Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
/*-
 * Copyright 2005 Colin Percival
 * Copyright (c) 2015 Allan Jude <allanjude@FreeBSD.org>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/endian.h>
#include <sys/types.h>

#ifdef _KERNEL
#include <sys/systm.h>
#else
#include <string.h>
#endif

#include "sha512.h"
#include "sha512t.h"
#include "sha384.h"

#if BYTE_ORDER == BIG_ENDIAN

/* Copy a vector of big-endian uint64_t into a vector of bytes */
#define be64enc_vect(dst, src, len)	\
	memcpy((void *)dst, (const void *)src, (size_t)len)

/* Copy a vector of bytes into a vector of big-endian uint64_t */
#define be64dec_vect(dst, src, len)	\
	memcpy((void *)dst, (const void *)src, (size_t)len)

#else /* BYTE_ORDER != BIG_ENDIAN */

/*
 * Encode a length len/4 vector of (uint64_t) into a length len vector of
 * (unsigned char) in big-endian form.  Assumes len is a multiple of 8.
 */
static void
be64enc_vect(unsigned char *dst, const uint64_t *src, size_t len)
{
	size_t i;

	for (i = 0; i < len / 8; i++)
		be64enc(dst + i * 8, src[i]);
}

/*
 * Decode a big-endian length len vector of (unsigned char) into a length
 * len/4 vector of (uint64_t).  Assumes len is a multiple of 8.
 */
static void
be64dec_vect(uint64_t *dst, const unsigned char *src, size_t len)
{
	size_t i;

	for (i = 0; i < len / 8; i++)
		dst[i] = be64dec(src + i * 8);
}

#endif /* BYTE_ORDER != BIG_ENDIAN */

/* SHA512 round constants. */
static const uint64_t K[80] = {
	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
};

/* Elementary functions used by SHA512 */
#define Ch(x, y, z)	((x & (y ^ z)) ^ z)
#define Maj(x, y, z)	((x & (y | z)) | (y & z))
#define SHR(x, n)	(x >> n)
#define ROTR(x, n)	((x >> n) | (x << (64 - n)))
#define S0(x)		(ROTR(x, 28) ^ ROTR(x, 34) ^ ROTR(x, 39))
#define S1(x)		(ROTR(x, 14) ^ ROTR(x, 18) ^ ROTR(x, 41))
#define s0(x)		(ROTR(x, 1) ^ ROTR(x, 8) ^ SHR(x, 7))
#define s1(x)		(ROTR(x, 19) ^ ROTR(x, 61) ^ SHR(x, 6))

/* SHA512 round function */
#define RND(a, b, c, d, e, f, g, h, k)			\
	h += S1(e) + Ch(e, f, g) + k;			\
	d += h;						\
	h += S0(a) + Maj(a, b, c);

/* Adjusted round function for rotating state */
#define RNDr(S, W, i, ii)			\
	RND(S[(80 - i) % 8], S[(81 - i) % 8],	\
	    S[(82 - i) % 8], S[(83 - i) % 8],	\
	    S[(84 - i) % 8], S[(85 - i) % 8],	\
	    S[(86 - i) % 8], S[(87 - i) % 8],	\
	    W[i + ii] + K[i + ii])

/* Message schedule computation */
#define MSCH(W, ii, i)				\
	W[i + ii + 16] = s1(W[i + ii + 14]) + W[i + ii + 9] + s0(W[i + ii + 1]) + W[i + ii]

/*
 * SHA512 block compression function.  The 512-bit state is transformed via
 * the 512-bit input block to produce a new state.
 */
static void
SHA512_Transform(uint64_t * state, const unsigned char block[SHA512_BLOCK_LENGTH])
{
	uint64_t W[80];
	uint64_t S[8];
	int i;

	/* 1. Prepare the first part of the message schedule W. */
	be64dec_vect(W, block, SHA512_BLOCK_LENGTH);

