Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
//===- InferAddressSpace.cpp - --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// CUDA C/C++ includes memory space designation as variable type qualifers (such
// as __global__ and __shared__). Knowing the space of a memory access allows
// CUDA compilers to emit faster PTX loads and stores. For example, a load from
// shared memory can be translated to `ld.shared` which is roughly 10% faster
// than a generic `ld` on an NVIDIA Tesla K40c.
//
// Unfortunately, type qualifiers only apply to variable declarations, so CUDA
// compilers must infer the memory space of an address expression from
// type-qualified variables.
//
// LLVM IR uses non-zero (so-called) specific address spaces to represent memory
// spaces (e.g. addrspace(3) means shared memory). The Clang frontend
// places only type-qualified variables in specific address spaces, and then
// conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
// (so-called the generic address space) for other instructions to use.
//
// For example, the Clang translates the following CUDA code
//   __shared__ float a[10];
//   float v = a[i];
// to
//   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
//   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
//   %v = load float, float* %1 ; emits ld.f32
// @a is in addrspace(3) since it's type-qualified, but its use from %1 is
// redirected to %0 (the generic version of @a).
//
// The optimization implemented in this file propagates specific address spaces
// from type-qualified variable declarations to its users. For example, it
// optimizes the above IR to
//   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
//   %v = load float addrspace(3)* %1 ; emits ld.shared.f32
// propagating the addrspace(3) from @a to %1. As the result, the NVPTX
// codegen is able to emit ld.shared.f32 for %v.
//
// Address space inference works in two steps. First, it uses a data-flow
// analysis to infer as many generic pointers as possible to point to only one
// specific address space. In the above example, it can prove that %1 only
// points to addrspace(3). This algorithm was published in
//   CUDA: Compiling and optimizing for a GPU platform
//   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
//   ICCS 2012
//
// Then, address space inference replaces all refinable generic pointers with
// equivalent specific pointers.
//
// The major challenge of implementing this optimization is handling PHINodes,
// which may create loops in the data flow graph. This brings two complications.
//
// First, the data flow analysis in Step 1 needs to be circular. For example,
//     %generic.input = addrspacecast float addrspace(3)* %input to float*
//   loop:
//     %y = phi [ %generic.input, %y2 ]
//     %y2 = getelementptr %y, 1
//     %v = load %y2
//     br ..., label %loop, ...
// proving %y specific requires proving both %generic.input and %y2 specific,
// but proving %y2 specific circles back to %y. To address this complication,
// the data flow analysis operates on a lattice:
//   uninitialized > specific address spaces > generic.
// All address expressions (our implementation only considers phi, bitcast,
// addrspacecast, and getelementptr) start with the uninitialized address space.
// The monotone transfer function moves the address space of a pointer down a
// lattice path from uninitialized to specific and then to generic. A join
// operation of two different specific address spaces pushes the expression down
// to the generic address space. The analysis completes once it reaches a fixed
// point.
//
// Second, IR rewriting in Step 2 also needs to be circular. For example,
// converting %y to addrspace(3) requires the compiler to know the converted
// %y2, but converting %y2 needs the converted %y. To address this complication,
// we break these cycles using "undef" placeholders. When converting an
// instruction `I` to a new address space, if its operand `Op` is not converted
// yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
// For instance, our algorithm first converts %y to
//   %y' = phi float addrspace(3)* [ %input, undef ]
// Then, it converts %y2 to
//   %y2' = getelementptr %y', 1
// Finally, it fixes the undef in %y' so that
//   %y' = phi float addrspace(3)* [ %input, %y2' ]
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <cassert>
#include <iterator>
#include <limits>
#include <utility>
#include <vector>

#define DEBUG_TYPE "infer-address-spaces"

using namespace llvm;

static cl::opt<bool> AssumeDefaultIsFlatAddressSpace(
    "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden,
    cl::desc("The default address space is assumed as the flat address space. "
             "This is mainly for test purpose."));

static const unsigned UninitializedAddressSpace =
    std::numeric_limits<unsigned>::max();

namespace {

using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>;

/// InferAddressSpaces
class InferAddressSpaces : public FunctionPass {
  const TargetTransformInfo *TTI = nullptr;
  const DataLayout *DL = nullptr;

  /// Target specific address space which uses of should be replaced if
  /// possible.
  unsigned FlatAddrSpace = 0;

public:
  static char ID;

  InferAddressSpaces() :
    FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {}
  InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {}

