Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
/*-
 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
 *
 * Copyright (C) 2018 Marvell International Ltd.
 *
 * Author: Jayachandran C Nair <jchandra@freebsd.org>
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include "opt_acpi.h"

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/malloc.h>

#include <machine/intr.h>

#include <contrib/dev/acpica/include/acpi.h>
#include <contrib/dev/acpica/include/accommon.h>
#include <contrib/dev/acpica/include/actables.h>

#include <dev/acpica/acpivar.h>

/*
 * Track next XREF available for ITS groups.
 */
static u_int acpi_its_xref = ACPI_MSI_XREF;

/*
 * Some types of IORT nodes have a set of mappings.  Each of them map
 * a range of device IDs [base..end] from the current node to another
 * node. The corresponding device IDs on destination node starts at
 * outbase.
 */
struct iort_map_entry {
	u_int			base;
	u_int			end;
	u_int			outbase;
	u_int			flags;
	u_int			out_node_offset;
	struct iort_node	*out_node;
};

/*
 * The ITS group node does not have any outgoing mappings. It has a
 * of a list of GIC ITS blocks which can handle the device ID. We
 * will store the PIC XREF used by the block and the blocks proximity
 * data here, so that it can be retrieved together.
 */
struct iort_its_entry {
	u_int			its_id;
	u_int			xref;
	int			pxm;
};

/*
 * IORT node. Each node has some device specific data depending on the
 * type of the node. The node can also have a set of mappings, OR in
 * case of ITS group nodes a set of ITS entries.
 * The nodes are kept in a TAILQ by type.
 */
struct iort_node {
	TAILQ_ENTRY(iort_node)	next;		/* next entry with same type */
	enum AcpiIortNodeType	type;		/* ACPI type */
	u_int			node_offset;	/* offset in IORT - node ID */
	u_int			nentries;	/* items in array below */
	u_int			usecount;	/* for bookkeeping */
	u_int			revision;	/* node revision */
	union {
		ACPI_IORT_ROOT_COMPLEX	pci_rc;		/* PCI root complex */
		ACPI_IORT_SMMU		smmu;
		ACPI_IORT_SMMU_V3	smmu_v3;
	} data;
	union {
		struct iort_map_entry	*mappings;	/* node mappings  */
		struct iort_its_entry	*its;		/* ITS IDs array */
	} entries;
};

/* Lists for each of the types. */
static TAILQ_HEAD(, iort_node) pci_nodes = TAILQ_HEAD_INITIALIZER(pci_nodes);
static TAILQ_HEAD(, iort_node) smmu_nodes = TAILQ_HEAD_INITIALIZER(smmu_nodes);
static TAILQ_HEAD(, iort_node) its_groups = TAILQ_HEAD_INITIALIZER(its_groups);

static int
iort_entry_get_id_mapping_index(struct iort_node *node)
{

	switch(node->type) {
	case ACPI_IORT_NODE_SMMU_V3:
		/* The ID mapping field was added in version 1 */
		if (node->revision < 1)
			return (-1);

		/*
		 * If all the control interrupts are GISCV based the ID
		 * mapping field is ignored.
		 */
		if (node->data.smmu_v3.EventGsiv != 0 &&
		    node->data.smmu_v3.PriGsiv != 0 &&
		    node->data.smmu_v3.GerrGsiv != 0 &&
		    node->data.smmu_v3.SyncGsiv != 0)
			return (-1);

		if (node->data.smmu_v3.IdMappingIndex >= node->nentries)
			return (-1);

		return (node->data.smmu_v3.IdMappingIndex);
	case ACPI_IORT_NODE_PMCG:
		return (0);
	default:
		break;
	}

	return (-1);
}

/*
 * Lookup an ID in the mappings array. If successful, map the input ID
 * to the output ID and return the output node found.
 */
static struct iort_node *
iort_entry_lookup(struct iort_node *node, u_int id, u_int *outid)
{
	struct iort_map_entry *entry;
	int i, id_map;

