Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
//===- Miscompilation.cpp - Debug program miscompilations -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements optimizer and code generation miscompilation debugging
// support.
//
//===----------------------------------------------------------------------===//

#include "BugDriver.h"
#include "ListReducer.h"
#include "ToolRunner.h"
#include "llvm/Config/config.h" // for HAVE_LINK_R
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Linker/Linker.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Transforms/Utils/Cloning.h"

using namespace llvm;

namespace llvm {
extern cl::opt<std::string> OutputPrefix;
extern cl::list<std::string> InputArgv;
} // end namespace llvm

namespace {
static llvm::cl::opt<bool> DisableLoopExtraction(
    "disable-loop-extraction",
    cl::desc("Don't extract loops when searching for miscompilations"),
    cl::init(false));
static llvm::cl::opt<bool> DisableBlockExtraction(
    "disable-block-extraction",
    cl::desc("Don't extract blocks when searching for miscompilations"),
    cl::init(false));

class ReduceMiscompilingPasses : public ListReducer<std::string> {
  BugDriver &BD;

public:
  ReduceMiscompilingPasses(BugDriver &bd) : BD(bd) {}

  Expected<TestResult> doTest(std::vector<std::string> &Prefix,
                              std::vector<std::string> &Suffix) override;
};
} // end anonymous namespace

/// TestResult - After passes have been split into a test group and a control
/// group, see if they still break the program.
///
Expected<ReduceMiscompilingPasses::TestResult>
ReduceMiscompilingPasses::doTest(std::vector<std::string> &Prefix,
                                 std::vector<std::string> &Suffix) {
  // First, run the program with just the Suffix passes.  If it is still broken
  // with JUST the kept passes, discard the prefix passes.
  outs() << "Checking to see if '" << getPassesString(Suffix)
         << "' compiles correctly: ";

  std::string BitcodeResult;
  if (BD.runPasses(BD.getProgram(), Suffix, BitcodeResult, false /*delete*/,
                   true /*quiet*/)) {
    errs() << " Error running this sequence of passes"
           << " on the input program!\n";
    BD.setPassesToRun(Suffix);
    BD.EmitProgressBitcode(BD.getProgram(), "pass-error", false);
    // TODO: This should propagate the error instead of exiting.
    if (Error E = BD.debugOptimizerCrash())
      exit(1);
    exit(0);
  }

  // Check to see if the finished program matches the reference output...
  Expected<bool> Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "",
                                       true /*delete bitcode*/);
  if (Error E = Diff.takeError())
    return std::move(E);
  if (*Diff) {
    outs() << " nope.\n";
    if (Suffix.empty()) {
      errs() << BD.getToolName() << ": I'm confused: the test fails when "
             << "no passes are run, nondeterministic program?\n";
      exit(1);
    }
    return KeepSuffix; // Miscompilation detected!
  }
  outs() << " yup.\n"; // No miscompilation!

  if (Prefix.empty())
    return NoFailure;

  // Next, see if the program is broken if we run the "prefix" passes first,
  // then separately run the "kept" passes.
  outs() << "Checking to see if '" << getPassesString(Prefix)
         << "' compiles correctly: ";

  // If it is not broken with the kept passes, it's possible that the prefix
  // passes must be run before the kept passes to break it.  If the program
  // WORKS after the prefix passes, but then fails if running the prefix AND
  // kept passes, we can update our bitcode file to include the result of the
  // prefix passes, then discard the prefix passes.
  //
  if (BD.runPasses(BD.getProgram(), Prefix, BitcodeResult, false /*delete*/,
                   true /*quiet*/)) {
    errs() << " Error running this sequence of passes"
           << " on the input program!\n";
    BD.setPassesToRun(Prefix);
    BD.EmitProgressBitcode(BD.getProgram(), "pass-error", false);
    // TODO: This should propagate the error instead of exiting.
    if (Error E = BD.debugOptimizerCrash())
      exit(1);
    exit(0);
  }

  // If the prefix maintains the predicate by itself, only keep the prefix!
  Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "", false);
  if (Error E = Diff.takeError())
    return std::move(E);
  if (*Diff) {
    outs() << " nope.\n";
    sys::fs::remove(BitcodeResult);
    return KeepPrefix;
  }
  outs() << " yup.\n"; // No miscompilation!

  // Ok, so now we know that the prefix passes work, try running the suffix
  // passes on the result of the prefix passes.
  //
  std::unique_ptr<Module> PrefixOutput =
      parseInputFile(BitcodeResult, BD.getContext());
  if (!PrefixOutput) {
    errs() << BD.getToolName() << ": Error reading bitcode file '"
           << BitcodeResult << "'!\n";
    exit(1);
  }
  sys::fs::remove(BitcodeResult);

  // Don't check if there are no passes in the suffix.
  if (Suffix.empty())
    return NoFailure;

  outs() << "Checking to see if '" << getPassesString(Suffix)
         << "' passes compile correctly after the '" << getPassesString(Prefix)
         << "' passes: ";

  std::unique_ptr<Module> OriginalInput =
      BD.swapProgramIn(std::move(PrefixOutput));
  if (BD.runPasses(BD.getProgram(), Suffix, BitcodeResult, false /*delete*/,
                   true /*quiet*/)) {
    errs() << " Error running this sequence of passes"
           << " on the input program!\n";
    BD.setPassesToRun(Suffix);
    BD.EmitProgressBitcode(BD.getProgram(), "pass-error", false);
    // TODO: This should propagate the error instead of exiting.
    if (Error E = BD.debugOptimizerCrash())
      exit(1);
    exit(0);
  }