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<TargetTransformInfoWrapperPass>();
  }

  bool runOnFunction(Function &F) override;

private:
  // Returns the new address space of V if updated; otherwise, returns None.
  Optional<unsigned>
  updateAddressSpace(const Value &V,
                     const ValueToAddrSpaceMapTy &InferredAddrSpace) const;

  // Tries to infer the specific address space of each address expression in
  // Postorder.
  void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
                          ValueToAddrSpaceMapTy *InferredAddrSpace) const;

  bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;

  Value *cloneInstructionWithNewAddressSpace(
      Instruction *I, unsigned NewAddrSpace,
      const ValueToValueMapTy &ValueWithNewAddrSpace,
      SmallVectorImpl<const Use *> *UndefUsesToFix) const;

  // Changes the flat address expressions in function F to point to specific
  // address spaces if InferredAddrSpace says so. Postorder is the postorder of
  // all flat expressions in the use-def graph of function F.
  bool rewriteWithNewAddressSpaces(
      const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
      const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const;

  void appendsFlatAddressExpressionToPostorderStack(
      Value *V, PostorderStackTy &PostorderStack,
      DenseSet<Value *> &Visited) const;

  bool rewriteIntrinsicOperands(IntrinsicInst *II,
                                Value *OldV, Value *NewV) const;
  void collectRewritableIntrinsicOperands(IntrinsicInst *II,
                                          PostorderStackTy &PostorderStack,
                                          DenseSet<Value *> &Visited) const;

  std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;

  Value *cloneValueWithNewAddressSpace(
    Value *V, unsigned NewAddrSpace,
    const ValueToValueMapTy &ValueWithNewAddrSpace,
    SmallVectorImpl<const Use *> *UndefUsesToFix) const;
  unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
};

} // end anonymous namespace

char InferAddressSpaces::ID = 0;

namespace llvm {

void initializeInferAddressSpacesPass(PassRegistry &);

} // end namespace llvm

INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
                false, false)

// Check whether that's no-op pointer bicast using a pair of
// `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over
// different address spaces.
static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL,
                                 const TargetTransformInfo *TTI) {
  assert(I2P->getOpcode() == Instruction::IntToPtr);
  auto *P2I = dyn_cast<Operator>(I2P->getOperand(0));
  if (!P2I || P2I->getOpcode() != Instruction::PtrToInt)
    return false;
  // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a
  // no-op cast. Besides checking both of them are no-op casts, as the
  // reinterpreted pointer may be used in other pointer arithmetic, we also
  // need to double-check that through the target-specific hook. That ensures
  // the underlying target also agrees that's a no-op address space cast and
  // pointer bits are preserved.
  // The current IR spec doesn't have clear rules on address space casts,
  // especially a clear definition for pointer bits in non-default address
  // spaces. It would be undefined if that pointer is dereferenced after an
  // invalid reinterpret cast. Also, due to the unclearness for the meaning of
  // bits in non-default address spaces in the current spec, the pointer
  // arithmetic may also be undefined after invalid pointer reinterpret cast.
  // However, as we confirm through the target hooks that it's a no-op
  // addrspacecast, it doesn't matter since the bits should be the same.
  return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()),
                              I2P->getOperand(0)->getType(), I2P->getType(),
                              DL) &&
         CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()),
                              P2I->getOperand(0)->getType(), P2I->getType(),
                              DL) &&
         TTI->isNoopAddrSpaceCast(
             P2I->getOperand(0)->getType()->getPointerAddressSpace(),
             I2P->getType()->getPointerAddressSpace());
}

// Returns true if V is an address expression.
// TODO: Currently, we consider only phi, bitcast, addrspacecast, and
// getelementptr operators.
static bool isAddressExpression(const Value &V, const DataLayout &DL,
                                const TargetTransformInfo *TTI) {
  const Operator *Op = dyn_cast<Operator>(&V);
  if (!Op)
    return false;

  switch (Op->getOpcode()) {
  case Instruction::PHI:
    assert(Op->getType()->isPointerTy());
    return true;
  case Instruction::BitCast:
  case Instruction::AddrSpaceCast:
  case Instruction::GetElementPtr:
    return true;
  case Instruction::Select:
    return Op->getType()->isPointerTy();
  case Instruction::Call: {
    const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V);
    return II && II->getIntrinsicID() == Intrinsic::ptrmask;
  }
  case Instruction::IntToPtr:
    return isNoopPtrIntCastPair(Op, DL, TTI);
  default:
    return false;
  }
}