	id_map = iort_entry_get_id_mapping_index(node);
	entry = node->entries.mappings;
	for (i = 0; i < node->nentries; i++, entry++) {
		if (i == id_map)
			continue;
		if (entry->base <= id && id <= entry->end)
			break;
	}
	if (i == node->nentries)
		return (NULL);
	if ((entry->flags & ACPI_IORT_ID_SINGLE_MAPPING) == 0)
		*outid = entry->outbase + (id - entry->base);
	else
		*outid = entry->outbase;
	return (entry->out_node);
}

/*
 * Map a PCI RID to a SMMU node or an ITS node, based on outtype.
 */
static struct iort_node *
iort_pci_rc_map(u_int seg, u_int rid, u_int outtype, u_int *outid)
{
	struct iort_node *node, *out_node;
	u_int nxtid;

	out_node = NULL;
	TAILQ_FOREACH(node, &pci_nodes, next) {
		if (node->data.pci_rc.PciSegmentNumber != seg)
			continue;
		out_node = iort_entry_lookup(node, rid, &nxtid);
		if (out_node != NULL)
			break;
	}

	/* Could not find a PCI RC node with segment and device ID. */
	if (out_node == NULL)
		return (NULL);

	/* Node can be SMMU or ITS. If SMMU, we need another lookup. */
	if (outtype == ACPI_IORT_NODE_ITS_GROUP &&
	    (out_node->type == ACPI_IORT_NODE_SMMU_V3 ||
	    out_node->type == ACPI_IORT_NODE_SMMU)) {
		out_node = iort_entry_lookup(out_node, nxtid, &nxtid);
		if (out_node == NULL)
			return (NULL);
	}

	KASSERT(out_node->type == outtype, ("mapping fail"));
	*outid = nxtid;
	return (out_node);
}

#ifdef notyet
/*
 * Not implemented, map a PCIe device to the SMMU it is associated with.
 */
int
acpi_iort_map_smmu(u_int seg, u_int devid, void **smmu, u_int *sid)
{
	/* XXX: convert oref to SMMU device */
	return (ENXIO);
}
#endif

/*
 * Allocate memory for a node, initialize and copy mappings. 'start'
 * argument provides the table start used to calculate the node offset.
 */
static void
iort_copy_data(struct iort_node *node, ACPI_IORT_NODE *node_entry)
{
	ACPI_IORT_ID_MAPPING *map_entry;
	struct iort_map_entry *mapping;
	int i;

	map_entry = ACPI_ADD_PTR(ACPI_IORT_ID_MAPPING, node_entry,
	    node_entry->MappingOffset);
	node->nentries = node_entry->MappingCount;
	node->usecount = 0;
	mapping = malloc(sizeof(*mapping) * node->nentries, M_DEVBUF,
	    M_WAITOK | M_ZERO);
	node->entries.mappings = mapping;
	for (i = 0; i < node->nentries; i++, mapping++, map_entry++) {
		mapping->base = map_entry->InputBase;
		/*
		 * IdCount means "The number of IDs in the range minus one" (ARM DEN 0049D).
		 * We use <= for comparison against this field, so don't add one here.
		 */
		mapping->end = map_entry->InputBase + map_entry->IdCount;
		mapping->outbase = map_entry->OutputBase;
		mapping->out_node_offset = map_entry->OutputReference;
		mapping->flags = map_entry->Flags;
		mapping->out_node = NULL;
	}
}