  // Run the result...
  Diff = BD.diffProgram(BD.getProgram(), BitcodeResult, "",
                        true /*delete bitcode*/);
  if (Error E = Diff.takeError())
    return std::move(E);
  if (*Diff) {
    outs() << " nope.\n";
    return KeepSuffix;
  }

  // Otherwise, we must not be running the bad pass anymore.
  outs() << " yup.\n"; // No miscompilation!
  // Restore orig program & free test.
  BD.setNewProgram(std::move(OriginalInput));
  return NoFailure;
}

namespace {
class ReduceMiscompilingFunctions : public ListReducer<Function *> {
  BugDriver &BD;
  Expected<bool> (*TestFn)(BugDriver &, std::unique_ptr<Module>,
                           std::unique_ptr<Module>);

public:
  ReduceMiscompilingFunctions(BugDriver &bd,
                              Expected<bool> (*F)(BugDriver &,
                                                  std::unique_ptr<Module>,
                                                  std::unique_ptr<Module>))
      : BD(bd), TestFn(F) {}

  Expected<TestResult> doTest(std::vector<Function *> &Prefix,
                              std::vector<Function *> &Suffix) override {
    if (!Suffix.empty()) {
      Expected<bool> Ret = TestFuncs(Suffix);
      if (Error E = Ret.takeError())
        return std::move(E);
      if (*Ret)
        return KeepSuffix;
    }
    if (!Prefix.empty()) {
      Expected<bool> Ret = TestFuncs(Prefix);
      if (Error E = Ret.takeError())
        return std::move(E);
      if (*Ret)
        return KeepPrefix;
    }
    return NoFailure;
  }

  Expected<bool> TestFuncs(const std::vector<Function *> &Prefix);
};
} // end anonymous namespace

/// Given two modules, link them together and run the program, checking to see
/// if the program matches the diff. If there is an error, return NULL. If not,
/// return the merged module. The Broken argument will be set to true if the
/// output is different. If the DeleteInputs argument is set to true then this
/// function deletes both input modules before it returns.
///
static Expected<std::unique_ptr<Module>> testMergedProgram(const BugDriver &BD,
                                                           const Module &M1,
                                                           const Module &M2,
                                                           bool &Broken) {
  // Resulting merge of M1 and M2.
  auto Merged = CloneModule(M1);
  if (Linker::linkModules(*Merged, CloneModule(M2)))
    // TODO: Shouldn't we thread the error up instead of exiting?
    exit(1);

  // Execute the program.
  Expected<bool> Diff = BD.diffProgram(*Merged, "", "", false);
  if (Error E = Diff.takeError())
    return std::move(E);
  Broken = *Diff;
  return std::move(Merged);
}

/// split functions in a Module into two groups: those that are under
/// consideration for miscompilation vs. those that are not, and test
/// accordingly. Each group of functions becomes a separate Module.
Expected<bool>
ReduceMiscompilingFunctions::TestFuncs(const std::vector<Function *> &Funcs) {
  // Test to see if the function is misoptimized if we ONLY run it on the
  // functions listed in Funcs.
  outs() << "Checking to see if the program is misoptimized when "
         << (Funcs.size() == 1 ? "this function is" : "these functions are")
         << " run through the pass"
         << (BD.getPassesToRun().size() == 1 ? "" : "es") << ":";
  PrintFunctionList(Funcs);
  outs() << '\n';

  // Create a clone for two reasons:
  // * If the optimization passes delete any function, the deleted function
  //   will be in the clone and Funcs will still point to valid memory
  // * If the optimization passes use interprocedural information to break
  //   a function, we want to continue with the original function. Otherwise
  //   we can conclude that a function triggers the bug when in fact one
  //   needs a larger set of original functions to do so.
  ValueToValueMapTy VMap;
  std::unique_ptr<Module> Clone = CloneModule(BD.getProgram(), VMap);
  std::unique_ptr<Module> Orig = BD.swapProgramIn(std::move(Clone));

  std::vector<Function *> FuncsOnClone;
  for (unsigned i = 0, e = Funcs.size(); i != e; ++i) {
    Function *F = cast<Function>(VMap[Funcs[i]]);
    FuncsOnClone.push_back(F);
  }

  // Split the module into the two halves of the program we want.
  VMap.clear();
  std::unique_ptr<Module> ToNotOptimize = CloneModule(BD.getProgram(), VMap);
  std::unique_ptr<Module> ToOptimize =
      SplitFunctionsOutOfModule(ToNotOptimize.get(), FuncsOnClone, VMap);

  Expected<bool> Broken =
      TestFn(BD, std::move(ToOptimize), std::move(ToNotOptimize));

  BD.setNewProgram(std::move(Orig));

  return Broken;
}

/// Give anonymous global values names.
static void DisambiguateGlobalSymbols(Module &M) {
  for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E;
       ++I)
    if (!I->hasName())
      I->setName("anon_global");
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
    if (!I->hasName())
      I->setName("anon_fn");
}