// Returns the pointer operands of V.
//
// Precondition: V is an address expression.
static SmallVector<Value *, 2>
getPointerOperands(const Value &V, const DataLayout &DL,
                   const TargetTransformInfo *TTI) {
  const Operator &Op = cast<Operator>(V);
  switch (Op.getOpcode()) {
  case Instruction::PHI: {
    auto IncomingValues = cast<PHINode>(Op).incoming_values();
    return SmallVector<Value *, 2>(IncomingValues.begin(),
                                   IncomingValues.end());
  }
  case Instruction::BitCast:
  case Instruction::AddrSpaceCast:
  case Instruction::GetElementPtr:
    return {Op.getOperand(0)};
  case Instruction::Select:
    return {Op.getOperand(1), Op.getOperand(2)};
  case Instruction::Call: {
    const IntrinsicInst &II = cast<IntrinsicInst>(Op);
    assert(II.getIntrinsicID() == Intrinsic::ptrmask &&
           "unexpected intrinsic call");
    return {II.getArgOperand(0)};
  }
  case Instruction::IntToPtr: {
    assert(isNoopPtrIntCastPair(&Op, DL, TTI));
    auto *P2I = cast<Operator>(Op.getOperand(0));
    return {P2I->getOperand(0)};
  }
  default:
    llvm_unreachable("Unexpected instruction type.");
  }
}

bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
                                                  Value *OldV,
                                                  Value *NewV) const {
  Module *M = II->getParent()->getParent()->getParent();

  switch (II->getIntrinsicID()) {
  case Intrinsic::objectsize: {
    Type *DestTy = II->getType();
    Type *SrcTy = NewV->getType();
    Function *NewDecl =
        Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
    II->setArgOperand(0, NewV);
    II->setCalledFunction(NewDecl);
    return true;
  }
  case Intrinsic::ptrmask:
    // This is handled as an address expression, not as a use memory operation.
    return false;
  default: {
    Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
    if (!Rewrite)
      return false;
    if (Rewrite != II)
      II->replaceAllUsesWith(Rewrite);
    return true;
  }
  }
}

void InferAddressSpaces::collectRewritableIntrinsicOperands(
    IntrinsicInst *II, PostorderStackTy &PostorderStack,
    DenseSet<Value *> &Visited) const {
  auto IID = II->getIntrinsicID();
  switch (IID) {
  case Intrinsic::ptrmask:
  case Intrinsic::objectsize:
    appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
                                                 PostorderStack, Visited);
    break;
  default:
    SmallVector<int, 2> OpIndexes;
    if (TTI->collectFlatAddressOperands(OpIndexes, IID)) {
      for (int Idx : OpIndexes) {
        appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx),
                                                     PostorderStack, Visited);
      }
    }
    break;
  }
}

// Returns all flat address expressions in function F. The elements are
// If V is an unvisited flat address expression, appends V to PostorderStack
// and marks it as visited.
void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
    Value *V, PostorderStackTy &PostorderStack,
    DenseSet<Value *> &Visited) const {
  assert(V->getType()->isPointerTy());

  // Generic addressing expressions may be hidden in nested constant
  // expressions.
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
    // TODO: Look in non-address parts, like icmp operands.
    if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
      PostorderStack.emplace_back(CE, false);

    return;
  }

  if (isAddressExpression(*V, *DL, TTI) &&
      V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
    if (Visited.insert(V).second) {
      PostorderStack.emplace_back(V, false);

      Operator *Op = cast<Operator>(V);
      for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
        if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
          if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
            PostorderStack.emplace_back(CE, false);
        }
      }
    }
  }
}

// Returns all flat address expressions in function F. The elements are ordered
// ordered in postorder.
std::vector<WeakTrackingVH>
InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
  // This function implements a non-recursive postorder traversal of a partial
  // use-def graph of function F.
  PostorderStackTy PostorderStack;
  // The set of visited expressions.
  DenseSet<Value *> Visited;

  auto PushPtrOperand = [&](Value *Ptr) {
    appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
                                                 Visited);
  };

  // Look at operations that may be interesting accelerate by moving to a known
  // address space. We aim at generating after loads and stores, but pure
  // addressing calculations may also be faster.
  for (Instruction &I : instructions(F)) {
    if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
      if (!GEP->getType()->isVectorTy())
        PushPtrOperand(GEP->getPointerOperand());
    } else if (auto *LI = dyn_cast<LoadInst>(&I))
      PushPtrOperand(LI->getPointerOperand());
    else if (auto *SI = dyn_cast<StoreInst>(&I))
      PushPtrOperand(SI->getPointerOperand());
    else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
      PushPtrOperand(RMW->getPointerOperand());
    else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
      PushPtrOperand(CmpX->getPointerOperand());
    else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
      // For memset/memcpy/memmove, any pointer operand can be replaced.
      PushPtrOperand(MI->getRawDest());

