Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
//===- HexagonExpandCondsets.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// Replace mux instructions with the corresponding legal instructions.
// It is meant to work post-SSA, but still on virtual registers. It was
// originally placed between register coalescing and machine instruction
// scheduler.
// In this place in the optimization sequence, live interval analysis had
// been performed, and the live intervals should be preserved. A large part
// of the code deals with preserving the liveness information.
//
// Liveness tracking aside, the main functionality of this pass is divided
// into two steps. The first step is to replace an instruction
//   %0 = C2_mux %1, %2, %3
// with a pair of conditional transfers
//   %0 = A2_tfrt %1, %2
//   %0 = A2_tfrf %1, %3
// It is the intention that the execution of this pass could be terminated
// after this step, and the code generated would be functionally correct.
//
// If the uses of the source values %1 and %2 are kills, and their
// definitions are predicable, then in the second step, the conditional
// transfers will then be rewritten as predicated instructions. E.g.
//   %0 = A2_or %1, %2
//   %3 = A2_tfrt %99, killed %0
// will be rewritten as
//   %3 = A2_port %99, %1, %2
//
// This replacement has two variants: "up" and "down". Consider this case:
//   %0 = A2_or %1, %2
//   ... [intervening instructions] ...
//   %3 = A2_tfrt %99, killed %0
// variant "up":
//   %3 = A2_port %99, %1, %2
//   ... [intervening instructions, %0->vreg3] ...
//   [deleted]
// variant "down":
//   [deleted]
//   ... [intervening instructions] ...
//   %3 = A2_port %99, %1, %2
//
// Both, one or none of these variants may be valid, and checks are made
// to rule out inapplicable variants.
//
// As an additional optimization, before either of the two steps above is
// executed, the pass attempts to coalesce the target register with one of
// the source registers, e.g. given an instruction
//   %3 = C2_mux %0, %1, %2
// %3 will be coalesced with either %1 or %2. If this succeeds,
// the instruction would then be (for example)
//   %3 = C2_mux %0, %3, %2
// and, under certain circumstances, this could result in only one predicated
// instruction:
//   %3 = A2_tfrf %0, %2
//

// Splitting a definition of a register into two predicated transfers
// creates a complication in liveness tracking. Live interval computation
// will see both instructions as actual definitions, and will mark the
// first one as dead. The definition is not actually dead, and this
// situation will need to be fixed. For example:
//   dead %1 = A2_tfrt ...  ; marked as dead
//   %1 = A2_tfrf ...
//
// Since any of the individual predicated transfers may end up getting
// removed (in case it is an identity copy), some pre-existing def may
// be marked as dead after live interval recomputation:
//   dead %1 = ...          ; marked as dead
//   ...
//   %1 = A2_tfrf ...       ; if A2_tfrt is removed
// This case happens if %1 was used as a source in A2_tfrt, which means
// that is it actually live at the A2_tfrf, and so the now dead definition
// of %1 will need to be updated to non-dead at some point.
//
// This issue could be remedied by adding implicit uses to the predicated
// transfers, but this will create a problem with subsequent predication,
// since the transfers will no longer be possible to reorder. To avoid
// that, the initial splitting will not add any implicit uses. These
// implicit uses will be added later, after predication. The extra price,
// however, is that finding the locations where the implicit uses need
// to be added, and updating the live ranges will be more involved.

#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <iterator>
#include <set>
#include <utility>

#define DEBUG_TYPE "expand-condsets"

using namespace llvm;

static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit",
  cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions"));
static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit",
  cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings"));

namespace llvm {

  void initializeHexagonExpandCondsetsPass(PassRegistry&);
  FunctionPass *createHexagonExpandCondsets();

} // end namespace llvm

namespace {

  class HexagonExpandCondsets : public MachineFunctionPass {
  public:
    static char ID;

    HexagonExpandCondsets() : MachineFunctionPass(ID) {
      if (OptCoaLimit.getPosition())
        CoaLimitActive = true, CoaLimit = OptCoaLimit;
      if (OptTfrLimit.getPosition())
        TfrLimitActive = true, TfrLimit = OptTfrLimit;
      initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry());
    }

    StringRef getPassName() const override { return "Hexagon Expand Condsets"; }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<LiveIntervals>();
      AU.addPreserved<LiveIntervals>();
      AU.addPreserved<SlotIndexes>();
      AU.addRequired<MachineDominatorTree>();
      AU.addPreserved<MachineDominatorTree>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    bool runOnMachineFunction(MachineFunction &MF) override;

  private:
    const HexagonInstrInfo *HII = nullptr;
    const TargetRegisterInfo *TRI = nullptr;
    MachineDominatorTree *MDT;
    MachineRegisterInfo *MRI = nullptr;
    LiveIntervals *LIS = nullptr;
    bool CoaLimitActive = false;
    bool TfrLimitActive = false;
    unsigned CoaLimit;
    unsigned TfrLimit;
    unsigned CoaCounter = 0;
    unsigned TfrCounter = 0;

    struct RegisterRef {
      RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()),
          Sub(Op.getSubReg()) {}
      RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {}

      bool operator== (RegisterRef RR) const {
        return Reg == RR.Reg && Sub == RR.Sub;
      }
      bool operator!= (RegisterRef RR) const { return !operator==(RR); }
      bool operator< (RegisterRef RR) const {
        return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub);
      }

      unsigned Reg, Sub;
    };

    using ReferenceMap = DenseMap<unsigned, unsigned>;
    enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) };
    enum { Exec_Then = 0x10, Exec_Else = 0x20 };

    unsigned getMaskForSub(unsigned Sub);
    bool isCondset(const MachineInstr &MI);
    LaneBitmask getLaneMask(unsigned Reg, unsigned Sub);

    void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec);
    bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec);

    void updateDeadsInRange(unsigned Reg, LaneBitmask LM, LiveRange &Range);
    void updateKillFlags(unsigned Reg);
    void updateDeadFlags(unsigned Reg);
    void recalculateLiveInterval(unsigned Reg);
    void removeInstr(MachineInstr &MI);
    void updateLiveness(std::set<unsigned> &RegSet, bool Recalc,
        bool UpdateKills, bool UpdateDeads);

    unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond);
    MachineInstr *genCondTfrFor(MachineOperand &SrcOp,
        MachineBasicBlock::iterator At, unsigned DstR,
        unsigned DstSR, const MachineOperand &PredOp, bool PredSense,
        bool ReadUndef, bool ImpUse);
    bool split(MachineInstr &MI, std::set<unsigned> &UpdRegs);

    bool isPredicable(MachineInstr *MI);
    MachineInstr *getReachingDefForPred(RegisterRef RD,
        MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond);
    bool canMoveOver(MachineInstr &MI, ReferenceMap &Defs, ReferenceMap &Uses);
    bool canMoveMemTo(MachineInstr &MI, MachineInstr &ToI, bool IsDown);
    void predicateAt(const MachineOperand &DefOp, MachineInstr &MI,
                     MachineBasicBlock::iterator Where,
                     const MachineOperand &PredOp, bool Cond,
                     std::set<unsigned> &UpdRegs);
    void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR,
        bool Cond, MachineBasicBlock::iterator First,
        MachineBasicBlock::iterator Last);
    bool predicate(MachineInstr &TfrI, bool Cond, std::set<unsigned> &UpdRegs);
    bool predicateInBlock(MachineBasicBlock &B,
        std::set<unsigned> &UpdRegs);

    bool isIntReg(RegisterRef RR, unsigned &BW);
    bool isIntraBlocks(LiveInterval &LI);
    bool coalesceRegisters(RegisterRef R1, RegisterRef R2);
    bool coalesceSegments(const SmallVectorImpl<MachineInstr*> &Condsets,
                          std::set<unsigned> &UpdRegs);
  };

} // end anonymous namespace

char HexagonExpandCondsets::ID = 0;

namespace llvm {

  char &HexagonExpandCondsetsID = HexagonExpandCondsets::ID;

} // end namespace llvm

INITIALIZE_PASS_BEGIN(HexagonExpandCondsets, "expand-condsets",
  "Hexagon Expand Condsets", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(HexagonExpandCondsets, "expand-condsets",
  "Hexagon Expand Condsets", false, false)

unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) {
  switch (Sub) {
    case Hexagon::isub_lo:
    case Hexagon::vsub_lo:
      return Sub_Low;
    case Hexagon::isub_hi:
    case Hexagon::vsub_hi:
      return Sub_High;
    case Hexagon::NoSubRegister:
      return Sub_None;
  }
  llvm_unreachable("Invalid subregister");
}

bool HexagonExpandCondsets::isCondset(const MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  switch (Opc) {
    case Hexagon::C2_mux:
    case Hexagon::C2_muxii:
    case Hexagon::C2_muxir:
    case Hexagon::C2_muxri:
    case Hexagon::PS_pselect:
        return true;
      break;
  }
  return false;
}

LaneBitmask HexagonExpandCondsets::getLaneMask(unsigned Reg, unsigned Sub) {
  assert(Register::isVirtualRegister(Reg));
  return Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
                  : MRI->getMaxLaneMaskForVReg(Reg);
}

void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map,
      unsigned Exec) {
  unsigned Mask = getMaskForSub(RR.Sub) | Exec;
  ReferenceMap::iterator F = Map.find(RR.Reg);
  if (F == Map.end())
    Map.insert(std::make_pair(RR.Reg, Mask));
  else
    F->second |= Mask;
}

bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map,
      unsigned Exec) {
  ReferenceMap::iterator F = Map.find(RR.Reg);
  if (F == Map.end())
    return false;
  unsigned Mask = getMaskForSub(RR.Sub) | Exec;
  if (Mask & F->second)
    return true;
  return false;
}

void HexagonExpandCondsets::updateKillFlags(unsigned Reg) {
  auto KillAt = [this,Reg] (SlotIndex K, LaneBitmask LM) -> void {
    // Set the <kill> flag on a use of Reg whose lane mask is contained in LM.
    MachineInstr *MI = LIS->getInstructionFromIndex(K);
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      MachineOperand &Op = MI->getOperand(i);
      if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg ||
          MI->isRegTiedToDefOperand(i))
        continue;
      LaneBitmask SLM = getLaneMask(Reg, Op.getSubReg());
      if ((SLM & LM) == SLM) {
        // Only set the kill flag on the first encountered use of Reg in this
        // instruction.
        Op.setIsKill(true);
        break;
      }
    }
  };

  LiveInterval &LI = LIS->getInterval(Reg);
  for (auto I = LI.begin(), E = LI.end(); I != E; ++I) {
    if (!I->end.isRegister())
      continue;
    // Do not mark the end of the segment as <kill>, if the next segment
    // starts with a predicated instruction.
    auto NextI = std::next(I);
    if (NextI != E && NextI->start.isRegister()) {
      MachineInstr *DefI = LIS->getInstructionFromIndex(NextI->start);
      if (HII->isPredicated(*DefI))
        continue;
    }
    bool WholeReg = true;
    if (LI.hasSubRanges()) {
      auto EndsAtI = [I] (LiveInterval::SubRange &S) -> bool {
        LiveRange::iterator F = S.find(I->end);
        return F != S.end() && I->end == F->end;
      };
      // Check if all subranges end at I->end. If so, make sure to kill
      // the whole register.
      for (LiveInterval::SubRange &S : LI.subranges()) {
        if (EndsAtI(S))
          KillAt(I->end, S.LaneMask);
        else
          WholeReg = false;
      }
    }
    if (WholeReg)
      KillAt(I->end, MRI->getMaxLaneMaskForVReg(Reg));
  }
}

void HexagonExpandCondsets::updateDeadsInRange(unsigned Reg, LaneBitmask LM,
      LiveRange &Range) {
  assert(Register::isVirtualRegister(Reg));
  if (Range.empty())
    return;

