Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
/*
 * Copyright (c) 2017-2018 Cavium, Inc. 
 * All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *  1. Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *  2. Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * File : ecore_init_ops.c
 */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

/* include the precompiled configuration values - only once */
#include "bcm_osal.h"
#include "ecore_hsi_common.h"
#include "ecore.h"
#include "ecore_hw.h"
#include "ecore_status.h"
#include "ecore_rt_defs.h"
#include "ecore_init_fw_funcs.h"

#ifndef CONFIG_ECORE_BINARY_FW
#ifdef CONFIG_ECORE_ZIPPED_FW
#include "ecore_init_values_zipped.h"
#else
#include "ecore_init_values.h"
#endif
#endif

#include "ecore_iro_values.h"
#include "ecore_sriov.h"
#include "ecore_gtt_values.h"
#include "reg_addr.h"
#include "ecore_init_ops.h"

#define ECORE_INIT_MAX_POLL_COUNT	100
#define ECORE_INIT_POLL_PERIOD_US	500

void ecore_init_iro_array(struct ecore_dev *p_dev)
{
	p_dev->iro_arr = iro_arr;
}

/* Runtime configuration helpers */
void ecore_init_clear_rt_data(struct ecore_hwfn *p_hwfn)
{
	int i;

	for (i = 0; i < RUNTIME_ARRAY_SIZE; i++)
		p_hwfn->rt_data.b_valid[i] = false;
}

void ecore_init_store_rt_reg(struct ecore_hwfn *p_hwfn,
			     u32 rt_offset, u32 val)
{
	if (rt_offset >= RUNTIME_ARRAY_SIZE) {
		DP_ERR(p_hwfn,
		       "Avoid storing %u in rt_data at index %u since RUNTIME_ARRAY_SIZE is %u!\n",
		       val, rt_offset, RUNTIME_ARRAY_SIZE);
		return;
	}

	p_hwfn->rt_data.init_val[rt_offset] = val;
	p_hwfn->rt_data.b_valid[rt_offset] = true;
}

void ecore_init_store_rt_agg(struct ecore_hwfn *p_hwfn,
			     u32 rt_offset, u32 *p_val,
			     osal_size_t size)
{
	osal_size_t i;

	if ((rt_offset + size - 1) >= RUNTIME_ARRAY_SIZE) {
		DP_ERR(p_hwfn,
		       "Avoid storing values in rt_data at indices %u-%u since RUNTIME_ARRAY_SIZE is %u!\n",
		       rt_offset, (u32)(rt_offset + size - 1),
		       RUNTIME_ARRAY_SIZE);
		return;
	}

	for (i = 0; i < size / sizeof(u32); i++) {
		p_hwfn->rt_data.init_val[rt_offset + i] = p_val[i];
		p_hwfn->rt_data.b_valid[rt_offset + i] = true;
	}
}

static enum _ecore_status_t ecore_init_rt(struct ecore_hwfn *p_hwfn,
					  struct ecore_ptt *p_ptt,
					  u32 addr,
					  u16 rt_offset,
					  u16 size,
					  bool b_must_dmae)
{
	u32 *p_init_val = &p_hwfn->rt_data.init_val[rt_offset];
	bool *p_valid = &p_hwfn->rt_data.b_valid[rt_offset];
	u16 i, segment;
	enum _ecore_status_t rc = ECORE_SUCCESS;

	/* Since not all RT entries are initialized, go over the RT and
	 * for each segment of initialized values use DMA.
	 */
	for (i = 0; i < size; i++) {
		if (!p_valid[i])
			continue;

		/* In case there isn't any wide-bus configuration here,
		 * simply write the data instead of using dmae.
		 */
		if (!b_must_dmae) {
			ecore_wr(p_hwfn, p_ptt, addr + (i << 2),
				 p_init_val[i]);
			continue;
		}

		/* Start of a new segment */
		for (segment = 1; i + segment < size; segment++)
			if (!p_valid[i + segment])
				break;

		rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
					 (osal_uintptr_t)(p_init_val + i),
					 addr + (i << 2), segment,
					 OSAL_NULL /* default parameters */);
		if (rc != ECORE_SUCCESS)
			return rc;