      // Handle 2nd operand for memcpy/memmove.
      if (auto *MTI = dyn_cast<MemTransferInst>(MI))
        PushPtrOperand(MTI->getRawSource());
    } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
      collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
    else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
      // FIXME: Handle vectors of pointers
      if (Cmp->getOperand(0)->getType()->isPointerTy()) {
        PushPtrOperand(Cmp->getOperand(0));
        PushPtrOperand(Cmp->getOperand(1));
      }
    } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
      if (!ASC->getType()->isVectorTy())
        PushPtrOperand(ASC->getPointerOperand());
    } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) {
      if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI))
        PushPtrOperand(
            cast<PtrToIntInst>(I2P->getOperand(0))->getPointerOperand());
    }
  }

  std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
  while (!PostorderStack.empty()) {
    Value *TopVal = PostorderStack.back().getPointer();
    // If the operands of the expression on the top are already explored,
    // adds that expression to the resultant postorder.
    if (PostorderStack.back().getInt()) {
      if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
        Postorder.push_back(TopVal);
      PostorderStack.pop_back();
      continue;
    }
    // Otherwise, adds its operands to the stack and explores them.
    PostorderStack.back().setInt(true);
    for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) {
      appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
                                                   Visited);
    }
  }
  return Postorder;
}

// A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
// of OperandUse.get() in the new address space. If the clone is not ready yet,
// returns an undef in the new address space as a placeholder.
static Value *operandWithNewAddressSpaceOrCreateUndef(
    const Use &OperandUse, unsigned NewAddrSpace,
    const ValueToValueMapTy &ValueWithNewAddrSpace,
    SmallVectorImpl<const Use *> *UndefUsesToFix) {
  Value *Operand = OperandUse.get();

  Type *NewPtrTy =
      Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);

  if (Constant *C = dyn_cast<Constant>(Operand))
    return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);

  if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
    return NewOperand;

  UndefUsesToFix->push_back(&OperandUse);
  return UndefValue::get(NewPtrTy);
}

// Returns a clone of `I` with its operands converted to those specified in
// ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
// operand whose address space needs to be modified might not exist in
// ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
// adds that operand use to UndefUsesToFix so that caller can fix them later.
//
// Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
// from a pointer whose type already matches. Therefore, this function returns a
// Value* instead of an Instruction*.
//
// This may also return nullptr in the case the instruction could not be
// rewritten.
Value *InferAddressSpaces::cloneInstructionWithNewAddressSpace(
    Instruction *I, unsigned NewAddrSpace,
    const ValueToValueMapTy &ValueWithNewAddrSpace,
    SmallVectorImpl<const Use *> *UndefUsesToFix) const {
  Type *NewPtrType =
      I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);

  if (I->getOpcode() == Instruction::AddrSpaceCast) {
    Value *Src = I->getOperand(0);
    // Because `I` is flat, the source address space must be specific.
    // Therefore, the inferred address space must be the source space, according
    // to our algorithm.
    assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
    if (Src->getType() != NewPtrType)
      return new BitCastInst(Src, NewPtrType);
    return Src;
  }

  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    // Technically the intrinsic ID is a pointer typed argument, so specially
    // handle calls early.
    assert(II->getIntrinsicID() == Intrinsic::ptrmask);
    Value *NewPtr = operandWithNewAddressSpaceOrCreateUndef(
        II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace,
        UndefUsesToFix);
    Value *Rewrite =
        TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr);
    if (Rewrite) {
      assert(Rewrite != II && "cannot modify this pointer operation in place");
      return Rewrite;
    }

    return nullptr;
  }

  // Computes the converted pointer operands.
  SmallVector<Value *, 4> NewPointerOperands;
  for (const Use &OperandUse : I->operands()) {
    if (!OperandUse.get()->getType()->isPointerTy())
      NewPointerOperands.push_back(nullptr);
    else
      NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
                                     OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
  }