/// Given a reduced list of functions that still exposed the bug, check to see
/// if we can extract the loops in the region without obscuring the bug.  If so,
/// it reduces the amount of code identified.
///
static Expected<bool>
ExtractLoops(BugDriver &BD,
             Expected<bool> (*TestFn)(BugDriver &, std::unique_ptr<Module>,
                                      std::unique_ptr<Module>),
             std::vector<Function *> &MiscompiledFunctions) {
  bool MadeChange = false;
  while (1) {
    if (BugpointIsInterrupted)
      return MadeChange;

    ValueToValueMapTy VMap;
    std::unique_ptr<Module> ToNotOptimize = CloneModule(BD.getProgram(), VMap);
    std::unique_ptr<Module> ToOptimize = SplitFunctionsOutOfModule(
        ToNotOptimize.get(), MiscompiledFunctions, VMap);
    std::unique_ptr<Module> ToOptimizeLoopExtracted =
        BD.extractLoop(ToOptimize.get());
    if (!ToOptimizeLoopExtracted)
      // If the loop extractor crashed or if there were no extractible loops,
      // then this chapter of our odyssey is over with.
      return MadeChange;

    errs() << "Extracted a loop from the breaking portion of the program.\n";

    // Bugpoint is intentionally not very trusting of LLVM transformations.  In
    // particular, we're not going to assume that the loop extractor works, so
    // we're going to test the newly loop extracted program to make sure nothing
    // has broken.  If something broke, then we'll inform the user and stop
    // extraction.
    AbstractInterpreter *AI = BD.switchToSafeInterpreter();
    bool Failure;
    Expected<std::unique_ptr<Module>> New = testMergedProgram(
        BD, *ToOptimizeLoopExtracted, *ToNotOptimize, Failure);
    if (Error E = New.takeError())
      return std::move(E);
    if (!*New)
      return false;

    // Delete the original and set the new program.
    std::unique_ptr<Module> Old = BD.swapProgramIn(std::move(*New));
    for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
      MiscompiledFunctions[i] = cast<Function>(VMap[MiscompiledFunctions[i]]);

    if (Failure) {
      BD.switchToInterpreter(AI);

      // Merged program doesn't work anymore!
      errs() << "  *** ERROR: Loop extraction broke the program. :("
             << " Please report a bug!\n";
      errs() << "      Continuing on with un-loop-extracted version.\n";

      BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-tno.bc",
                            *ToNotOptimize);
      BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-to.bc",
                            *ToOptimize);
      BD.writeProgramToFile(OutputPrefix + "-loop-extract-fail-to-le.bc",
                            *ToOptimizeLoopExtracted);

      errs() << "Please submit the " << OutputPrefix
             << "-loop-extract-fail-*.bc files.\n";
      return MadeChange;
    }
    BD.switchToInterpreter(AI);

    outs() << "  Testing after loop extraction:\n";
    // Clone modules, the tester function will free them.
    std::unique_ptr<Module> TOLEBackup =
        CloneModule(*ToOptimizeLoopExtracted, VMap);
    std::unique_ptr<Module> TNOBackup = CloneModule(*ToNotOptimize, VMap);

    for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
      MiscompiledFunctions[i] = cast<Function>(VMap[MiscompiledFunctions[i]]);

    Expected<bool> Result = TestFn(BD, std::move(ToOptimizeLoopExtracted),
                                   std::move(ToNotOptimize));
    if (Error E = Result.takeError())
      return std::move(E);

    ToOptimizeLoopExtracted = std::move(TOLEBackup);
    ToNotOptimize = std::move(TNOBackup);

    if (!*Result) {
      outs() << "*** Loop extraction masked the problem.  Undoing.\n";
      // If the program is not still broken, then loop extraction did something
      // that masked the error.  Stop loop extraction now.

      std::vector<std::pair<std::string, FunctionType *>> MisCompFunctions;
      for (Function *F : MiscompiledFunctions) {
        MisCompFunctions.emplace_back(std::string(F->getName()),
                                      F->getFunctionType());
      }

      if (Linker::linkModules(*ToNotOptimize,
                              std::move(ToOptimizeLoopExtracted)))
        exit(1);

      MiscompiledFunctions.clear();
      for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
        Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first);

        assert(NewF && "Function not found??");
        MiscompiledFunctions.push_back(NewF);
      }

      BD.setNewProgram(std::move(ToNotOptimize));
      return MadeChange;
    }

    outs() << "*** Loop extraction successful!\n";

    std::vector<std::pair<std::string, FunctionType *>> MisCompFunctions;
    for (Module::iterator I = ToOptimizeLoopExtracted->begin(),
                          E = ToOptimizeLoopExtracted->end();
         I != E; ++I)
      if (!I->isDeclaration())
        MisCompFunctions.emplace_back(std::string(I->getName()),
                                      I->getFunctionType());

    // Okay, great!  Now we know that we extracted a loop and that loop
    // extraction both didn't break the program, and didn't mask the problem.
    // Replace the current program with the loop extracted version, and try to
    // extract another loop.
    if (Linker::linkModules(*ToNotOptimize, std::move(ToOptimizeLoopExtracted)))
      exit(1);

    // All of the Function*'s in the MiscompiledFunctions list are in the old
    // module.  Update this list to include all of the functions in the
    // optimized and loop extracted module.
    MiscompiledFunctions.clear();
    for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
      Function *NewF = ToNotOptimize->getFunction(MisCompFunctions[i].first);

      assert(NewF && "Function not found??");
      MiscompiledFunctions.push_back(NewF);
    }