	/* 2. Initialize working variables. */
	memcpy(S, state, SHA512_DIGEST_LENGTH);

	/* 3. Mix. */
	for (i = 0; i < 80; i += 16) {
		RNDr(S, W, 0, i);
		RNDr(S, W, 1, i);
		RNDr(S, W, 2, i);
		RNDr(S, W, 3, i);
		RNDr(S, W, 4, i);
		RNDr(S, W, 5, i);
		RNDr(S, W, 6, i);
		RNDr(S, W, 7, i);
		RNDr(S, W, 8, i);
		RNDr(S, W, 9, i);
		RNDr(S, W, 10, i);
		RNDr(S, W, 11, i);
		RNDr(S, W, 12, i);
		RNDr(S, W, 13, i);
		RNDr(S, W, 14, i);
		RNDr(S, W, 15, i);

		if (i == 64)
			break;
		MSCH(W, 0, i);
		MSCH(W, 1, i);
		MSCH(W, 2, i);
		MSCH(W, 3, i);
		MSCH(W, 4, i);
		MSCH(W, 5, i);
		MSCH(W, 6, i);
		MSCH(W, 7, i);
		MSCH(W, 8, i);
		MSCH(W, 9, i);
		MSCH(W, 10, i);
		MSCH(W, 11, i);
		MSCH(W, 12, i);
		MSCH(W, 13, i);
		MSCH(W, 14, i);
		MSCH(W, 15, i);
	}

	/* 4. Mix local working variables into global state */
	for (i = 0; i < 8; i++)
		state[i] += S[i];
}

static unsigned char PAD[SHA512_BLOCK_LENGTH] = {
	0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

/* Add padding and terminating bit-count. */
static void
SHA512_Pad(SHA512_CTX * ctx)
{
	size_t r;

	/* Figure out how many bytes we have buffered. */
	r = (ctx->count[1] >> 3) & 0x7f;

	/* Pad to 112 mod 128, transforming if we finish a block en route. */
	if (r < 112) {
		/* Pad to 112 mod 128. */
		memcpy(&ctx->buf[r], PAD, 112 - r);
	} else {
		/* Finish the current block and mix. */
		memcpy(&ctx->buf[r], PAD, 128 - r);
		SHA512_Transform(ctx->state, ctx->buf);

		/* The start of the final block is all zeroes. */
		memset(&ctx->buf[0], 0, 112);
	}

	/* Add the terminating bit-count. */
	be64enc_vect(&ctx->buf[112], ctx->count, 16);

	/* Mix in the final block. */
	SHA512_Transform(ctx->state, ctx->buf);
}

/* SHA-512 initialization.  Begins a SHA-512 operation. */
void
SHA512_Init(SHA512_CTX * ctx)
{

	/* Zero bits processed so far */
	ctx->count[0] = ctx->count[1] = 0;

	/* Magic initialization constants */
	ctx->state[0] = 0x6a09e667f3bcc908ULL;
	ctx->state[1] = 0xbb67ae8584caa73bULL;
	ctx->state[2] = 0x3c6ef372fe94f82bULL;
	ctx->state[3] = 0xa54ff53a5f1d36f1ULL;
	ctx->state[4] = 0x510e527fade682d1ULL;
	ctx->state[5] = 0x9b05688c2b3e6c1fULL;
	ctx->state[6] = 0x1f83d9abfb41bd6bULL;
	ctx->state[7] = 0x5be0cd19137e2179ULL;
}

/* Add bytes into the hash */
void
SHA512_Update(SHA512_CTX * ctx, const void *in, size_t len)
{
	uint64_t bitlen[2];
	uint64_t r;
	const unsigned char *src = in;

	/* Number of bytes left in the buffer from previous updates */
	r = (ctx->count[1] >> 3) & 0x7f;