  // Return two booleans: { def-modifes-reg, def-covers-reg }.
  auto IsRegDef = [this,Reg,LM] (MachineOperand &Op) -> std::pair<bool,bool> {
    if (!Op.isReg() || !Op.isDef())
      return { false, false };
    Register DR = Op.getReg(), DSR = Op.getSubReg();
    if (!Register::isVirtualRegister(DR) || DR != Reg)
      return { false, false };
    LaneBitmask SLM = getLaneMask(DR, DSR);
    LaneBitmask A = SLM & LM;
    return { A.any(), A == SLM };
  };

  // The splitting step will create pairs of predicated definitions without
  // any implicit uses (since implicit uses would interfere with predication).
  // This can cause the reaching defs to become dead after live range
  // recomputation, even though they are not really dead.
  // We need to identify predicated defs that need implicit uses, and
  // dead defs that are not really dead, and correct both problems.

  auto Dominate = [this] (SetVector<MachineBasicBlock*> &Defs,
                          MachineBasicBlock *Dest) -> bool {
    for (MachineBasicBlock *D : Defs)
      if (D != Dest && MDT->dominates(D, Dest))
        return true;

    MachineBasicBlock *Entry = &Dest->getParent()->front();
    SetVector<MachineBasicBlock*> Work(Dest->pred_begin(), Dest->pred_end());
    for (unsigned i = 0; i < Work.size(); ++i) {
      MachineBasicBlock *B = Work[i];
      if (Defs.count(B))
        continue;
      if (B == Entry)
        return false;
      for (auto *P : B->predecessors())
        Work.insert(P);
    }
    return true;
  };

  // First, try to extend live range within individual basic blocks. This
  // will leave us only with dead defs that do not reach any predicated
  // defs in the same block.
  SetVector<MachineBasicBlock*> Defs;
  SmallVector<SlotIndex,4> PredDefs;
  for (auto &Seg : Range) {
    if (!Seg.start.isRegister())
      continue;
    MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
    Defs.insert(DefI->getParent());
    if (HII->isPredicated(*DefI))
      PredDefs.push_back(Seg.start);
  }

  SmallVector<SlotIndex,8> Undefs;
  LiveInterval &LI = LIS->getInterval(Reg);
  LI.computeSubRangeUndefs(Undefs, LM, *MRI, *LIS->getSlotIndexes());

  for (auto &SI : PredDefs) {
    MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
    auto P = Range.extendInBlock(Undefs, LIS->getMBBStartIdx(BB), SI);
    if (P.first != nullptr || P.second)
      SI = SlotIndex();
  }

  // Calculate reachability for those predicated defs that were not handled
  // by the in-block extension.
  SmallVector<SlotIndex,4> ExtTo;
  for (auto &SI : PredDefs) {
    if (!SI.isValid())
      continue;
    MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
    if (BB->pred_empty())
      continue;
    // If the defs from this range reach SI via all predecessors, it is live.
    // It can happen that SI is reached by the defs through some paths, but
    // not all. In the IR coming into this optimization, SI would not be
    // considered live, since the defs would then not jointly dominate SI.
    // That means that SI is an overwriting def, and no implicit use is
    // needed at this point. Do not add SI to the extension points, since
    // extendToIndices will abort if there is no joint dominance.
    // If the abort was avoided by adding extra undefs added to Undefs,
    // extendToIndices could actually indicate that SI is live, contrary
    // to the original IR.
    if (Dominate(Defs, BB))
      ExtTo.push_back(SI);
  }

  if (!ExtTo.empty())
    LIS->extendToIndices(Range, ExtTo, Undefs);

  // Remove <dead> flags from all defs that are not dead after live range
  // extension, and collect all def operands. They will be used to generate
  // the necessary implicit uses.
  // At the same time, add <dead> flag to all defs that are actually dead.
  // This can happen, for example, when a mux with identical inputs is
  // replaced with a COPY: the use of the predicate register disappears and
  // the dead can become dead.
  std::set<RegisterRef> DefRegs;
  for (auto &Seg : Range) {
    if (!Seg.start.isRegister())
      continue;
    MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
    for (auto &Op : DefI->operands()) {
      auto P = IsRegDef(Op);
      if (P.second && Seg.end.isDead()) {
        Op.setIsDead(true);
      } else if (P.first) {
        DefRegs.insert(Op);
        Op.setIsDead(false);
      }
    }
  }

  // Now, add implicit uses to each predicated def that is reached
  // by other defs.
  for (auto &Seg : Range) {
    if (!Seg.start.isRegister() || !Range.liveAt(Seg.start.getPrevSlot()))
      continue;
    MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
    if (!HII->isPredicated(*DefI))
      continue;
    // Construct the set of all necessary implicit uses, based on the def
    // operands in the instruction. We need to tie the implicit uses to
    // the corresponding defs.
    std::map<RegisterRef,unsigned> ImpUses;
    for (unsigned i = 0, e = DefI->getNumOperands(); i != e; ++i) {
      MachineOperand &Op = DefI->getOperand(i);
      if (!Op.isReg() || !DefRegs.count(Op))
        continue;
      if (Op.isDef()) {
        // Tied defs will always have corresponding uses, so no extra
        // implicit uses are needed.
        if (!Op.isTied())
          ImpUses.insert({Op, i});
      } else {
        // This function can be called for the same register with different
        // lane masks. If the def in this instruction was for the whole
        // register, we can get here more than once. Avoid adding multiple
        // implicit uses (or adding an implicit use when an explicit one is
        // present).
        if (Op.isTied())
          ImpUses.erase(Op);
      }
    }
    if (ImpUses.empty())
      continue;
    MachineFunction &MF = *DefI->getParent()->getParent();
    for (std::pair<RegisterRef, unsigned> P : ImpUses) {
      RegisterRef R = P.first;
      MachineInstrBuilder(MF, DefI).addReg(R.Reg, RegState::Implicit, R.Sub);
      DefI->tieOperands(P.second, DefI->getNumOperands()-1);
    }
  }
}