    BD.setNewProgram(std::move(ToNotOptimize));
    MadeChange = true;
  }
}

namespace {
class ReduceMiscompiledBlocks : public ListReducer<BasicBlock *> {
  BugDriver &BD;
  Expected<bool> (*TestFn)(BugDriver &, std::unique_ptr<Module>,
                           std::unique_ptr<Module>);
  std::vector<Function *> FunctionsBeingTested;

public:
  ReduceMiscompiledBlocks(BugDriver &bd,
                          Expected<bool> (*F)(BugDriver &,
                                              std::unique_ptr<Module>,
                                              std::unique_ptr<Module>),
                          const std::vector<Function *> &Fns)
      : BD(bd), TestFn(F), FunctionsBeingTested(Fns) {}

  Expected<TestResult> doTest(std::vector<BasicBlock *> &Prefix,
                              std::vector<BasicBlock *> &Suffix) override {
    if (!Suffix.empty()) {
      Expected<bool> Ret = TestFuncs(Suffix);
      if (Error E = Ret.takeError())
        return std::move(E);
      if (*Ret)
        return KeepSuffix;
    }
    if (!Prefix.empty()) {
      Expected<bool> Ret = TestFuncs(Prefix);
      if (Error E = Ret.takeError())
        return std::move(E);
      if (*Ret)
        return KeepPrefix;
    }
    return NoFailure;
  }

  Expected<bool> TestFuncs(const std::vector<BasicBlock *> &BBs);
};
} // end anonymous namespace

/// TestFuncs - Extract all blocks for the miscompiled functions except for the
/// specified blocks.  If the problem still exists, return true.
///
Expected<bool>
ReduceMiscompiledBlocks::TestFuncs(const std::vector<BasicBlock *> &BBs) {
  // Test to see if the function is misoptimized if we ONLY run it on the
  // functions listed in Funcs.
  outs() << "Checking to see if the program is misoptimized when all ";
  if (!BBs.empty()) {
    outs() << "but these " << BBs.size() << " blocks are extracted: ";
    for (unsigned i = 0, e = BBs.size() < 10 ? BBs.size() : 10; i != e; ++i)
      outs() << BBs[i]->getName() << " ";
    if (BBs.size() > 10)
      outs() << "...";
  } else {
    outs() << "blocks are extracted.";
  }
  outs() << '\n';

  // Split the module into the two halves of the program we want.
  ValueToValueMapTy VMap;
  std::unique_ptr<Module> Clone = CloneModule(BD.getProgram(), VMap);
  std::unique_ptr<Module> Orig = BD.swapProgramIn(std::move(Clone));
  std::vector<Function *> FuncsOnClone;
  std::vector<BasicBlock *> BBsOnClone;
  for (unsigned i = 0, e = FunctionsBeingTested.size(); i != e; ++i) {
    Function *F = cast<Function>(VMap[FunctionsBeingTested[i]]);
    FuncsOnClone.push_back(F);
  }
  for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
    BasicBlock *BB = cast<BasicBlock>(VMap[BBs[i]]);
    BBsOnClone.push_back(BB);
  }
  VMap.clear();

  std::unique_ptr<Module> ToNotOptimize = CloneModule(BD.getProgram(), VMap);
  std::unique_ptr<Module> ToOptimize =
      SplitFunctionsOutOfModule(ToNotOptimize.get(), FuncsOnClone, VMap);

  // Try the extraction.  If it doesn't work, then the block extractor crashed
  // or something, in which case bugpoint can't chase down this possibility.
  if (std::unique_ptr<Module> New =
          BD.extractMappedBlocksFromModule(BBsOnClone, ToOptimize.get())) {
    Expected<bool> Ret = TestFn(BD, std::move(New), std::move(ToNotOptimize));
    BD.setNewProgram(std::move(Orig));
    return Ret;
  }
  BD.setNewProgram(std::move(Orig));
  return false;
}

/// Given a reduced list of functions that still expose the bug, extract as many
/// basic blocks from the region as possible without obscuring the bug.
///
static Expected<bool>
ExtractBlocks(BugDriver &BD,
              Expected<bool> (*TestFn)(BugDriver &, std::unique_ptr<Module>,
                                       std::unique_ptr<Module>),
              std::vector<Function *> &MiscompiledFunctions) {
  if (BugpointIsInterrupted)
    return false;

  std::vector<BasicBlock *> Blocks;
  for (unsigned i = 0, e = MiscompiledFunctions.size(); i != e; ++i)
    for (BasicBlock &BB : *MiscompiledFunctions[i])
      Blocks.push_back(&BB);

  // Use the list reducer to identify blocks that can be extracted without
  // obscuring the bug.  The Blocks list will end up containing blocks that must
  // be retained from the original program.
  unsigned OldSize = Blocks.size();

  // Check to see if all blocks are extractible first.
  Expected<bool> Ret = ReduceMiscompiledBlocks(BD, TestFn, MiscompiledFunctions)
                           .TestFuncs(std::vector<BasicBlock *>());
  if (Error E = Ret.takeError())
    return std::move(E);
  if (*Ret) {
    Blocks.clear();
  } else {
    Expected<bool> Ret =
        ReduceMiscompiledBlocks(BD, TestFn, MiscompiledFunctions)
            .reduceList(Blocks);
    if (Error E = Ret.takeError())
      return std::move(E);
    if (Blocks.size() == OldSize)
      return false;
  }

