;
       ++I) {
    MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
    if (I->isCFIInstruction()) {
      unsigned CFIIndex = NewMI->getOperand(0).getCFIIndex();
      MCCFIInstruction CFI = Instrs[CFIIndex];
      (void)MF.addFrameInst(CFI);
    }
    NewMI->dropMemRefs(MF);

    // Don't keep debug information for outlined instructions.
    NewMI->setDebugLoc(DebugLoc());
    MBB.insert(MBB.end(), NewMI);
  }

  // Set normal properties for a late MachineFunction.
  MF.getProperties().reset(MachineFunctionProperties::Property::IsSSA);
  MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
  MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs);
  MF.getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
  MF.getRegInfo().freezeReservedRegs(MF);

  // Compute live-in set for outlined fn
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
  LivePhysRegs LiveIns(TRI);
  for (auto &Cand : OF.Candidates) {
    // Figure out live-ins at the first instruction.
    MachineBasicBlock &OutlineBB = *Cand.front()->getParent();
    LivePhysRegs CandLiveIns(TRI);
    CandLiveIns.addLiveOuts(OutlineBB);
    for (const MachineInstr &MI :
         reverse(make_range(Cand.front(), OutlineBB.end())))
      CandLiveIns.stepBackward(MI);

    // The live-in set for the outlined function is the union of the live-ins
    // from all the outlining points.
    for (MCPhysReg Reg : make_range(CandLiveIns.begin(), CandLiveIns.end()))
      LiveIns.addReg(Reg);
  }
  addLiveIns(MBB, LiveIns);

  TII.buildOutlinedFrame(MBB, MF, OF);

  // If there's a DISubprogram associated with this outlined function, then
  // emit debug info for the outlined function.
  if (DISubprogram *SP = getSubprogramOrNull(OF)) {
    // We have a DISubprogram. Get its DICompileUnit.
    DICompileUnit *CU = SP->getUnit();
    DIBuilder DB(M, true, CU);
    DIFile *Unit = SP->getFile();
    Mangler Mg;
    // Get the mangled name of the function for the linkage name.
    std::string Dummy;
    llvm::raw_string_ostream MangledNameStream(Dummy);
    Mg.getNameWithPrefix(MangledNameStream, F, false);

    DISubprogram *OutlinedSP = DB.createFunction(
        Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()),
        Unit /* File */,
        0 /* Line 0 is reserved for compiler-generated code. */,
        DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */
        0, /* Line 0 is reserved for compiler-generated code. */
        DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
        /* Outlined code is optimized code by definition. */
        DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);

    // Don't add any new variables to the subprogram.
    DB.finalizeSubprogram(OutlinedSP);

    // Attach subprogram to the function.
    F->setSubprogram(OutlinedSP);
    // We're done with the DIBuilder.
    DB.finalize();
  }

  return &MF;
}

bool MachineOutliner::outline(Module &M,
                              std::vector<OutlinedFunction> &FunctionList,
                              InstructionMapper &Mapper,
                              unsigned &OutlinedFunctionNum) {

  bool OutlinedSomething = false;

  // Sort by benefit. The most beneficial functions should be outlined first.
  llvm::stable_sort(FunctionList, [](const OutlinedFunction &LHS,
                                     const OutlinedFunction &RHS) {
    return LHS.getBenefit() > RHS.getBenefit();
  });

  // Walk over each function, outlining them as we go along. Functions are
  // outlined greedily, based off the sort above.
  for (OutlinedFunction &OF : FunctionList) {
    // If we outlined something that overlapped with a candidate in a previous
    // step, then we can't outline from it.
    erase_if(OF.Candidates, [&Mapper](Candidate &C) {
      return std::any_of(
          Mapper.UnsignedVec.begin() + C.getStartIdx(),
          Mapper.UnsignedVec.begin() + C.getEndIdx() + 1,
          [](unsigned I) { return (I == static_cast<unsigned>(-1)); });
    });

    // If we made it unbeneficial to outline this function, skip it.
    if (OF.getBenefit() < 1)
      continue;

    // It's beneficial. Create the function and outline its sequence's
    // occurrences.
    OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum);
    emitOutlinedFunctionRemark(OF);
    FunctionsCreated++;
    OutlinedFunctionNum++; // Created a function, move to the next name.
    MachineFunction *MF = OF.MF;
    const TargetSubtargetInfo &STI = MF->getSubtarget();
    const TargetInstrInfo &TII = *STI.getInstrInfo();

    // Replace occurrences of the sequence with calls to the new function.
    for (Candidate &C : OF.Candidates) {
      MachineBasicBlock &MBB = *C.getMBB();
      MachineBasicBlock::iterator StartIt = C.front();
      MachineBasicBlock::iterator EndIt = C.back();

      // Insert the call.
      auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *MF, C);