void HexagonExpandCondsets::updateDeadFlags(unsigned Reg) {
  LiveInterval &LI = LIS->getInterval(Reg);
  if (LI.hasSubRanges()) {
    for (LiveInterval::SubRange &S : LI.subranges()) {
      updateDeadsInRange(Reg, S.LaneMask, S);
      LIS->shrinkToUses(S, Reg);
    }
    LI.clear();
    LIS->constructMainRangeFromSubranges(LI);
  } else {
    updateDeadsInRange(Reg, MRI->getMaxLaneMaskForVReg(Reg), LI);
  }
}

void HexagonExpandCondsets::recalculateLiveInterval(unsigned Reg) {
  LIS->removeInterval(Reg);
  LIS->createAndComputeVirtRegInterval(Reg);
}

void HexagonExpandCondsets::removeInstr(MachineInstr &MI) {
  LIS->RemoveMachineInstrFromMaps(MI);
  MI.eraseFromParent();
}

void HexagonExpandCondsets::updateLiveness(std::set<unsigned> &RegSet,
      bool Recalc, bool UpdateKills, bool UpdateDeads) {
  UpdateKills |= UpdateDeads;
  for (unsigned R : RegSet) {
    if (!Register::isVirtualRegister(R)) {
      assert(Register::isPhysicalRegister(R));
      // There shouldn't be any physical registers as operands, except
      // possibly reserved registers.
      assert(MRI->isReserved(R));
      continue;
    }
    if (Recalc)
      recalculateLiveInterval(R);
    if (UpdateKills)
      MRI->clearKillFlags(R);
    if (UpdateDeads)
      updateDeadFlags(R);
    // Fixing <dead> flags may extend live ranges, so reset <kill> flags
    // after that.
    if (UpdateKills)
      updateKillFlags(R);
    LIS->getInterval(R).verify();
  }
}

/// Get the opcode for a conditional transfer of the value in SO (source
/// operand). The condition (true/false) is given in Cond.
unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO,
      bool IfTrue) {
  using namespace Hexagon;

  if (SO.isReg()) {
    Register PhysR;
    RegisterRef RS = SO;
    if (Register::isVirtualRegister(RS.Reg)) {
      const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg);
      assert(VC->begin() != VC->end() && "Empty register class");
      PhysR = *VC->begin();
    } else {
      assert(Register::isPhysicalRegister(RS.Reg));
      PhysR = RS.Reg;
    }
    Register PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub);
    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS);
    switch (TRI->getRegSizeInBits(*RC)) {
      case 32:
        return IfTrue ? A2_tfrt : A2_tfrf;
      case 64:
        return IfTrue ? A2_tfrpt : A2_tfrpf;
    }
    llvm_unreachable("Invalid register operand");
  }
  switch (SO.getType()) {
    case MachineOperand::MO_Immediate:
    case MachineOperand::MO_FPImmediate:
    case MachineOperand::MO_ConstantPoolIndex:
    case MachineOperand::MO_TargetIndex:
    case MachineOperand::MO_JumpTableIndex:
    case MachineOperand::MO_ExternalSymbol:
    case MachineOperand::MO_GlobalAddress:
    case MachineOperand::MO_BlockAddress:
      return IfTrue ? C2_cmoveit : C2_cmoveif;
    default:
      break;
  }
  llvm_unreachable("Unexpected source operand");
}

/// Generate a conditional transfer, copying the value SrcOp to the
/// destination register DstR:DstSR, and using the predicate register from
/// PredOp. The Cond argument specifies whether the predicate is to be
/// if(PredOp), or if(!PredOp).
MachineInstr *HexagonExpandCondsets::genCondTfrFor(MachineOperand &SrcOp,
      MachineBasicBlock::iterator At,
      unsigned DstR, unsigned DstSR, const MachineOperand &PredOp,
      bool PredSense, bool ReadUndef, bool ImpUse) {
  MachineInstr *MI = SrcOp.getParent();
  MachineBasicBlock &B = *At->getParent();
  const DebugLoc &DL = MI->getDebugLoc();

  // Don't avoid identity copies here (i.e. if the source and the destination
  // are the same registers). It is actually better to generate them here,
  // since this would cause the copy to potentially be predicated in the next
  // step. The predication will remove such a copy if it is unable to
  /// predicate.

  unsigned Opc = getCondTfrOpcode(SrcOp, PredSense);
  unsigned DstState = RegState::Define | (ReadUndef ? RegState::Undef : 0);
  unsigned PredState = getRegState(PredOp) & ~RegState::Kill;
  MachineInstrBuilder MIB;

  if (SrcOp.isReg()) {
    unsigned SrcState = getRegState(SrcOp);
    if (RegisterRef(SrcOp) == RegisterRef(DstR, DstSR))
      SrcState &= ~RegState::Kill;
    MIB = BuildMI(B, At, DL, HII->get(Opc))
          .addReg(DstR, DstState, DstSR)
          .addReg(PredOp.getReg(), PredState, PredOp.getSubReg())
          .addReg(SrcOp.getReg(), SrcState, SrcOp.getSubReg());
  } else {
    MIB = BuildMI(B, At, DL, HII->get(Opc))
              .addReg(DstR, DstState, DstSR)
              .addReg(PredOp.getReg(), PredState, PredOp.getSubReg())
              .add(SrcOp);
  }

  LLVM_DEBUG(dbgs() << "created an initial copy: " << *MIB);
  return &*MIB;
}

/// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function
/// performs all necessary changes to complete the replacement.
bool HexagonExpandCondsets::split(MachineInstr &MI,
                                  std::set<unsigned> &UpdRegs) {
  if (TfrLimitActive) {
    if (TfrCounter >= TfrLimit)
      return false;
    TfrCounter++;
  }
  LLVM_DEBUG(dbgs() << "\nsplitting " << printMBBReference(*MI.getParent())
                    << ": " << MI);
  MachineOperand &MD = MI.getOperand(0);  // Definition
  MachineOperand &MP = MI.getOperand(1);  // Predicate register
  assert(MD.isDef());
  Register DR = MD.getReg(), DSR = MD.getSubReg();
  bool ReadUndef = MD.isUndef();
  MachineBasicBlock::iterator At = MI;

  auto updateRegs = [&UpdRegs] (const MachineInstr &MI) -> void {
    for (auto &Op : MI.operands())
      if (Op.isReg())
        UpdRegs.insert(Op.getReg());
  };