/*
 * Allocate and copy an ITS group.
 */
static void
iort_copy_its(struct iort_node *node, ACPI_IORT_NODE *node_entry)
{
	struct iort_its_entry *its;
	ACPI_IORT_ITS_GROUP *itsg_entry;
	UINT32 *id;
	int i;

	itsg_entry = (ACPI_IORT_ITS_GROUP *)node_entry->NodeData;
	node->nentries = itsg_entry->ItsCount;
	node->usecount = 0;
	its = malloc(sizeof(*its) * node->nentries, M_DEVBUF, M_WAITOK | M_ZERO);
	node->entries.its = its;
	id = &itsg_entry->Identifiers[0];
	for (i = 0; i < node->nentries; i++, its++, id++) {
		its->its_id = *id;
		its->pxm = -1;
		its->xref = 0;
	}
}

/*
 * Walk the IORT table and add nodes to corresponding list.
 */
static void
iort_add_nodes(ACPI_IORT_NODE *node_entry, u_int node_offset)
{
	ACPI_IORT_ROOT_COMPLEX *pci_rc;
	ACPI_IORT_SMMU *smmu;
	ACPI_IORT_SMMU_V3 *smmu_v3;
	struct iort_node *node;

	node = malloc(sizeof(*node), M_DEVBUF, M_WAITOK | M_ZERO);
	node->type =  node_entry->Type;
	node->node_offset = node_offset;
	node->revision = node_entry->Revision;

	/* copy nodes depending on type */
	switch(node_entry->Type) {
	case ACPI_IORT_NODE_PCI_ROOT_COMPLEX:
		pci_rc = (ACPI_IORT_ROOT_COMPLEX *)node_entry->NodeData;
		memcpy(&node->data.pci_rc, pci_rc, sizeof(*pci_rc));
		iort_copy_data(node, node_entry);
		TAILQ_INSERT_TAIL(&pci_nodes, node, next);
		break;
	case ACPI_IORT_NODE_SMMU:
		smmu = (ACPI_IORT_SMMU *)node_entry->NodeData;
		memcpy(&node->data.smmu, smmu, sizeof(*smmu));
		iort_copy_data(node, node_entry);
		TAILQ_INSERT_TAIL(&smmu_nodes, node, next);
		break;
	case ACPI_IORT_NODE_SMMU_V3:
		smmu_v3 = (ACPI_IORT_SMMU_V3 *)node_entry->NodeData;
		memcpy(&node->data.smmu_v3, smmu_v3, sizeof(*smmu_v3));
		iort_copy_data(node, node_entry);
		TAILQ_INSERT_TAIL(&smmu_nodes, node, next);
		break;
	case ACPI_IORT_NODE_ITS_GROUP:
		iort_copy_its(node, node_entry);
		TAILQ_INSERT_TAIL(&its_groups, node, next);
		break;
	default:
		printf("ACPI: IORT: Dropping unhandled type %u\n",
		    node_entry->Type);
		free(node, M_DEVBUF);
		break;
	}
}

/*
 * For the mapping entry given, walk thru all the possible destination
 * nodes and resolve the output reference.
 */
static void
iort_resolve_node(struct iort_map_entry *entry, int check_smmu)
{
	struct iort_node *node, *np;

	node = NULL;
	if (check_smmu) {
		TAILQ_FOREACH(np, &smmu_nodes, next) {
			if (entry->out_node_offset == np->node_offset) {
				node = np;
				break;
			}
		}
	}
	if (node == NULL) {
		TAILQ_FOREACH(np, &its_groups, next) {
			if (entry->out_node_offset == np->node_offset) {
				node = np;
				break;
			}
		}
	}
	if (node != NULL) {
		node->usecount++;
		entry->out_node = node;
	} else {
		printf("ACPI: IORT: Firmware Bug: no mapping for node %u\n",
		    entry->out_node_offset);
	}
}

/*
 * Resolve all output node references to node pointers.
 */
static void
iort_post_process_mappings(void)
{
	struct iort_node *node;
	int i;

	TAILQ_FOREACH(node, &pci_nodes, next)
		for (i = 0; i < node->nentries; i++)
			iort_resolve_node(&node->entries.mappings[i], TRUE);
	TAILQ_FOREACH(node, &smmu_nodes, next)
		for (i = 0; i < node->nentries; i++)
			iort_resolve_node(&node->entries.mappings[i], FALSE);
	/* TODO: named nodes */
}