  switch (I->getOpcode()) {
  case Instruction::BitCast:
    return new BitCastInst(NewPointerOperands[0], NewPtrType);
  case Instruction::PHI: {
    assert(I->getType()->isPointerTy());
    PHINode *PHI = cast<PHINode>(I);
    PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
    for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
      unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
      NewPHI->addIncoming(NewPointerOperands[OperandNo],
                          PHI->getIncomingBlock(Index));
    }
    return NewPHI;
  }
  case Instruction::GetElementPtr: {
    GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
    GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
        GEP->getSourceElementType(), NewPointerOperands[0],
        SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
    NewGEP->setIsInBounds(GEP->isInBounds());
    return NewGEP;
  }
  case Instruction::Select:
    assert(I->getType()->isPointerTy());
    return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
                              NewPointerOperands[2], "", nullptr, I);
  case Instruction::IntToPtr: {
    assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI));
    Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0);
    assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
    if (Src->getType() != NewPtrType)
      return new BitCastInst(Src, NewPtrType);
    return Src;
  }
  default:
    llvm_unreachable("Unexpected opcode");
  }
}

// Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
// constant expression `CE` with its operands replaced as specified in
// ValueWithNewAddrSpace.
static Value *cloneConstantExprWithNewAddressSpace(
    ConstantExpr *CE, unsigned NewAddrSpace,
    const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL,
    const TargetTransformInfo *TTI) {
  Type *TargetType =
    CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);

  if (CE->getOpcode() == Instruction::AddrSpaceCast) {
    // Because CE is flat, the source address space must be specific.
    // Therefore, the inferred address space must be the source space according
    // to our algorithm.
    assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
           NewAddrSpace);
    return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
  }

  if (CE->getOpcode() == Instruction::BitCast) {
    if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
      return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
    return ConstantExpr::getAddrSpaceCast(CE, TargetType);
  }

  if (CE->getOpcode() == Instruction::Select) {
    Constant *Src0 = CE->getOperand(1);
    Constant *Src1 = CE->getOperand(2);
    if (Src0->getType()->getPointerAddressSpace() ==
        Src1->getType()->getPointerAddressSpace()) {

      return ConstantExpr::getSelect(
          CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
          ConstantExpr::getAddrSpaceCast(Src1, TargetType));
    }
  }

  if (CE->getOpcode() == Instruction::IntToPtr) {
    assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI));
    Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0);
    assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
    return ConstantExpr::getBitCast(Src, TargetType);
  }

  // Computes the operands of the new constant expression.
  bool IsNew = false;
  SmallVector<Constant *, 4> NewOperands;
  for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
    Constant *Operand = CE->getOperand(Index);
    // If the address space of `Operand` needs to be modified, the new operand
    // with the new address space should already be in ValueWithNewAddrSpace
    // because (1) the constant expressions we consider (i.e. addrspacecast,
    // bitcast, and getelementptr) do not incur cycles in the data flow graph
    // and (2) this function is called on constant expressions in postorder.
    if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
      IsNew = true;
      NewOperands.push_back(cast<Constant>(NewOperand));
      continue;
    }
    if (auto CExpr = dyn_cast<ConstantExpr>(Operand))
      if (Value *NewOperand = cloneConstantExprWithNewAddressSpace(
              CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) {
        IsNew = true;
        NewOperands.push_back(cast<Constant>(NewOperand));
        continue;
      }
    // Otherwise, reuses the old operand.
    NewOperands.push_back(Operand);
  }

  // If !IsNew, we will replace the Value with itself. However, replaced values
  // are assumed to wrapped in a addrspace cast later so drop it now.
  if (!IsNew)
    return nullptr;

  if (CE->getOpcode() == Instruction::GetElementPtr) {
    // Needs to specify the source type while constructing a getelementptr
    // constant expression.
    return CE->getWithOperands(
      NewOperands, TargetType, /*OnlyIfReduced=*/false,
      NewOperands[0]->getType()->getPointerElementType());
  }

  return CE->getWithOperands(NewOperands, TargetType);
}

// Returns a clone of the value `V`, with its operands replaced as specified in
// ValueWithNewAddrSpace. This function is called on every flat address
// expression whose address space needs to be modified, in postorder.
//
// See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
  Value *V, unsigned NewAddrSpace,
  const ValueToValueMapTy &ValueWithNewAddrSpace,
  SmallVectorImpl<const Use *> *UndefUsesToFix) const {
  // All values in Postorder are flat address expressions.
  assert(isAddressExpression(*V, *DL, TTI) &&
         V->getType()->getPointerAddressSpace() == FlatAddrSpace);

  if (Instruction *I = dyn_cast<Instruction>(V)) {
    Value *NewV = cloneInstructionWithNewAddressSpace(
      I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
    if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) {
      if (NewI->getParent() == nullptr) {
        NewI->insertBefore(I);
        NewI->takeName(I);
      }
    }
    return NewV;
  }

  return cloneConstantExprWithNewAddressSpace(
      cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI);
}