  // If this is a mux of the same register, just replace it with COPY.
  // Ideally, this would happen earlier, so that register coalescing would
  // see it.
  MachineOperand &ST = MI.getOperand(2);
  MachineOperand &SF = MI.getOperand(3);
  if (ST.isReg() && SF.isReg()) {
    RegisterRef RT(ST);
    if (RT == RegisterRef(SF)) {
      // Copy regs to update first.
      updateRegs(MI);
      MI.setDesc(HII->get(TargetOpcode::COPY));
      unsigned S = getRegState(ST);
      while (MI.getNumOperands() > 1)
        MI.RemoveOperand(MI.getNumOperands()-1);
      MachineFunction &MF = *MI.getParent()->getParent();
      MachineInstrBuilder(MF, MI).addReg(RT.Reg, S, RT.Sub);
      return true;
    }
  }

  // First, create the two invididual conditional transfers, and add each
  // of them to the live intervals information. Do that first and then remove
  // the old instruction from live intervals.
  MachineInstr *TfrT =
      genCondTfrFor(ST, At, DR, DSR, MP, true, ReadUndef, false);
  MachineInstr *TfrF =
      genCondTfrFor(SF, At, DR, DSR, MP, false, ReadUndef, true);
  LIS->InsertMachineInstrInMaps(*TfrT);
  LIS->InsertMachineInstrInMaps(*TfrF);

  // Will need to recalculate live intervals for all registers in MI.
  updateRegs(MI);

  removeInstr(MI);
  return true;
}

bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) {
  if (HII->isPredicated(*MI) || !HII->isPredicable(*MI))
    return false;
  if (MI->hasUnmodeledSideEffects() || MI->mayStore())
    return false;
  // Reject instructions with multiple defs (e.g. post-increment loads).
  bool HasDef = false;
  for (auto &Op : MI->operands()) {
    if (!Op.isReg() || !Op.isDef())
      continue;
    if (HasDef)
      return false;
    HasDef = true;
  }
  for (auto &Mo : MI->memoperands())
    if (Mo->isVolatile() || Mo->isAtomic())
      return false;
  return true;
}

/// Find the reaching definition for a predicated use of RD. The RD is used
/// under the conditions given by PredR and Cond, and this function will ignore
/// definitions that set RD under the opposite conditions.
MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD,
      MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) {
  MachineBasicBlock &B = *UseIt->getParent();
  MachineBasicBlock::iterator I = UseIt, S = B.begin();
  if (I == S)
    return nullptr;

  bool PredValid = true;
  do {
    --I;
    MachineInstr *MI = &*I;
    // Check if this instruction can be ignored, i.e. if it is predicated
    // on the complementary condition.
    if (PredValid && HII->isPredicated(*MI)) {
      if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(*MI)))
        continue;
    }

    // Check the defs. If the PredR is defined, invalidate it. If RD is
    // defined, return the instruction or 0, depending on the circumstances.
    for (auto &Op : MI->operands()) {
      if (!Op.isReg() || !Op.isDef())
        continue;
      RegisterRef RR = Op;
      if (RR.Reg == PredR) {
        PredValid = false;
        continue;
      }
      if (RR.Reg != RD.Reg)
        continue;
      // If the "Reg" part agrees, there is still the subregister to check.
      // If we are looking for %1:loreg, we can skip %1:hireg, but
      // not %1 (w/o subregisters).
      if (RR.Sub == RD.Sub)
        return MI;
      if (RR.Sub == 0 || RD.Sub == 0)
        return nullptr;
      // We have different subregisters, so we can continue looking.
    }
  } while (I != S);

  return nullptr;
}

/// Check if the instruction MI can be safely moved over a set of instructions
/// whose side-effects (in terms of register defs and uses) are expressed in
/// the maps Defs and Uses. These maps reflect the conditional defs and uses
/// that depend on the same predicate register to allow moving instructions
/// over instructions predicated on the opposite condition.
bool HexagonExpandCondsets::canMoveOver(MachineInstr &MI, ReferenceMap &Defs,
                                        ReferenceMap &Uses) {
  // In order to be able to safely move MI over instructions that define
  // "Defs" and use "Uses", no def operand from MI can be defined or used
  // and no use operand can be defined.
  for (auto &Op : MI.operands()) {
    if (!Op.isReg())
      continue;
    RegisterRef RR = Op;
    // For physical register we would need to check register aliases, etc.
    // and we don't want to bother with that. It would be of little value
    // before the actual register rewriting (from virtual to physical).
    if (!Register::isVirtualRegister(RR.Reg))
      return false;
    // No redefs for any operand.
    if (isRefInMap(RR, Defs, Exec_Then))
      return false;
    // For defs, there cannot be uses.
    if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then))
      return false;
  }
  return true;
}

/// Check if the instruction accessing memory (TheI) can be moved to the
/// location ToI.
bool HexagonExpandCondsets::canMoveMemTo(MachineInstr &TheI, MachineInstr &ToI,
                                         bool IsDown) {
  bool IsLoad = TheI.mayLoad(), IsStore = TheI.mayStore();
  if (!IsLoad && !IsStore)
    return true;
  if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI))
    return true;
  if (TheI.hasUnmodeledSideEffects())
    return false;

  MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI;
  MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI;
  bool Ordered = TheI.hasOrderedMemoryRef();

  // Search for aliased memory reference in (StartI, EndI).
  for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) {
    MachineInstr *MI = &*I;
    if (MI->hasUnmodeledSideEffects())
      return false;
    bool L = MI->mayLoad(), S = MI->mayStore();
    if (!L && !S)
      continue;
    if (Ordered && MI->hasOrderedMemoryRef())
      return false;

    bool Conflict = (L && IsStore) || S;
    if (Conflict)
      return false;
  }
  return true;
}