  ValueToValueMapTy VMap;
  std::unique_ptr<Module> ProgClone = CloneModule(BD.getProgram(), VMap);
  std::unique_ptr<Module> ToExtract =
      SplitFunctionsOutOfModule(ProgClone.get(), MiscompiledFunctions, VMap);
  std::unique_ptr<Module> Extracted =
      BD.extractMappedBlocksFromModule(Blocks, ToExtract.get());
  if (!Extracted) {
    // Weird, extraction should have worked.
    errs() << "Nondeterministic problem extracting blocks??\n";
    return false;
  }

  // Otherwise, block extraction succeeded.  Link the two program fragments back
  // together.

  std::vector<std::pair<std::string, FunctionType *>> MisCompFunctions;
  for (Module::iterator I = Extracted->begin(), E = Extracted->end(); I != E;
       ++I)
    if (!I->isDeclaration())
      MisCompFunctions.emplace_back(std::string(I->getName()),
                                    I->getFunctionType());

  if (Linker::linkModules(*ProgClone, std::move(Extracted)))
    exit(1);

  // Update the list of miscompiled functions.
  MiscompiledFunctions.clear();

  for (unsigned i = 0, e = MisCompFunctions.size(); i != e; ++i) {
    Function *NewF = ProgClone->getFunction(MisCompFunctions[i].first);
    assert(NewF && "Function not found??");
    MiscompiledFunctions.push_back(NewF);
  }

  // Set the new program and delete the old one.
  BD.setNewProgram(std::move(ProgClone));

  return true;
}

/// This is a generic driver to narrow down miscompilations, either in an
/// optimization or a code generator.
///
static Expected<std::vector<Function *>> DebugAMiscompilation(
    BugDriver &BD,
    Expected<bool> (*TestFn)(BugDriver &, std::unique_ptr<Module>,
                             std::unique_ptr<Module>)) {
  // Okay, now that we have reduced the list of passes which are causing the
  // failure, see if we can pin down which functions are being
  // miscompiled... first build a list of all of the non-external functions in
  // the program.
  std::vector<Function *> MiscompiledFunctions;
  Module &Prog = BD.getProgram();
  for (Function &F : Prog)
    if (!F.isDeclaration())
      MiscompiledFunctions.push_back(&F);

  // Do the reduction...
  if (!BugpointIsInterrupted) {
    Expected<bool> Ret = ReduceMiscompilingFunctions(BD, TestFn)
                             .reduceList(MiscompiledFunctions);
    if (Error E = Ret.takeError()) {
      errs() << "\n***Cannot reduce functions: ";
      return std::move(E);
    }
  }
  outs() << "\n*** The following function"
         << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
         << " being miscompiled: ";
  PrintFunctionList(MiscompiledFunctions);
  outs() << '\n';

  // See if we can rip any loops out of the miscompiled functions and still
  // trigger the problem.

  if (!BugpointIsInterrupted && !DisableLoopExtraction) {
    Expected<bool> Ret = ExtractLoops(BD, TestFn, MiscompiledFunctions);
    if (Error E = Ret.takeError())
      return std::move(E);
    if (*Ret) {
      // Okay, we extracted some loops and the problem still appears.  See if
      // we can eliminate some of the created functions from being candidates.
      DisambiguateGlobalSymbols(BD.getProgram());

      // Do the reduction...
      if (!BugpointIsInterrupted)
        Ret = ReduceMiscompilingFunctions(BD, TestFn)
                  .reduceList(MiscompiledFunctions);
      if (Error E = Ret.takeError())
        return std::move(E);

      outs() << "\n*** The following function"
             << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
             << " being miscompiled: ";
      PrintFunctionList(MiscompiledFunctions);
      outs() << '\n';
    }
  }

  if (!BugpointIsInterrupted && !DisableBlockExtraction) {
    Expected<bool> Ret = ExtractBlocks(BD, TestFn, MiscompiledFunctions);
    if (Error E = Ret.takeError())
      return std::move(E);
    if (*Ret) {
      // Okay, we extracted some blocks and the problem still appears.  See if
      // we can eliminate some of the created functions from being candidates.
      DisambiguateGlobalSymbols(BD.getProgram());

      // Do the reduction...
      Ret = ReduceMiscompilingFunctions(BD, TestFn)
                .reduceList(MiscompiledFunctions);
      if (Error E = Ret.takeError())
        return std::move(E);

      outs() << "\n*** The following function"
             << (MiscompiledFunctions.size() == 1 ? " is" : "s are")
             << " being miscompiled: ";
      PrintFunctionList(MiscompiledFunctions);
      outs() << '\n';
    }
  }

  return MiscompiledFunctions;
}

/// This is the predicate function used to check to see if the "Test" portion of
/// the program is misoptimized.  If so, return true.  In any case, both module
/// arguments are deleted.
///
static Expected<bool> TestOptimizer(BugDriver &BD, std::unique_ptr<Module> Test,
                                    std::unique_ptr<Module> Safe) {
  // Run the optimization passes on ToOptimize, producing a transformed version
  // of the functions being tested.
  outs() << "  Optimizing functions being tested: ";
  std::unique_ptr<Module> Optimized =
      BD.runPassesOn(Test.get(), BD.getPassesToRun());
  if (!Optimized) {
    errs() << " Error running this sequence of passes"
           << " on the input program!\n";
    BD.EmitProgressBitcode(*Test, "pass-error", false);
    BD.setNewProgram(std::move(Test));
    if (Error E = BD.debugOptimizerCrash())
      return std::move(E);
    return false;
  }
  outs() << "done.\n";

  outs() << "  Checking to see if the merged program executes correctly: ";
  bool Broken;
  auto Result = testMergedProgram(BD, *Optimized, *Safe, Broken);
  if (Error E = Result.takeError())
    return std::move(E);
  if (auto New = std::move(*Result)) {
    outs() << (Broken ? " nope.\n" : " yup.\n");
    // Delete the original and set the new program.
    BD.setNewProgram(std::move(New));
  }
  return Broken;
}