/*
 * Walk MADT table, assign PIC xrefs to all ITS entries.
 */
static void
madt_resolve_its_xref(ACPI_SUBTABLE_HEADER *entry, void *arg)
{
	ACPI_MADT_GENERIC_TRANSLATOR *gict;
	struct iort_node *its_node;
	struct iort_its_entry *its_entry;
	u_int xref;
	int i, matches;

        if (entry->Type != ACPI_MADT_TYPE_GENERIC_TRANSLATOR)
		return;

	gict = (ACPI_MADT_GENERIC_TRANSLATOR *)entry;
	matches = 0;
	xref = acpi_its_xref++;
	TAILQ_FOREACH(its_node, &its_groups, next) {
		its_entry = its_node->entries.its;
		for (i = 0; i < its_node->nentries; i++, its_entry++) {
			if (its_entry->its_id == gict->TranslationId) {
				its_entry->xref = xref;
				matches++;
			}
		}
	}
	if (matches == 0)
		printf("ACPI: IORT: Unused ITS block, ID %u\n",
		    gict->TranslationId);
}

/*
 * Walk SRAT, assign proximity to all ITS entries.
 */
static void
srat_resolve_its_pxm(ACPI_SUBTABLE_HEADER *entry, void *arg)
{
	ACPI_SRAT_GIC_ITS_AFFINITY *gicits;
	struct iort_node *its_node;
	struct iort_its_entry *its_entry;
	int *map_counts;
	int i, matches, dom;

	if (entry->Type != ACPI_SRAT_TYPE_GIC_ITS_AFFINITY)
		return;

	matches = 0;
	map_counts = arg;
	gicits = (ACPI_SRAT_GIC_ITS_AFFINITY *)entry;
	dom = acpi_map_pxm_to_vm_domainid(gicits->ProximityDomain);

	/*
	 * Catch firmware and config errors. map_counts keeps a
	 * count of ProximityDomain values mapping to a domain ID
	 */
#if MAXMEMDOM > 1
	if (dom == -1)
		printf("Firmware Error: Proximity Domain %d could not be"
		    " mapped for GIC ITS ID %d!\n",
		    gicits->ProximityDomain, gicits->ItsId);
#endif
	/* use dom + 1 as index to handle the case where dom == -1 */
	i = ++map_counts[dom + 1];
	if (i > 1) {
#ifdef NUMA
		if (dom != -1)
			printf("ERROR: Multiple Proximity Domains map to the"
			    " same NUMA domain %d!\n", dom);
#else
		printf("WARNING: multiple Proximity Domains in SRAT but NUMA"
		    " NOT enabled!\n");
#endif
	}
	TAILQ_FOREACH(its_node, &its_groups, next) {
		its_entry = its_node->entries.its;
		for (i = 0; i < its_node->nentries; i++, its_entry++) {
			if (its_entry->its_id == gicits->ItsId) {
				its_entry->pxm = dom;
				matches++;
			}
		}
	}
	if (matches == 0)
		printf("ACPI: IORT: ITS block %u in SRAT not found in IORT!\n",
		    gicits->ItsId);
}

/*
 * Cross check the ITS Id with MADT and (if available) SRAT.
 */
static int
iort_post_process_its(void)
{
	ACPI_TABLE_MADT *madt;
	ACPI_TABLE_SRAT *srat;
	vm_paddr_t madt_pa, srat_pa;
	int map_counts[MAXMEMDOM + 1] = { 0 };

	/* Check ITS block in MADT */
	madt_pa = acpi_find_table(ACPI_SIG_MADT);
	KASSERT(madt_pa != 0, ("no MADT!"));
	madt = acpi_map_table(madt_pa, ACPI_SIG_MADT);
	KASSERT(madt != NULL, ("can't map MADT!"));
	acpi_walk_subtables(madt + 1, (char *)madt + madt->Header.Length,
	    madt_resolve_its_xref, NULL);
	acpi_unmap_table(madt);