/// Generate a predicated version of MI (where the condition is given via
/// PredR and Cond) at the point indicated by Where.
void HexagonExpandCondsets::predicateAt(const MachineOperand &DefOp,
                                        MachineInstr &MI,
                                        MachineBasicBlock::iterator Where,
                                        const MachineOperand &PredOp, bool Cond,
                                        std::set<unsigned> &UpdRegs) {
  // The problem with updating live intervals is that we can move one def
  // past another def. In particular, this can happen when moving an A2_tfrt
  // over an A2_tfrf defining the same register. From the point of view of
  // live intervals, these two instructions are two separate definitions,
  // and each one starts another live segment. LiveIntervals's "handleMove"
  // does not allow such moves, so we need to handle it ourselves. To avoid
  // invalidating liveness data while we are using it, the move will be
  // implemented in 4 steps: (1) add a clone of the instruction MI at the
  // target location, (2) update liveness, (3) delete the old instruction,
  // and (4) update liveness again.

  MachineBasicBlock &B = *MI.getParent();
  DebugLoc DL = Where->getDebugLoc();  // "Where" points to an instruction.
  unsigned Opc = MI.getOpcode();
  unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
  MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
  unsigned Ox = 0, NP = MI.getNumOperands();
  // Skip all defs from MI first.
  while (Ox < NP) {
    MachineOperand &MO = MI.getOperand(Ox);
    if (!MO.isReg() || !MO.isDef())
      break;
    Ox++;
  }
  // Add the new def, then the predicate register, then the rest of the
  // operands.
  MB.addReg(DefOp.getReg(), getRegState(DefOp), DefOp.getSubReg());
  MB.addReg(PredOp.getReg(), PredOp.isUndef() ? RegState::Undef : 0,
            PredOp.getSubReg());
  while (Ox < NP) {
    MachineOperand &MO = MI.getOperand(Ox);
    if (!MO.isReg() || !MO.isImplicit())
      MB.add(MO);
    Ox++;
  }
  MB.cloneMemRefs(MI);

  MachineInstr *NewI = MB;
  NewI->clearKillInfo();
  LIS->InsertMachineInstrInMaps(*NewI);

  for (auto &Op : NewI->operands())
    if (Op.isReg())
      UpdRegs.insert(Op.getReg());
}

/// In the range [First, Last], rename all references to the "old" register RO
/// to the "new" register RN, but only in instructions predicated on the given
/// condition.
void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN,
      unsigned PredR, bool Cond, MachineBasicBlock::iterator First,
      MachineBasicBlock::iterator Last) {
  MachineBasicBlock::iterator End = std::next(Last);
  for (MachineBasicBlock::iterator I = First; I != End; ++I) {
    MachineInstr *MI = &*I;
    // Do not touch instructions that are not predicated, or are predicated
    // on the opposite condition.
    if (!HII->isPredicated(*MI))
      continue;
    if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(*MI)))
      continue;

    for (auto &Op : MI->operands()) {
      if (!Op.isReg() || RO != RegisterRef(Op))
        continue;
      Op.setReg(RN.Reg);
      Op.setSubReg(RN.Sub);
      // In practice, this isn't supposed to see any defs.
      assert(!Op.isDef() && "Not expecting a def");
    }
  }
}

/// For a given conditional copy, predicate the definition of the source of
/// the copy under the given condition (using the same predicate register as
/// the copy).
bool HexagonExpandCondsets::predicate(MachineInstr &TfrI, bool Cond,
                                      std::set<unsigned> &UpdRegs) {
  // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi).
  unsigned Opc = TfrI.getOpcode();
  (void)Opc;
  assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf);
  LLVM_DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false")
                    << ": " << TfrI);

  MachineOperand &MD = TfrI.getOperand(0);
  MachineOperand &MP = TfrI.getOperand(1);
  MachineOperand &MS = TfrI.getOperand(2);
  // The source operand should be a <kill>. This is not strictly necessary,
  // but it makes things a lot simpler. Otherwise, we would need to rename
  // some registers, which would complicate the transformation considerably.
  if (!MS.isKill())
    return false;
  // Avoid predicating instructions that define a subregister if subregister
  // liveness tracking is not enabled.
  if (MD.getSubReg() && !MRI->shouldTrackSubRegLiveness(MD.getReg()))
    return false;

  RegisterRef RT(MS);
  Register PredR = MP.getReg();
  MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond);
  if (!DefI || !isPredicable(DefI))
    return false;

  LLVM_DEBUG(dbgs() << "Source def: " << *DefI);

  // Collect the information about registers defined and used between the
  // DefI and the TfrI.
  // Map: reg -> bitmask of subregs
  ReferenceMap Uses, Defs;
  MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI;

  // Check if the predicate register is valid between DefI and TfrI.
  // If it is, we can then ignore instructions predicated on the negated
  // conditions when collecting def and use information.
  bool PredValid = true;
  for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
    if (!I->modifiesRegister(PredR, nullptr))
      continue;
    PredValid = false;
    break;
  }

  for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
    MachineInstr *MI = &*I;
    // If this instruction is predicated on the same register, it could
    // potentially be ignored.
    // By default assume that the instruction executes on the same condition
    // as TfrI (Exec_Then), and also on the opposite one (Exec_Else).
    unsigned Exec = Exec_Then | Exec_Else;
    if (PredValid && HII->isPredicated(*MI) && MI->readsRegister(PredR))
      Exec = (Cond == HII->isPredicatedTrue(*MI)) ? Exec_Then : Exec_Else;

    for (auto &Op : MI->operands()) {
      if (!Op.isReg())
        continue;
      // We don't want to deal with physical registers. The reason is that
      // they can be aliased with other physical registers. Aliased virtual
      // registers must share the same register number, and can only differ
      // in the subregisters, which we are keeping track of. Physical
      // registers ters no longer have subregisters---their super- and
      // subregisters are other physical registers, and we are not checking
      // that.
      RegisterRef RR = Op;
      if (!Register::isVirtualRegister(RR.Reg))
        return false;