// Defines the join operation on the address space lattice (see the file header
// comments).
unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
                                               unsigned AS2) const {
  if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
    return FlatAddrSpace;

  if (AS1 == UninitializedAddressSpace)
    return AS2;
  if (AS2 == UninitializedAddressSpace)
    return AS1;

  // The join of two different specific address spaces is flat.
  return (AS1 == AS2) ? AS1 : FlatAddrSpace;
}

bool InferAddressSpaces::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
  DL = &F.getParent()->getDataLayout();

  if (AssumeDefaultIsFlatAddressSpace)
    FlatAddrSpace = 0;

  if (FlatAddrSpace == UninitializedAddressSpace) {
    FlatAddrSpace = TTI->getFlatAddressSpace();
    if (FlatAddrSpace == UninitializedAddressSpace)
      return false;
  }

  // Collects all flat address expressions in postorder.
  std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);

  // Runs a data-flow analysis to refine the address spaces of every expression
  // in Postorder.
  ValueToAddrSpaceMapTy InferredAddrSpace;
  inferAddressSpaces(Postorder, &InferredAddrSpace);

  // Changes the address spaces of the flat address expressions who are inferred
  // to point to a specific address space.
  return rewriteWithNewAddressSpaces(*TTI, Postorder, InferredAddrSpace, &F);
}

// Constants need to be tracked through RAUW to handle cases with nested
// constant expressions, so wrap values in WeakTrackingVH.
void InferAddressSpaces::inferAddressSpaces(
    ArrayRef<WeakTrackingVH> Postorder,
    ValueToAddrSpaceMapTy *InferredAddrSpace) const {
  SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
  // Initially, all expressions are in the uninitialized address space.
  for (Value *V : Postorder)
    (*InferredAddrSpace)[V] = UninitializedAddressSpace;

  while (!Worklist.empty()) {
    Value *V = Worklist.pop_back_val();

    // Tries to update the address space of the stack top according to the
    // address spaces of its operands.
    LLVM_DEBUG(dbgs() << "Updating the address space of\n  " << *V << '\n');
    Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
    if (!NewAS.hasValue())
      continue;
    // If any updates are made, grabs its users to the worklist because
    // their address spaces can also be possibly updated.
    LLVM_DEBUG(dbgs() << "  to " << NewAS.getValue() << '\n');
    (*InferredAddrSpace)[V] = NewAS.getValue();

    for (Value *User : V->users()) {
      // Skip if User is already in the worklist.
      if (Worklist.count(User))
        continue;

      auto Pos = InferredAddrSpace->find(User);
      // Our algorithm only updates the address spaces of flat address
      // expressions, which are those in InferredAddrSpace.
      if (Pos == InferredAddrSpace->end())
        continue;

      // Function updateAddressSpace moves the address space down a lattice
      // path. Therefore, nothing to do if User is already inferred as flat (the
      // bottom element in the lattice).
      if (Pos->second == FlatAddrSpace)
        continue;

      Worklist.insert(User);
    }
  }
}

Optional<unsigned> InferAddressSpaces::updateAddressSpace(
    const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
  assert(InferredAddrSpace.count(&V));

  // The new inferred address space equals the join of the address spaces
  // of all its pointer operands.
  unsigned NewAS = UninitializedAddressSpace;

  const Operator &Op = cast<Operator>(V);
  if (Op.getOpcode() == Instruction::Select) {
    Value *Src0 = Op.getOperand(1);
    Value *Src1 = Op.getOperand(2);

    auto I = InferredAddrSpace.find(Src0);
    unsigned Src0AS = (I != InferredAddrSpace.end()) ?
      I->second : Src0->getType()->getPointerAddressSpace();

    auto J = InferredAddrSpace.find(Src1);
    unsigned Src1AS = (J != InferredAddrSpace.end()) ?
      J->second : Src1->getType()->getPointerAddressSpace();

    auto *C0 = dyn_cast<Constant>(Src0);
    auto *C1 = dyn_cast<Constant>(Src1);