/// debugMiscompilation - This method is used when the passes selected are not
/// crashing, but the generated output is semantically different from the
/// input.
///
Error BugDriver::debugMiscompilation() {
  // Make sure something was miscompiled...
  if (!BugpointIsInterrupted) {
    Expected<bool> Result =
        ReduceMiscompilingPasses(*this).reduceList(PassesToRun);
    if (Error E = Result.takeError())
      return E;
    if (!*Result)
      return make_error<StringError>(
          "*** Optimized program matches reference output!  No problem"
          " detected...\nbugpoint can't help you with your problem!\n",
          inconvertibleErrorCode());
  }

  outs() << "\n*** Found miscompiling pass"
         << (getPassesToRun().size() == 1 ? "" : "es") << ": "
         << getPassesString(getPassesToRun()) << '\n';
  EmitProgressBitcode(*Program, "passinput");

  Expected<std::vector<Function *>> MiscompiledFunctions =
      DebugAMiscompilation(*this, TestOptimizer);
  if (Error E = MiscompiledFunctions.takeError())
    return E;

  // Output a bunch of bitcode files for the user...
  outs() << "Outputting reduced bitcode files which expose the problem:\n";
  ValueToValueMapTy VMap;
  Module *ToNotOptimize = CloneModule(getProgram(), VMap).release();
  Module *ToOptimize =
      SplitFunctionsOutOfModule(ToNotOptimize, *MiscompiledFunctions, VMap)
          .release();

  outs() << "  Non-optimized portion: ";
  EmitProgressBitcode(*ToNotOptimize, "tonotoptimize", true);
  delete ToNotOptimize; // Delete hacked module.

  outs() << "  Portion that is input to optimizer: ";
  EmitProgressBitcode(*ToOptimize, "tooptimize");
  delete ToOptimize; // Delete hacked module.

  return Error::success();
}

/// Get the specified modules ready for code generator testing.
///
static std::unique_ptr<Module>
CleanupAndPrepareModules(BugDriver &BD, std::unique_ptr<Module> Test,
                         Module *Safe) {
  // Clean up the modules, removing extra cruft that we don't need anymore...
  Test = BD.performFinalCleanups(std::move(Test));

  // If we are executing the JIT, we have several nasty issues to take care of.
  if (!BD.isExecutingJIT())
    return Test;

  // First, if the main function is in the Safe module, we must add a stub to
  // the Test module to call into it.  Thus, we create a new function `main'
  // which just calls the old one.
  if (Function *oldMain = Safe->getFunction("main"))
    if (!oldMain->isDeclaration()) {
      // Rename it
      oldMain->setName("llvm_bugpoint_old_main");
      // Create a NEW `main' function with same type in the test module.
      Function *newMain =
          Function::Create(oldMain->getFunctionType(),
                           GlobalValue::ExternalLinkage, "main", Test.get());
      // Create an `oldmain' prototype in the test module, which will
      // corresponds to the real main function in the same module.
      Function *oldMainProto = Function::Create(oldMain->getFunctionType(),
                                                GlobalValue::ExternalLinkage,
                                                oldMain->getName(), Test.get());
      // Set up and remember the argument list for the main function.
      std::vector<Value *> args;
      for (Function::arg_iterator I = newMain->arg_begin(),
                                  E = newMain->arg_end(),
                                  OI = oldMain->arg_begin();
           I != E; ++I, ++OI) {
        I->setName(OI->getName()); // Copy argument names from oldMain
        args.push_back(&*I);
      }

      // Call the old main function and return its result
      BasicBlock *BB = BasicBlock::Create(Safe->getContext(), "entry", newMain);
      CallInst *call = CallInst::Create(oldMainProto, args, "", BB);

      // If the type of old function wasn't void, return value of call
      ReturnInst::Create(Safe->getContext(), call, BB);
    }

  // The second nasty issue we must deal with in the JIT is that the Safe
  // module cannot directly reference any functions defined in the test
  // module.  Instead, we use a JIT API call to dynamically resolve the
  // symbol.

  // Add the resolver to the Safe module.
  // Prototype: void *getPointerToNamedFunction(const char* Name)
  FunctionCallee resolverFunc = Safe->getOrInsertFunction(
      "getPointerToNamedFunction", Type::getInt8PtrTy(Safe->getContext()),
      Type::getInt8PtrTy(Safe->getContext()));

  // Use the function we just added to get addresses of functions we need.
  for (Module::iterator F = Safe->begin(), E = Safe->end(); F != E; ++F) {
    if (F->isDeclaration() && !F->use_empty() &&
        &*F != resolverFunc.getCallee() &&
        !F->isIntrinsic() /* ignore intrinsics */) {
      Function *TestFn = Test->getFunction(F->getName());

      // Don't forward functions which are external in the test module too.
      if (TestFn && !TestFn->isDeclaration()) {
        // 1. Add a string constant with its name to the global file
        Constant *InitArray =
            ConstantDataArray::getString(F->getContext(), F->getName());
        GlobalVariable *funcName = new GlobalVariable(
            *Safe, InitArray->getType(), true /*isConstant*/,
            GlobalValue::InternalLinkage, InitArray, F->getName() + "_name");

        // 2. Use `GetElementPtr *funcName, 0, 0' to convert the string to an
        // sbyte* so it matches the signature of the resolver function.