      ReferenceMap &Map = Op.isDef() ? Defs : Uses;
      if (Op.isDef() && Op.isUndef()) {
        assert(RR.Sub && "Expecting a subregister on <def,read-undef>");
        // If this is a <def,read-undef>, then it invalidates the non-written
        // part of the register. For the purpose of checking the validity of
        // the move, assume that it modifies the whole register.
        RR.Sub = 0;
      }
      addRefToMap(RR, Map, Exec);
    }
  }

  // The situation:
  //   RT = DefI
  //   ...
  //   RD = TfrI ..., RT

  // If the register-in-the-middle (RT) is used or redefined between
  // DefI and TfrI, we may not be able proceed with this transformation.
  // We can ignore a def that will not execute together with TfrI, and a
  // use that will. If there is such a use (that does execute together with
  // TfrI), we will not be able to move DefI down. If there is a use that
  // executed if TfrI's condition is false, then RT must be available
  // unconditionally (cannot be predicated).
  // Essentially, we need to be able to rename RT to RD in this segment.
  if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else))
    return false;
  RegisterRef RD = MD;
  // If the predicate register is defined between DefI and TfrI, the only
  // potential thing to do would be to move the DefI down to TfrI, and then
  // predicate. The reaching def (DefI) must be movable down to the location
  // of the TfrI.
  // If the target register of the TfrI (RD) is not used or defined between
  // DefI and TfrI, consider moving TfrI up to DefI.
  bool CanUp =   canMoveOver(TfrI, Defs, Uses);
  bool CanDown = canMoveOver(*DefI, Defs, Uses);
  // The TfrI does not access memory, but DefI could. Check if it's safe
  // to move DefI down to TfrI.
  if (DefI->mayLoadOrStore())
    if (!canMoveMemTo(*DefI, TfrI, true))
      CanDown = false;

  LLVM_DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no")
                    << ", can move down: " << (CanDown ? "yes\n" : "no\n"));
  MachineBasicBlock::iterator PastDefIt = std::next(DefIt);
  if (CanUp)
    predicateAt(MD, *DefI, PastDefIt, MP, Cond, UpdRegs);
  else if (CanDown)
    predicateAt(MD, *DefI, TfrIt, MP, Cond, UpdRegs);
  else
    return false;

  if (RT != RD) {
    renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt);
    UpdRegs.insert(RT.Reg);
  }

  removeInstr(TfrI);
  removeInstr(*DefI);
  return true;
}

/// Predicate all cases of conditional copies in the specified block.
bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B,
      std::set<unsigned> &UpdRegs) {
  bool Changed = false;
  MachineBasicBlock::iterator I, E, NextI;
  for (I = B.begin(), E = B.end(); I != E; I = NextI) {
    NextI = std::next(I);
    unsigned Opc = I->getOpcode();
    if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) {
      bool Done = predicate(*I, (Opc == Hexagon::A2_tfrt), UpdRegs);
      if (!Done) {
        // If we didn't predicate I, we may need to remove it in case it is
        // an "identity" copy, e.g.  %1 = A2_tfrt %2, %1.
        if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2))) {
          for (auto &Op : I->operands())
            if (Op.isReg())
              UpdRegs.insert(Op.getReg());
          removeInstr(*I);
        }
      }
      Changed |= Done;
    }
  }
  return Changed;
}

bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) {
  if (!Register::isVirtualRegister(RR.Reg))
    return false;
  const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg);
  if (RC == &Hexagon::IntRegsRegClass) {
    BW = 32;
    return true;
  }
  if (RC == &Hexagon::DoubleRegsRegClass) {
    BW = (RR.Sub != 0) ? 32 : 64;
    return true;
  }
  return false;
}

bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) {
  for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
    LiveRange::Segment &LR = *I;
    // Range must start at a register...
    if (!LR.start.isRegister())
      return false;
    // ...and end in a register or in a dead slot.
    if (!LR.end.isRegister() && !LR.end.isDead())
      return false;
  }
  return true;
}

bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) {
  if (CoaLimitActive) {
    if (CoaCounter >= CoaLimit)
      return false;
    CoaCounter++;
  }
  unsigned BW1, BW2;
  if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2)
    return false;
  if (MRI->isLiveIn(R1.Reg))
    return false;
  if (MRI->isLiveIn(R2.Reg))
    return false;

  LiveInterval &L1 = LIS->getInterval(R1.Reg);
  LiveInterval &L2 = LIS->getInterval(R2.Reg);
  if (L2.empty())
    return false;
  if (L1.hasSubRanges() || L2.hasSubRanges())
    return false;
  bool Overlap = L1.overlaps(L2);

  LLVM_DEBUG(dbgs() << "compatible registers: ("
                    << (Overlap ? "overlap" : "disjoint") << ")\n  "
                    << printReg(R1.Reg, TRI, R1.Sub) << "  " << L1 << "\n  "
                    << printReg(R2.Reg, TRI, R2.Sub) << "  " << L2 << "\n");
  if (R1.Sub || R2.Sub)
    return false;
  if (Overlap)
    return false;

  // Coalescing could have a negative impact on scheduling, so try to limit
  // to some reasonable extent. Only consider coalescing segments, when one
  // of them does not cross basic block boundaries.
  if (!isIntraBlocks(L1) && !isIntraBlocks(L2))
    return false;

  MRI->replaceRegWith(R2.Reg, R1.Reg);