		/* Jump over the entire segment, including invalid entry */
		i += segment;
	}

	return rc;
}

enum _ecore_status_t ecore_init_alloc(struct ecore_hwfn *p_hwfn)
{
	struct ecore_rt_data *rt_data = &p_hwfn->rt_data;

	if (IS_VF(p_hwfn->p_dev))
		return ECORE_SUCCESS;

	rt_data->b_valid = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
				       sizeof(bool) * RUNTIME_ARRAY_SIZE);
	if (!rt_data->b_valid)
		return ECORE_NOMEM;

	rt_data->init_val = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
					sizeof(u32) * RUNTIME_ARRAY_SIZE);
	if (!rt_data->init_val) {
		OSAL_FREE(p_hwfn->p_dev, rt_data->b_valid);
		rt_data->b_valid = OSAL_NULL;
		return ECORE_NOMEM;
	}

	return ECORE_SUCCESS;
}

void ecore_init_free(struct ecore_hwfn *p_hwfn)
{
	OSAL_FREE(p_hwfn->p_dev, p_hwfn->rt_data.init_val);
	p_hwfn->rt_data.init_val = OSAL_NULL;
	OSAL_FREE(p_hwfn->p_dev, p_hwfn->rt_data.b_valid);
	p_hwfn->rt_data.b_valid = OSAL_NULL;
}

static enum _ecore_status_t ecore_init_array_dmae(struct ecore_hwfn *p_hwfn,
				  struct ecore_ptt *p_ptt,
				  u32 addr, u32 dmae_data_offset,
				  u32 size, const u32 *p_buf,
				  bool b_must_dmae, bool b_can_dmae)
{
	enum _ecore_status_t rc	= ECORE_SUCCESS;

	/* Perform DMAE only for lengthy enough sections or for wide-bus */
#ifndef ASIC_ONLY
	if ((CHIP_REV_IS_SLOW(p_hwfn->p_dev) && (size < 16)) ||
	    !b_can_dmae || (!b_must_dmae && (size < 16))) {
#else
	if (!b_can_dmae || (!b_must_dmae && (size < 16))) {
#endif
		const u32 *data = p_buf + dmae_data_offset;
		u32 i;

		for (i = 0; i < size; i++)
			ecore_wr(p_hwfn, p_ptt, addr + (i << 2), data[i]);
	} else {
		rc = ecore_dmae_host2grc(p_hwfn, p_ptt,
					 (osal_uintptr_t)(p_buf +
							  dmae_data_offset),
					 addr, size,
					 OSAL_NULL /* default parameters */);
	}

	return rc;
}

static enum _ecore_status_t ecore_init_fill_dmae(struct ecore_hwfn *p_hwfn,
						 struct ecore_ptt *p_ptt,
						 u32 addr, u32 fill_count)
{
	static u32 zero_buffer[DMAE_MAX_RW_SIZE];
	struct ecore_dmae_params params;

	OSAL_MEMSET(zero_buffer, 0, sizeof(u32) * DMAE_MAX_RW_SIZE);

	OSAL_MEMSET(&params, 0, sizeof(params));
	params.flags = ECORE_DMAE_FLAG_RW_REPL_SRC;
	return ecore_dmae_host2grc(p_hwfn, p_ptt,
				   (osal_uintptr_t)(&(zero_buffer[0])),
				   addr, fill_count, &params);
}

static void ecore_init_fill(struct ecore_hwfn *p_hwfn,
			    struct ecore_ptt *p_ptt,
			    u32 addr, u32 fill, u32 fill_count)
{
	u32 i;

	for (i = 0; i < fill_count; i++, addr += sizeof(u32))
		ecore_wr(p_hwfn, p_ptt, addr, fill);
}

static enum _ecore_status_t ecore_init_cmd_array(struct ecore_hwfn *p_hwfn,
						 struct ecore_ptt *p_ptt,
						 struct init_write_op *cmd,
						 bool b_must_dmae,
						 bool b_can_dmae)
{
	u32 dmae_array_offset = OSAL_LE32_TO_CPU(cmd->args.array_offset);
	u32 data = OSAL_LE32_TO_CPU(cmd->data);
	u32 addr = GET_FIELD(data, INIT_WRITE_OP_ADDRESS) << 2;
#ifdef CONFIG_ECORE_ZIPPED_FW
	u32 offset, output_len, input_len, max_size;
#endif
	struct ecore_dev *p_dev = p_hwfn->p_dev;
	union init_array_hdr *hdr;
	const u32 *array_data;
	enum _ecore_status_t rc = ECORE_SUCCESS;
	u32 size;