        // GetElementPtr *funcName, ulong 0, ulong 0
        std::vector<Constant *> GEPargs(
            2, Constant::getNullValue(Type::getInt32Ty(F->getContext())));
        Value *GEP = ConstantExpr::getGetElementPtr(InitArray->getType(),
                                                    funcName, GEPargs);
        std::vector<Value *> ResolverArgs;
        ResolverArgs.push_back(GEP);

        // Rewrite uses of F in global initializers, etc. to uses of a wrapper
        // function that dynamically resolves the calls to F via our JIT API
        if (!F->use_empty()) {
          // Create a new global to hold the cached function pointer.
          Constant *NullPtr = ConstantPointerNull::get(F->getType());
          GlobalVariable *Cache = new GlobalVariable(
              *F->getParent(), F->getType(), false,
              GlobalValue::InternalLinkage, NullPtr, F->getName() + ".fpcache");

          // Construct a new stub function that will re-route calls to F
          FunctionType *FuncTy = F->getFunctionType();
          Function *FuncWrapper =
              Function::Create(FuncTy, GlobalValue::InternalLinkage,
                               F->getName() + "_wrapper", F->getParent());
          BasicBlock *EntryBB =
              BasicBlock::Create(F->getContext(), "entry", FuncWrapper);
          BasicBlock *DoCallBB =
              BasicBlock::Create(F->getContext(), "usecache", FuncWrapper);
          BasicBlock *LookupBB =
              BasicBlock::Create(F->getContext(), "lookupfp", FuncWrapper);

          // Check to see if we already looked up the value.
          Value *CachedVal =
              new LoadInst(F->getType(), Cache, "fpcache", EntryBB);
          Value *IsNull = new ICmpInst(*EntryBB, ICmpInst::ICMP_EQ, CachedVal,
                                       NullPtr, "isNull");
          BranchInst::Create(LookupBB, DoCallBB, IsNull, EntryBB);

          // Resolve the call to function F via the JIT API:
          //
          // call resolver(GetElementPtr...)
          CallInst *Resolver = CallInst::Create(resolverFunc, ResolverArgs,
                                                "resolver", LookupBB);

          // Cast the result from the resolver to correctly-typed function.
          CastInst *CastedResolver = new BitCastInst(
              Resolver, PointerType::getUnqual(F->getFunctionType()),
              "resolverCast", LookupBB);

          // Save the value in our cache.
          new StoreInst(CastedResolver, Cache, LookupBB);
          BranchInst::Create(DoCallBB, LookupBB);

          PHINode *FuncPtr =
              PHINode::Create(NullPtr->getType(), 2, "fp", DoCallBB);
          FuncPtr->addIncoming(CastedResolver, LookupBB);
          FuncPtr->addIncoming(CachedVal, EntryBB);

          // Save the argument list.
          std::vector<Value *> Args;
          for (Argument &A : FuncWrapper->args())
            Args.push_back(&A);

          // Pass on the arguments to the real function, return its result
          if (F->getReturnType()->isVoidTy()) {
            CallInst::Create(FuncTy, FuncPtr, Args, "", DoCallBB);
            ReturnInst::Create(F->getContext(), DoCallBB);
          } else {
            CallInst *Call =
                CallInst::Create(FuncTy, FuncPtr, Args, "retval", DoCallBB);
            ReturnInst::Create(F->getContext(), Call, DoCallBB);
          }

          // Use the wrapper function instead of the old function
          F->replaceAllUsesWith(FuncWrapper);
        }
      }
    }
  }

  if (verifyModule(*Test) || verifyModule(*Safe)) {
    errs() << "Bugpoint has a bug, which corrupted a module!!\n";
    abort();
  }

  return Test;
}

/// This is the predicate function used to check to see if the "Test" portion of
/// the program is miscompiled by the code generator under test.  If so, return
/// true.  In any case, both module arguments are deleted.
///
static Expected<bool> TestCodeGenerator(BugDriver &BD,
                                        std::unique_ptr<Module> Test,
                                        std::unique_ptr<Module> Safe) {
  Test = CleanupAndPrepareModules(BD, std::move(Test), Safe.get());

  SmallString<128> TestModuleBC;
  int TestModuleFD;
  std::error_code EC = sys::fs::createTemporaryFile("bugpoint.test", "bc",
                                                    TestModuleFD, TestModuleBC);
  if (EC) {
    errs() << BD.getToolName()
           << "Error making unique filename: " << EC.message() << "\n";
    exit(1);
  }
  if (BD.writeProgramToFile(std::string(TestModuleBC.str()), TestModuleFD,
                            *Test)) {
    errs() << "Error writing bitcode to `" << TestModuleBC.str()
           << "'\nExiting.";
    exit(1);
  }

  FileRemover TestModuleBCRemover(TestModuleBC.str(), !SaveTemps);