  // Move all live segments from L2 to L1.
  using ValueInfoMap = DenseMap<VNInfo *, VNInfo *>;
  ValueInfoMap VM;
  for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) {
    VNInfo *NewVN, *OldVN = I->valno;
    ValueInfoMap::iterator F = VM.find(OldVN);
    if (F == VM.end()) {
      NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator());
      VM.insert(std::make_pair(OldVN, NewVN));
    } else {
      NewVN = F->second;
    }
    L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN));
  }
  while (L2.begin() != L2.end())
    L2.removeSegment(*L2.begin());
  LIS->removeInterval(R2.Reg);

  updateKillFlags(R1.Reg);
  LLVM_DEBUG(dbgs() << "coalesced: " << L1 << "\n");
  L1.verify();

  return true;
}

/// Attempt to coalesce one of the source registers to a MUX instruction with
/// the destination register. This could lead to having only one predicated
/// instruction in the end instead of two.
bool HexagonExpandCondsets::coalesceSegments(
      const SmallVectorImpl<MachineInstr*> &Condsets,
      std::set<unsigned> &UpdRegs) {
  SmallVector<MachineInstr*,16> TwoRegs;
  for (MachineInstr *MI : Condsets) {
    MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3);
    if (!S1.isReg() && !S2.isReg())
      continue;
    TwoRegs.push_back(MI);
  }

  bool Changed = false;
  for (MachineInstr *CI : TwoRegs) {
    RegisterRef RD = CI->getOperand(0);
    RegisterRef RP = CI->getOperand(1);
    MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3);
    bool Done = false;
    // Consider this case:
    //   %1 = instr1 ...
    //   %2 = instr2 ...
    //   %0 = C2_mux ..., %1, %2
    // If %0 was coalesced with %1, we could end up with the following
    // code:
    //   %0 = instr1 ...
    //   %2 = instr2 ...
    //   %0 = A2_tfrf ..., %2
    // which will later become:
    //   %0 = instr1 ...
    //   %0 = instr2_cNotPt ...
    // i.e. there will be an unconditional definition (instr1) of %0
    // followed by a conditional one. The output dependency was there before
    // and it unavoidable, but if instr1 is predicable, we will no longer be
    // able to predicate it here.
    // To avoid this scenario, don't coalesce the destination register with
    // a source register that is defined by a predicable instruction.
    if (S1.isReg()) {
      RegisterRef RS = S1;
      MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true);
      if (!RDef || !HII->isPredicable(*RDef)) {
        Done = coalesceRegisters(RD, RegisterRef(S1));
        if (Done) {
          UpdRegs.insert(RD.Reg);
          UpdRegs.insert(S1.getReg());
        }
      }
    }
    if (!Done && S2.isReg()) {
      RegisterRef RS = S2;
      MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false);
      if (!RDef || !HII->isPredicable(*RDef)) {
        Done = coalesceRegisters(RD, RegisterRef(S2));
        if (Done) {
          UpdRegs.insert(RD.Reg);
          UpdRegs.insert(S2.getReg());
        }
      }
    }
    Changed |= Done;
  }
  return Changed;
}

bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo());
  TRI = MF.getSubtarget().getRegisterInfo();
  MDT = &getAnalysis<MachineDominatorTree>();
  LIS = &getAnalysis<LiveIntervals>();
  MRI = &MF.getRegInfo();

  LLVM_DEBUG(LIS->print(dbgs() << "Before expand-condsets\n",
                        MF.getFunction().getParent()));

  bool Changed = false;
  std::set<unsigned> CoalUpd, PredUpd;

  SmallVector<MachineInstr*,16> Condsets;
  for (auto &B : MF)
    for (auto &I : B)
      if (isCondset(I))
        Condsets.push_back(&I);

  // Try to coalesce the target of a mux with one of its sources.
  // This could eliminate a register copy in some circumstances.
  Changed |= coalesceSegments(Condsets, CoalUpd);

  // Update kill flags on all source operands. This is done here because
  // at this moment (when expand-condsets runs), there are no kill flags
  // in the IR (they have been removed by live range analysis).
  // Updating them right before we split is the easiest, because splitting
  // adds definitions which would interfere with updating kills afterwards.
  std::set<unsigned> KillUpd;
  for (MachineInstr *MI : Condsets)
    for (MachineOperand &Op : MI->operands())
      if (Op.isReg() && Op.isUse())
        if (!CoalUpd.count(Op.getReg()))
          KillUpd.insert(Op.getReg());
  updateLiveness(KillUpd, false, true, false);
  LLVM_DEBUG(
      LIS->print(dbgs() << "After coalescing\n", MF.getFunction().getParent()));

  // First, simply split all muxes into a pair of conditional transfers
  // and update the live intervals to reflect the new arrangement. The
  // goal is to update the kill flags, since predication will rely on
  // them.
  for (MachineInstr *MI : Condsets)
    Changed |= split(*MI, PredUpd);
  Condsets.clear(); // The contents of Condsets are invalid here anyway.

  // Do not update live ranges after splitting. Recalculation of live
  // intervals removes kill flags, which were preserved by splitting on
  // the source operands of condsets. These kill flags are needed by
  // predication, and after splitting they are difficult to recalculate
  // (because of predicated defs), so make sure they are left untouched.
  // Predication does not use live intervals.
  LLVM_DEBUG(
      LIS->print(dbgs() << "After splitting\n", MF.getFunction().getParent()));

  // Traverse all blocks and collapse predicable instructions feeding
  // conditional transfers into predicated instructions.
  // Walk over all the instructions again, so we may catch pre-existing
  // cases that were not created in the previous step.
  for (auto &B : MF)
    Changed |= predicateInBlock(B, PredUpd);
  LLVM_DEBUG(LIS->print(dbgs() << "After predicating\n",
                        MF.getFunction().getParent()));

  PredUpd.insert(CoalUpd.begin(), CoalUpd.end());
  updateLiveness(PredUpd, true, true, true);

  LLVM_DEBUG({
    if (Changed)
      LIS->print(dbgs() << "After expand-condsets\n",
                 MF.getFunction().getParent());
  });

  return Changed;
}

//===----------------------------------------------------------------------===//
//                         Public Constructor Functions
//===----------------------------------------------------------------------===//
FunctionPass *llvm::createHexagonExpandCondsets() {
  return new HexagonExpandCondsets();
}