	array_data = p_dev->fw_data->arr_data;

	hdr = (union init_array_hdr *) (array_data +
					dmae_array_offset);
	data = OSAL_LE32_TO_CPU(hdr->raw.data);
	switch (GET_FIELD(data, INIT_ARRAY_RAW_HDR_TYPE)) {
	case INIT_ARR_ZIPPED:
#ifdef CONFIG_ECORE_ZIPPED_FW
		offset = dmae_array_offset + 1;
		input_len = GET_FIELD(data,
				      INIT_ARRAY_ZIPPED_HDR_ZIPPED_SIZE);
		max_size = MAX_ZIPPED_SIZE * 4;
		OSAL_MEMSET(p_hwfn->unzip_buf, 0, max_size);

		output_len = OSAL_UNZIP_DATA(p_hwfn, input_len,
					     (u8 *)&array_data[offset],
					     max_size, (u8 *)p_hwfn->unzip_buf);
		if (output_len) {
			rc = ecore_init_array_dmae(p_hwfn, p_ptt, addr, 0,
						   output_len,
						   p_hwfn->unzip_buf,
						   b_must_dmae, b_can_dmae);
		} else {
			DP_NOTICE(p_hwfn, true,
				  "Failed to unzip dmae data\n");
			rc = ECORE_INVAL;
		}
#else
		DP_NOTICE(p_hwfn, true,
			  "Using zipped firmware without config enabled\n");
		rc = ECORE_INVAL;
#endif
		break;
	case INIT_ARR_PATTERN:
	{
		u32 repeats = GET_FIELD(data,
					INIT_ARRAY_PATTERN_HDR_REPETITIONS);
		u32 i;

		size = GET_FIELD(data,
				 INIT_ARRAY_PATTERN_HDR_PATTERN_SIZE);

		for (i = 0; i < repeats; i++, addr += size << 2) {
			rc = ecore_init_array_dmae(p_hwfn, p_ptt, addr,
						   dmae_array_offset + 1,
						   size, array_data,
						   b_must_dmae, b_can_dmae);
			if (rc)
				break;
		}
		break;
	}
	case INIT_ARR_STANDARD:
		size = GET_FIELD(data,
				 INIT_ARRAY_STANDARD_HDR_SIZE);
		rc = ecore_init_array_dmae(p_hwfn, p_ptt, addr,
					   dmae_array_offset + 1,
					   size, array_data,
					   b_must_dmae, b_can_dmae);
		break;
	}

	return rc;
}

/* init_ops write command */
static enum _ecore_status_t ecore_init_cmd_wr(struct ecore_hwfn *p_hwfn,
					      struct ecore_ptt *p_ptt,
					      struct init_write_op *p_cmd,
					      bool b_can_dmae)
{
	u32 data = OSAL_LE32_TO_CPU(p_cmd->data);
	bool b_must_dmae = GET_FIELD(data, INIT_WRITE_OP_WIDE_BUS);
	u32 addr = GET_FIELD(data, INIT_WRITE_OP_ADDRESS) << 2;
	enum _ecore_status_t rc	= ECORE_SUCCESS;

	/* Sanitize */
	if (b_must_dmae && !b_can_dmae) {
		DP_NOTICE(p_hwfn, true,
			  "Need to write to %08x for Wide-bus but DMAE isn't allowed\n",
			  addr);
		return ECORE_INVAL;
	}

	switch (GET_FIELD(data, INIT_WRITE_OP_SOURCE)) {
	case INIT_SRC_INLINE:
		data = OSAL_LE32_TO_CPU(p_cmd->args.inline_val);
		ecore_wr(p_hwfn, p_ptt, addr, data);
		break;
	case INIT_SRC_ZEROS:
		data = OSAL_LE32_TO_CPU(p_cmd->args.zeros_count);
		if (b_must_dmae || (b_can_dmae && (data >= 64)))
			rc = ecore_init_fill_dmae(p_hwfn, p_ptt, addr, data);
		else
			ecore_init_fill(p_hwfn, p_ptt, addr, 0, data);
		break;
	case INIT_SRC_ARRAY:
		rc = ecore_init_cmd_array(p_hwfn, p_ptt, p_cmd,
					  b_must_dmae, b_can_dmae);
		break;
	case INIT_SRC_RUNTIME:
		rc = ecore_init_rt(p_hwfn, p_ptt, addr,
				   OSAL_LE16_TO_CPU(p_cmd->args.runtime.offset),
				   OSAL_LE16_TO_CPU(p_cmd->args.runtime.size),
				   b_must_dmae);
		break;
	}