	/* Get proximtiy if available */
	srat_pa = acpi_find_table(ACPI_SIG_SRAT);
	if (srat_pa != 0) {
		srat = acpi_map_table(srat_pa, ACPI_SIG_SRAT);
		KASSERT(srat != NULL, ("can't map SRAT!"));
		acpi_walk_subtables(srat + 1, (char *)srat + srat->Header.Length,
		    srat_resolve_its_pxm, map_counts);
		acpi_unmap_table(srat);
	}
	return (0);
}

/*
 * Find, parse, and save IO Remapping Table ("IORT").
 */
static int
acpi_parse_iort(void *dummy __unused)
{
	ACPI_TABLE_IORT *iort;
	ACPI_IORT_NODE *node_entry;
	vm_paddr_t iort_pa;
	u_int node_offset;

	iort_pa = acpi_find_table(ACPI_SIG_IORT);
	if (iort_pa == 0)
		return (ENXIO);

	iort = acpi_map_table(iort_pa, ACPI_SIG_IORT);
	if (iort == NULL) {
		printf("ACPI: Unable to map the IORT table!\n");
		return (ENXIO);
	}
	for (node_offset = iort->NodeOffset;
	    node_offset < iort->Header.Length;
	    node_offset += node_entry->Length) {
		node_entry = ACPI_ADD_PTR(ACPI_IORT_NODE, iort, node_offset);
		iort_add_nodes(node_entry, node_offset);
	}
	acpi_unmap_table(iort);
	iort_post_process_mappings();
	iort_post_process_its();
	return (0);
}
SYSINIT(acpi_parse_iort, SI_SUB_DRIVERS, SI_ORDER_FIRST, acpi_parse_iort, NULL);

/*
 * Provide ITS ID to PIC xref mapping.
 */
int
acpi_iort_its_lookup(u_int its_id, u_int *xref, int *pxm)
{
	struct iort_node *its_node;
	struct iort_its_entry *its_entry;
	int i;

	TAILQ_FOREACH(its_node, &its_groups, next) {
		its_entry = its_node->entries.its;
		for  (i = 0; i < its_node->nentries; i++, its_entry++) {
			if (its_entry->its_id == its_id) {
				*xref = its_entry->xref;
				*pxm = its_entry->pxm;
				return (0);
			}
		}
	}
	return (ENOENT);
}

/*
 * Find mapping for a PCIe device given segment and device ID
 * returns the XREF for MSI interrupt setup and the device ID to
 * use for the interrupt setup
 */
int
acpi_iort_map_pci_msi(u_int seg, u_int rid, u_int *xref, u_int *devid)
{
	struct iort_node *node;

	node = iort_pci_rc_map(seg, rid, ACPI_IORT_NODE_ITS_GROUP, devid);
	if (node == NULL)
		return (ENOENT);

	/* This should be an ITS node */
	KASSERT(node->type == ACPI_IORT_NODE_ITS_GROUP, ("bad group"));

	/* return first node, we don't handle more than that now. */
	*xref = node->entries.its[0].xref;
	return (0);
}

int
acpi_iort_map_pci_smmuv3(u_int seg, u_int rid, u_int *xref, u_int *sid)
{
	ACPI_IORT_SMMU_V3 *smmu;
	struct iort_node *node;

	node = iort_pci_rc_map(seg, rid, ACPI_IORT_NODE_SMMU_V3, sid);
	if (node == NULL)
		return (ENOENT);

	/* This should be an SMMU node. */
	KASSERT(node->type == ACPI_IORT_NODE_SMMU_V3, ("bad node"));

	smmu = (ACPI_IORT_SMMU_V3 *)&node->data.smmu_v3;
	*xref = smmu->BaseAddress;

	return (0);
}