    // If one of the inputs is a constant, we may be able to do a constant
    // addrspacecast of it. Defer inferring the address space until the input
    // address space is known.
    if ((C1 && Src0AS == UninitializedAddressSpace) ||
        (C0 && Src1AS == UninitializedAddressSpace))
      return None;

    if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
      NewAS = Src1AS;
    else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
      NewAS = Src0AS;
    else
      NewAS = joinAddressSpaces(Src0AS, Src1AS);
  } else {
    for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) {
      auto I = InferredAddrSpace.find(PtrOperand);
      unsigned OperandAS = I != InferredAddrSpace.end() ?
        I->second : PtrOperand->getType()->getPointerAddressSpace();

      // join(flat, *) = flat. So we can break if NewAS is already flat.
      NewAS = joinAddressSpaces(NewAS, OperandAS);
      if (NewAS == FlatAddrSpace)
        break;
    }
  }

  unsigned OldAS = InferredAddrSpace.lookup(&V);
  assert(OldAS != FlatAddrSpace);
  if (OldAS == NewAS)
    return None;
  return NewAS;
}

/// \p returns true if \p U is the pointer operand of a memory instruction with
/// a single pointer operand that can have its address space changed by simply
/// mutating the use to a new value. If the memory instruction is volatile,
/// return true only if the target allows the memory instruction to be volatile
/// in the new address space.
static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI,
                                             Use &U, unsigned AddrSpace) {
  User *Inst = U.getUser();
  unsigned OpNo = U.getOperandNo();
  bool VolatileIsAllowed = false;
  if (auto *I = dyn_cast<Instruction>(Inst))
    VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace);

  if (auto *LI = dyn_cast<LoadInst>(Inst))
    return OpNo == LoadInst::getPointerOperandIndex() &&
           (VolatileIsAllowed || !LI->isVolatile());

  if (auto *SI = dyn_cast<StoreInst>(Inst))
    return OpNo == StoreInst::getPointerOperandIndex() &&
           (VolatileIsAllowed || !SI->isVolatile());

  if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
    return OpNo == AtomicRMWInst::getPointerOperandIndex() &&
           (VolatileIsAllowed || !RMW->isVolatile());

  if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
    return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
           (VolatileIsAllowed || !CmpX->isVolatile());

  return false;
}

/// Update memory intrinsic uses that require more complex processing than
/// simple memory instructions. Thse require re-mangling and may have multiple
/// pointer operands.
static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
                                     Value *NewV) {
  IRBuilder<> B(MI);
  MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
  MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
  MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);

  if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
    B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(),
                   MaybeAlign(MSI->getDestAlignment()),
                   false, // isVolatile
                   TBAA, ScopeMD, NoAliasMD);
  } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
    Value *Src = MTI->getRawSource();
    Value *Dest = MTI->getRawDest();

    // Be careful in case this is a self-to-self copy.
    if (Src == OldV)
      Src = NewV;

    if (Dest == OldV)
      Dest = NewV;

    if (isa<MemCpyInst>(MTI)) {
      MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
      B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
                     MTI->getLength(),
                     false, // isVolatile
                     TBAA, TBAAStruct, ScopeMD, NoAliasMD);
    } else {
      assert(isa<MemMoveInst>(MTI));
      B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
                      MTI->getLength(),
                      false, // isVolatile
                      TBAA, ScopeMD, NoAliasMD);
    }
  } else
    llvm_unreachable("unhandled MemIntrinsic");

  MI->eraseFromParent();
  return true;
}

// \p returns true if it is OK to change the address space of constant \p C with
// a ConstantExpr addrspacecast.
bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
  assert(NewAS != UninitializedAddressSpace);

  unsigned SrcAS = C->getType()->getPointerAddressSpace();
  if (SrcAS == NewAS || isa<UndefValue>(C))
    return true;

  // Prevent illegal casts between different non-flat address spaces.
  if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
    return false;

  if (isa<ConstantPointerNull>(C))
    return true;

  if (auto *Op = dyn_cast<Operator>(C)) {
    // If we already have a constant addrspacecast, it should be safe to cast it
    // off.
    if (Op->getOpcode() == Instruction::AddrSpaceCast)
      return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);

    if (Op->getOpcode() == Instruction::IntToPtr &&
        Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
      return true;
  }

  return false;
}

static Value::use_iterator skipToNextUser(Value::use_iterator I,
                                          Value::use_iterator End) {
  User *CurUser = I->getUser();
  ++I;

  while (I != End && I->getUser() == CurUser)
    ++I;

  return I;
}

bool InferAddressSpaces::rewriteWithNewAddressSpaces(
    const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
    const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
  // For each address expression to be modified, creates a clone of it with its
  // pointer operands converted to the new address space. Since the pointer
  // operands are converted, the clone is naturally in the new address space by
  // construction.
  ValueToValueMapTy ValueWithNewAddrSpace;
  SmallVector<const Use *, 32> UndefUsesToFix;
  for (Value* V : Postorder) {
    unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
    if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
      Value *New = cloneValueWithNewAddressSpace(
          V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
      if (New)
        ValueWithNewAddrSpace[V] = New;
    }
  }

  if (ValueWithNewAddrSpace.empty())
    return false;

  // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
  for (const Use *UndefUse : UndefUsesToFix) {
    User *V = UndefUse->getUser();
    User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V));
    if (!NewV)
      continue;

    unsigned OperandNo = UndefUse->getOperandNo();
    assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
    NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
  }

  SmallVector<Instruction *, 16> DeadInstructions;

  // Replaces the uses of the old address expressions with the new ones.
  for (const WeakTrackingVH &WVH : Postorder) {
    assert(WVH && "value was unexpectedly deleted");
    Value *V = WVH;
    Value *NewV = ValueWithNewAddrSpace.lookup(V);
    if (NewV == nullptr)
      continue;

    LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n  with\n  "
                      << *NewV << '\n');

    if (Constant *C = dyn_cast<Constant>(V)) {
      Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
                                                         C->getType());
      if (C != Replace) {
        LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
                          << ": " << *Replace << '\n');
        C->replaceAllUsesWith(Replace);
        V = Replace;
      }
    }

    Value::use_iterator I, E, Next;
    for (I = V->use_begin(), E = V->use_end(); I != E; ) {
      Use &U = *I;

      // Some users may see the same pointer operand in multiple operands. Skip
      // to the next instruction.
      I = skipToNextUser(I, E);

      if (isSimplePointerUseValidToReplace(
              TTI, U, V->getType()->getPointerAddressSpace())) {
        // If V is used as the pointer operand of a compatible memory operation,
        // sets the pointer operand to NewV. This replacement does not change
        // the element type, so the resultant load/store is still valid.
        U.set(NewV);
        continue;
      }

      User *CurUser = U.getUser();
      // Handle more complex cases like intrinsic that need to be remangled.
      if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
        if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
          continue;
      }

      if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
        if (rewriteIntrinsicOperands(II, V, NewV))
          continue;
      }

      if (isa<Instruction>(CurUser)) {
        if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
          // If we can infer that both pointers are in the same addrspace,
          // transform e.g.
          //   %cmp = icmp eq float* %p, %q
          // into
          //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q

          unsigned NewAS = NewV->getType()->getPointerAddressSpace();
          int SrcIdx = U.getOperandNo();
          int OtherIdx = (SrcIdx == 0) ? 1 : 0;
          Value *OtherSrc = Cmp->getOperand(OtherIdx);

          if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
            if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
              Cmp->setOperand(OtherIdx, OtherNewV);
              Cmp->setOperand(SrcIdx, NewV);
              continue;
            }
          }

          // Even if the type mismatches, we can cast the constant.
          if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
            if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
              Cmp->setOperand(SrcIdx, NewV);
              Cmp->setOperand(OtherIdx,
                ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
              continue;
            }
          }
        }

        if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
          unsigned NewAS = NewV->getType()->getPointerAddressSpace();
          if (ASC->getDestAddressSpace() == NewAS) {
            if (ASC->getType()->getPointerElementType() !=
                NewV->getType()->getPointerElementType()) {
              NewV = CastInst::Create(Instruction::BitCast, NewV,
                                      ASC->getType(), "", ASC);
            }
            ASC->replaceAllUsesWith(NewV);
            DeadInstructions.push_back(ASC);
            continue;
          }
        }

        // Otherwise, replaces the use with flat(NewV).
        if (Instruction *Inst = dyn_cast<Instruction>(V)) {
          // Don't create a copy of the original addrspacecast.
          if (U == V && isa<AddrSpaceCastInst>(V))
            continue;

          BasicBlock::iterator InsertPos = std::next(Inst->getIterator());
          while (isa<PHINode>(InsertPos))
            ++InsertPos;
          U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
        } else {
          U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
                                               V->getType()));
        }
      }
    }

    if (V->use_empty()) {
      if (Instruction *I = dyn_cast<Instruction>(V))
        DeadInstructions.push_back(I);
    }
  }

  for (Instruction *I : DeadInstructions)
    RecursivelyDeleteTriviallyDeadInstructions(I);

  return true;
}

FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) {
  return new InferAddressSpaces(AddressSpace);
}