  // Make the shared library
  SmallString<128> SafeModuleBC;
  int SafeModuleFD;
  EC = sys::fs::createTemporaryFile("bugpoint.safe", "bc", SafeModuleFD,
                                    SafeModuleBC);
  if (EC) {
    errs() << BD.getToolName()
           << "Error making unique filename: " << EC.message() << "\n";
    exit(1);
  }

  if (BD.writeProgramToFile(std::string(SafeModuleBC.str()), SafeModuleFD,
                            *Safe)) {
    errs() << "Error writing bitcode to `" << SafeModuleBC << "'\nExiting.";
    exit(1);
  }

  FileRemover SafeModuleBCRemover(SafeModuleBC.str(), !SaveTemps);

  Expected<std::string> SharedObject =
      BD.compileSharedObject(std::string(SafeModuleBC.str()));
  if (Error E = SharedObject.takeError())
    return std::move(E);

  FileRemover SharedObjectRemover(*SharedObject, !SaveTemps);

  // Run the code generator on the `Test' code, loading the shared library.
  // The function returns whether or not the new output differs from reference.
  Expected<bool> Result = BD.diffProgram(
      BD.getProgram(), std::string(TestModuleBC.str()), *SharedObject, false);
  if (Error E = Result.takeError())
    return std::move(E);

  if (*Result)
    errs() << ": still failing!\n";
  else
    errs() << ": didn't fail.\n";

  return Result;
}

/// debugCodeGenerator - debug errors in LLC, LLI, or CBE.
///
Error BugDriver::debugCodeGenerator() {
  if ((void *)SafeInterpreter == (void *)Interpreter) {
    Expected<std::string> Result =
        executeProgramSafely(*Program, "bugpoint.safe.out");
    if (Result) {
      outs() << "\n*** The \"safe\" i.e. 'known good' backend cannot match "
             << "the reference diff.  This may be due to a\n    front-end "
             << "bug or a bug in the original program, but this can also "
             << "happen if bugpoint isn't running the program with the "
             << "right flags or input.\n    I left the result of executing "
             << "the program with the \"safe\" backend in this file for "
             << "you: '" << *Result << "'.\n";
    }
    return Error::success();
  }

  DisambiguateGlobalSymbols(*Program);

  Expected<std::vector<Function *>> Funcs =
      DebugAMiscompilation(*this, TestCodeGenerator);
  if (Error E = Funcs.takeError())
    return E;

  // Split the module into the two halves of the program we want.
  ValueToValueMapTy VMap;
  std::unique_ptr<Module> ToNotCodeGen = CloneModule(getProgram(), VMap);
  std::unique_ptr<Module> ToCodeGen =
      SplitFunctionsOutOfModule(ToNotCodeGen.get(), *Funcs, VMap);

  // Condition the modules
  ToCodeGen =
      CleanupAndPrepareModules(*this, std::move(ToCodeGen), ToNotCodeGen.get());

  SmallString<128> TestModuleBC;
  int TestModuleFD;
  std::error_code EC = sys::fs::createTemporaryFile("bugpoint.test", "bc",
                                                    TestModuleFD, TestModuleBC);
  if (EC) {
    errs() << getToolName() << "Error making unique filename: " << EC.message()
           << "\n";
    exit(1);
  }

  if (writeProgramToFile(std::string(TestModuleBC.str()), TestModuleFD,
                         *ToCodeGen)) {
    errs() << "Error writing bitcode to `" << TestModuleBC << "'\nExiting.";
    exit(1);
  }

  // Make the shared library
  SmallString<128> SafeModuleBC;
  int SafeModuleFD;
  EC = sys::fs::createTemporaryFile("bugpoint.safe", "bc", SafeModuleFD,
                                    SafeModuleBC);
  if (EC) {
    errs() << getToolName() << "Error making unique filename: " << EC.message()
           << "\n";
    exit(1);
  }

  if (writeProgramToFile(std::string(SafeModuleBC.str()), SafeModuleFD,
                         *ToNotCodeGen)) {
    errs() << "Error writing bitcode to `" << SafeModuleBC << "'\nExiting.";
    exit(1);
  }
  Expected<std::string> SharedObject =
      compileSharedObject(std::string(SafeModuleBC.str()));
  if (Error E = SharedObject.takeError())
    return E;

  outs() << "You can reproduce the problem with the command line: \n";
  if (isExecutingJIT()) {
    outs() << "  lli -load " << *SharedObject << " " << TestModuleBC;
  } else {
    outs() << "  llc " << TestModuleBC << " -o " << TestModuleBC << ".s\n";
    outs() << "  cc " << *SharedObject << " " << TestModuleBC.str() << ".s -o "
           << TestModuleBC << ".exe\n";
    outs() << "  ./" << TestModuleBC << ".exe";
  }
  for (unsigned i = 0, e = InputArgv.size(); i != e; ++i)
    outs() << " " << InputArgv[i];
  outs() << '\n';
  outs() << "The shared object was created with:\n  llc -march=c "
         << SafeModuleBC.str() << " -o temporary.c\n"
         << "  cc -xc temporary.c -O2 -o " << *SharedObject;
  if (TargetTriple.getArch() == Triple::sparc)
    outs() << " -G"; // Compile a shared library, `-G' for Sparc
  else
    outs() << " -fPIC -shared"; // `-shared' for Linux/X86, maybe others

  outs() << " -fno-strict-aliasing\n";

  return Error::success();
}