      // If the caller tracks liveness, then we need to make sure that
      // anything we outline doesn't break liveness assumptions. The outlined
      // functions themselves currently don't track liveness, but we should
      // make sure that the ranges we yank things out of aren't wrong.
      if (MBB.getParent()->getProperties().hasProperty(
              MachineFunctionProperties::Property::TracksLiveness)) {
        // The following code is to add implicit def operands to the call
        // instruction. It also updates call site information for moved
        // code.
        SmallSet<Register, 2> UseRegs, DefRegs;
        // Copy over the defs in the outlined range.
        // First inst in outlined range <-- Anything that's defined in this
        // ...                           .. range has to be added as an
        // implicit Last inst in outlined range  <-- def to the call
        // instruction. Also remove call site information for outlined block
        // of code. The exposed uses need to be copied in the outlined range.
        for (MachineBasicBlock::reverse_iterator
                 Iter = EndIt.getReverse(),
                 Last = std::next(CallInst.getReverse());
             Iter != Last; Iter++) {
          MachineInstr *MI = &*Iter;
          for (MachineOperand &MOP : MI->operands()) {
            // Skip over anything that isn't a register.
            if (!MOP.isReg())
              continue;

            if (MOP.isDef()) {
              // Introduce DefRegs set to skip the redundant register.
              DefRegs.insert(MOP.getReg());
              if (UseRegs.count(MOP.getReg()))
                // Since the regiester is modeled as defined,
                // it is not necessary to be put in use register set.
                UseRegs.erase(MOP.getReg());
            } else if (!MOP.isUndef()) {
              // Any register which is not undefined should
              // be put in the use register set.
              UseRegs.insert(MOP.getReg());
            }
          }
          if (MI->isCandidateForCallSiteEntry())
            MI->getMF()->eraseCallSiteInfo(MI);
        }

        for (const Register &I : DefRegs)
          // If it's a def, add it to the call instruction.
          CallInst->addOperand(
              MachineOperand::CreateReg(I, true, /* isDef = true */
                                        true /* isImp = true */));

        for (const Register &I : UseRegs)
          // If it's a exposed use, add it to the call instruction.
          CallInst->addOperand(
              MachineOperand::CreateReg(I, false, /* isDef = false */
                                        true /* isImp = true */));
      }

      // Erase from the point after where the call was inserted up to, and
      // including, the final instruction in the sequence.
      // Erase needs one past the end, so we need std::next there too.
      MBB.erase(std::next(StartIt), std::next(EndIt));

      // Keep track of what we removed by marking them all as -1.
      std::for_each(Mapper.UnsignedVec.begin() + C.getStartIdx(),
                    Mapper.UnsignedVec.begin() + C.getEndIdx() + 1,
                    [](unsigned &I) { I = static_cast<unsigned>(-1); });
      OutlinedSomething = true;

      // Statistics.
      NumOutlined++;
    }
  }

  LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
  return OutlinedSomething;
}

void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M,
                                     MachineModuleInfo &MMI) {
  // Build instruction mappings for each function in the module. Start by
  // iterating over each Function in M.
  for (Function &F : M) {

    // If there's nothing in F, then there's no reason to try and outline from
    // it.
    if (F.empty())
      continue;

    // There's something in F. Check if it has a MachineFunction associated with
    // it.
    MachineFunction *MF = MMI.getMachineFunction(F);

    // If it doesn't, then there's nothing to outline from. Move to the next
    // Function.
    if (!MF)
      continue;

    const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();

    if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF))
      continue;

    // We have a MachineFunction. Ask the target if it's suitable for outlining.
    // If it isn't, then move on to the next Function in the module.
    if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs))
      continue;

    // We have a function suitable for outlining. Iterate over every
    // MachineBasicBlock in MF and try to map its instructions to a list of
    // unsigned integers.
    for (MachineBasicBlock &MBB : *MF) {
      // If there isn't anything in MBB, then there's no point in outlining from
      // it.
      // If there are fewer than 2 instructions in the MBB, then it can't ever
      // contain something worth outlining.
      // FIXME: This should be based off of the maximum size in B of an outlined
      // call versus the size in B of the MBB.
      if (MBB.empty() || MBB.size() < 2)
        continue;

      // Check if MBB could be the target of an indirect branch. If it is, then
      // we don't want to outline from it.
      if (MBB.hasAddressTaken())
        continue;

      // MBB is suitable for outlining. Map it to a list of unsigneds.
      Mapper.convertToUnsignedVec(MBB, *TII);
    }
  }
}

void MachineOutliner::initSizeRemarkInfo(
    const Module &M, const MachineModuleInfo &MMI,
    StringMap<unsigned> &FunctionToInstrCount) {
  // Collect instruction counts for every function. We'll use this to emit
  // per-function size remarks later.
  for (const Function &F : M) {
    MachineFunction *MF = MMI.getMachineFunction(F);