	/* Convert the length into a number of bits */
	bitlen[1] = ((uint64_t)len) << 3;
	bitlen[0] = ((uint64_t)len) >> 61;

	/* Update number of bits */
	if ((ctx->count[1] += bitlen[1]) < bitlen[1])
		ctx->count[0]++;
	ctx->count[0] += bitlen[0];

	/* Handle the case where we don't need to perform any transforms */
	if (len < SHA512_BLOCK_LENGTH - r) {
		memcpy(&ctx->buf[r], src, len);
		return;
	}

	/* Finish the current block */
	memcpy(&ctx->buf[r], src, SHA512_BLOCK_LENGTH - r);
	SHA512_Transform(ctx->state, ctx->buf);
	src += SHA512_BLOCK_LENGTH - r;
	len -= SHA512_BLOCK_LENGTH - r;

	/* Perform complete blocks */
	while (len >= SHA512_BLOCK_LENGTH) {
		SHA512_Transform(ctx->state, src);
		src += SHA512_BLOCK_LENGTH;
		len -= SHA512_BLOCK_LENGTH;
	}

	/* Copy left over data into buffer */
	memcpy(ctx->buf, src, len);
}

/*
 * SHA-512 finalization.  Pads the input data, exports the hash value,
 * and clears the context state.
 */
void
SHA512_Final(unsigned char digest[static SHA512_DIGEST_LENGTH], SHA512_CTX *ctx)
{

	/* Add padding */
	SHA512_Pad(ctx);

	/* Write the hash */
	be64enc_vect(digest, ctx->state, SHA512_DIGEST_LENGTH);

	/* Clear the context state */
	explicit_bzero(ctx, sizeof(*ctx));
}

/*** SHA-512t: *********************************************************/
/*
 * the SHA512t transforms are identical to SHA512 so reuse the existing function
 */
void
SHA512_224_Init(SHA512_CTX * ctx)
{

	/* Zero bits processed so far */
	ctx->count[0] = ctx->count[1] = 0;

	/* Magic initialization constants */
	ctx->state[0] = 0x8c3d37c819544da2ULL;
	ctx->state[1] = 0x73e1996689dcd4d6ULL;
	ctx->state[2] = 0x1dfab7ae32ff9c82ULL;
	ctx->state[3] = 0x679dd514582f9fcfULL;
	ctx->state[4] = 0x0f6d2b697bd44da8ULL;
	ctx->state[5] = 0x77e36f7304c48942ULL;
	ctx->state[6] = 0x3f9d85a86a1d36c8ULL;
	ctx->state[7] = 0x1112e6ad91d692a1ULL;
}

void
SHA512_224_Update(SHA512_CTX * ctx, const void *in, size_t len)
{

	SHA512_Update(ctx, in, len);
}

void
SHA512_224_Final(unsigned char digest[static SHA512_224_DIGEST_LENGTH], SHA512_CTX * ctx)
{

	/* Add padding */
	SHA512_Pad(ctx);

	/* Write the hash */
	be64enc_vect(digest, ctx->state, SHA512_224_DIGEST_LENGTH);

	/* Clear the context state */
	explicit_bzero(ctx, sizeof(*ctx));
}

void
SHA512_256_Init(SHA512_CTX * ctx)
{

	/* Zero bits processed so far */
	ctx->count[0] = ctx->count[1] = 0;

	/* Magic initialization constants */
	ctx->state[0] = 0x22312194fc2bf72cULL;
	ctx->state[1] = 0x9f555fa3c84c64c2ULL;
	ctx->state[2] = 0x2393b86b6f53b151ULL;
	ctx->state[3] = 0x963877195940eabdULL;
	ctx->state[4] = 0x96283ee2a88effe3ULL;
	ctx->state[5] = 0xbe5e1e2553863992ULL;
	ctx->state[6] = 0x2b0199fc2c85b8aaULL;
	ctx->state[7] = 0x0eb72ddc81c52ca2ULL;
}

void
SHA512_256_Update(SHA512_CTX * ctx, const void *in, size_t len)
{

	SHA512_Update(ctx, in, len);
}

void
SHA512_256_Final(unsigned char digest[static SHA512_256_DIGEST_LENGTH], SHA512_CTX * ctx)
{

	/* Add padding */
	SHA512_Pad(ctx);

	/* Write the hash */
	be64enc_vect(digest, ctx->state, SHA512_256_DIGEST_LENGTH);

	/* Clear the context state */
	explicit_bzero(ctx, sizeof(*ctx));
}

/*** SHA-384: *********************************************************/
/*
 * the SHA384 and SHA512 transforms are identical, so SHA384 is skipped
 */

/* SHA-384 initialization.  Begins a SHA-384 operation. */
void
SHA384_Init(SHA384_CTX * ctx)
{

	/* Zero bits processed so far */
	ctx->count[0] = ctx->count[1] = 0;

	/* Magic initialization constants */
	ctx->state[0] = 0xcbbb9d5dc1059ed8ULL;
	ctx->state[1] = 0x629a292a367cd507ULL;
	ctx->state[2] = 0x9159015a3070dd17ULL;
	ctx->state[3] = 0x152fecd8f70e5939ULL;
	ctx->state[4] = 0x67332667ffc00b31ULL;
	ctx->state[5] = 0x8eb44a8768581511ULL;
	ctx->state[6] = 0xdb0c2e0d64f98fa7ULL;
	ctx->state[7] = 0x47b5481dbefa4fa4ULL;
}

/* Add bytes into the SHA-384 hash */
void
SHA384_Update(SHA384_CTX * ctx, const void *in, size_t len)
{

	SHA512_Update((SHA512_CTX *)ctx, in, len);
}

/*
 * SHA-384 finalization.  Pads the input data, exports the hash value,
 * and clears the context state.
 */
void
SHA384_Final(unsigned char digest[static SHA384_DIGEST_LENGTH], SHA384_CTX *ctx)
{

	/* Add padding */
	SHA512_Pad((SHA512_CTX *)ctx);

	/* Write the hash */
	be64enc_vect(digest, ctx->state, SHA384_DIGEST_LENGTH);

	/* Clear the context state */
	explicit_bzero(ctx, sizeof(*ctx));
}

#ifdef WEAK_REFS
/* When building libmd, provide weak references. Note: this is not
   activated in the context of compiling these sources for internal
   use in libcrypt.
 */
#undef SHA512_Init
__weak_reference(_libmd_SHA512_Init, SHA512_Init);
#undef SHA512_Update
__weak_reference(_libmd_SHA512_Update, SHA512_Update);
#undef SHA512_Final
__weak_reference(_libmd_SHA512_Final, SHA512_Final);
#undef SHA512_Transform
__weak_reference(_libmd_SHA512_Transform, SHA512_Transform);

#undef SHA512_224_Init
__weak_reference(_libmd_SHA512_224_Init, SHA512_224_Init);
#undef SHA512_224_Update
__weak_reference(_libmd_SHA512_224_Update, SHA512_224_Update);
#undef SHA512_224_Final
__weak_reference(_libmd_SHA512_224_Final, SHA512_224_Final);

#undef SHA512_256_Init
__weak_reference(_libmd_SHA512_256_Init, SHA512_256_Init);
#undef SHA512_256_Update
__weak_reference(_libmd_SHA512_256_Update, SHA512_256_Update);
#undef SHA512_256_Final
__weak_reference(_libmd_SHA512_256_Final, SHA512_256_Final);

#undef SHA384_Init
__weak_reference(_libmd_SHA384_Init, SHA384_Init);
#undef SHA384_Update
__weak_reference(_libmd_SHA384_Update, SHA384_Update);
#undef SHA384_Final
__weak_reference(_libmd_SHA384_Final, SHA384_Final);
#endif