    // We only care about MI counts here. If there's no MachineFunction at this
    // point, then there won't be after the outliner runs, so let's move on.
    if (!MF)
      continue;
    FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount();
  }
}

void MachineOutliner::emitInstrCountChangedRemark(
    const Module &M, const MachineModuleInfo &MMI,
    const StringMap<unsigned> &FunctionToInstrCount) {
  // Iterate over each function in the module and emit remarks.
  // Note that we won't miss anything by doing this, because the outliner never
  // deletes functions.
  for (const Function &F : M) {
    MachineFunction *MF = MMI.getMachineFunction(F);

    // The outliner never deletes functions. If we don't have a MF here, then we
    // didn't have one prior to outlining either.
    if (!MF)
      continue;

    std::string Fname = std::string(F.getName());
    unsigned FnCountAfter = MF->getInstructionCount();
    unsigned FnCountBefore = 0;

    // Check if the function was recorded before.
    auto It = FunctionToInstrCount.find(Fname);

    // Did we have a previously-recorded size? If yes, then set FnCountBefore
    // to that.
    if (It != FunctionToInstrCount.end())
      FnCountBefore = It->second;

    // Compute the delta and emit a remark if there was a change.
    int64_t FnDelta = static_cast<int64_t>(FnCountAfter) -
                      static_cast<int64_t>(FnCountBefore);
    if (FnDelta == 0)
      continue;

    MachineOptimizationRemarkEmitter MORE(*MF, nullptr);
    MORE.emit([&]() {
      MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange",
                                          DiagnosticLocation(), &MF->front());
      R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner")
        << ": Function: "
        << DiagnosticInfoOptimizationBase::Argument("Function", F.getName())
        << ": MI instruction count changed from "
        << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore",
                                                    FnCountBefore)
        << " to "
        << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter",
                                                    FnCountAfter)
        << "; Delta: "
        << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta);
      return R;
    });
  }
}

bool MachineOutliner::runOnModule(Module &M) {
  // Check if there's anything in the module. If it's empty, then there's
  // nothing to outline.
  if (M.empty())
    return false;

  // Number to append to the current outlined function.
  unsigned OutlinedFunctionNum = 0;

  OutlineRepeatedNum = 0;
  if (!doOutline(M, OutlinedFunctionNum))
    return false;

  for (unsigned I = 0; I < OutlinerReruns; ++I) {
    OutlinedFunctionNum = 0;
    OutlineRepeatedNum++;
    if (!doOutline(M, OutlinedFunctionNum)) {
      LLVM_DEBUG({
        dbgs() << "Did not outline on iteration " << I + 2 << " out of "
               << OutlinerReruns + 1 << "\n";
      });
      break;
    }
  }

  return true;
}

bool MachineOutliner::doOutline(Module &M, unsigned &OutlinedFunctionNum) {
  MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI();

  // If the user passed -enable-machine-outliner=always or
  // -enable-machine-outliner, the pass will run on all functions in the module.
  // Otherwise, if the target supports default outlining, it will run on all
  // functions deemed by the target to be worth outlining from by default. Tell
  // the user how the outliner is running.
  LLVM_DEBUG({
    dbgs() << "Machine Outliner: Running on ";
    if (RunOnAllFunctions)
      dbgs() << "all functions";
    else
      dbgs() << "target-default functions";
    dbgs() << "\n";
  });

  // If the user specifies that they want to outline from linkonceodrs, set
  // it here.
  OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining;
  InstructionMapper Mapper;

  // Prepare instruction mappings for the suffix tree.
  populateMapper(Mapper, M, MMI);
  std::vector<OutlinedFunction> FunctionList;

  // Find all of the outlining candidates.
  findCandidates(Mapper, FunctionList);

  // If we've requested size remarks, then collect the MI counts of every
  // function before outlining, and the MI counts after outlining.
  // FIXME: This shouldn't be in the outliner at all; it should ultimately be
  // the pass manager's responsibility.
  // This could pretty easily be placed in outline instead, but because we
  // really ultimately *don't* want this here, it's done like this for now
  // instead.

  // Check if we want size remarks.
  bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark();
  StringMap<unsigned> FunctionToInstrCount;
  if (ShouldEmitSizeRemarks)
    initSizeRemarkInfo(M, MMI, FunctionToInstrCount);

  // Outline each of the candidates and return true if something was outlined.
  bool OutlinedSomething =
      outline(M, FunctionList, Mapper, OutlinedFunctionNum);

  // If we outlined something, we definitely changed the MI count of the
  // module. If we've asked for size remarks, then output them.
  // FIXME: This should be in the pass manager.
  if (ShouldEmitSizeRemarks && OutlinedSomething)
    emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount);

  LLVM_DEBUG({
    if (!OutlinedSomething)
      dbgs() << "Stopped outlining at iteration " << OutlineRepeatedNum
             << " because no changes were found.\n";
  });

  return OutlinedSomething;
}