	return rc;
}

static OSAL_INLINE bool comp_eq(u32 val, u32 expected_val)
{
	return (val == expected_val);
}

static OSAL_INLINE bool comp_and(u32 val, u32 expected_val)
{
	return (val & expected_val) == expected_val;
}

static OSAL_INLINE bool comp_or(u32 val, u32 expected_val)
{
	return (val | expected_val) > 0;
}

/* init_ops read/poll commands */
static void ecore_init_cmd_rd(struct ecore_hwfn *p_hwfn,
			      struct ecore_ptt *p_ptt,
			      struct init_read_op *cmd)
{
	bool (*comp_check)(u32 val, u32 expected_val);
	u32 delay = ECORE_INIT_POLL_PERIOD_US, val;
	u32 data, addr, poll;
	int i;

	data = OSAL_LE32_TO_CPU(cmd->op_data);
	addr = GET_FIELD(data, INIT_READ_OP_ADDRESS) << 2;
	poll = GET_FIELD(data, INIT_READ_OP_POLL_TYPE);

#ifndef ASIC_ONLY
	if (CHIP_REV_IS_EMUL(p_hwfn->p_dev))
		delay *= 100;
#endif

	val = ecore_rd(p_hwfn, p_ptt, addr);

	if (poll == INIT_POLL_NONE)
		return;

	switch (poll) {
	case INIT_POLL_EQ:
		comp_check = comp_eq;
		break;
	case INIT_POLL_OR:
		comp_check = comp_or;
		break;
	case INIT_POLL_AND:
		comp_check = comp_and;
		break;
	default:
		DP_ERR(p_hwfn, "Invalid poll comparison type %08x\n",
		       cmd->op_data);
		return;
	}

	data = OSAL_LE32_TO_CPU(cmd->expected_val);
	for (i = 0;
	     i < ECORE_INIT_MAX_POLL_COUNT && !comp_check(val, data);
	     i++) {
		OSAL_UDELAY(delay);
		val = ecore_rd(p_hwfn, p_ptt, addr);
	}

	if (i == ECORE_INIT_MAX_POLL_COUNT)
		DP_ERR(p_hwfn, "Timeout when polling reg: 0x%08x [ Waiting-for: %08x Got: %08x (comparison %08x)]\n",
		       addr,
		       OSAL_LE32_TO_CPU(cmd->expected_val), val,
		       OSAL_LE32_TO_CPU(cmd->op_data));
}

/* init_ops callbacks entry point */
static enum _ecore_status_t ecore_init_cmd_cb(struct ecore_hwfn *p_hwfn,
					      struct ecore_ptt *p_ptt,
					      struct init_callback_op *p_cmd)
{
	enum _ecore_status_t rc;

	switch (p_cmd->callback_id) {
	case DMAE_READY_CB:
		rc = ecore_dmae_sanity(p_hwfn, p_ptt, "engine_phase");
		break;
	default:
		DP_NOTICE(p_hwfn, false, "Unexpected init op callback ID %d\n",
			  p_cmd->callback_id);
		return ECORE_INVAL;
	}

	return rc;
}

static u8 ecore_init_cmd_mode_match(struct ecore_hwfn *p_hwfn,
				    u16 *p_offset, int modes)
{
	struct ecore_dev *p_dev = p_hwfn->p_dev;
	const u8 *modes_tree_buf;
	u8 arg1, arg2, tree_val;

	modes_tree_buf = p_dev->fw_data->modes_tree_buf;
	tree_val = modes_tree_buf[(*p_offset)++];
	switch(tree_val) {
	case INIT_MODE_OP_NOT:
		return ecore_init_cmd_mode_match(p_hwfn, p_offset, modes) ^ 1;
	case INIT_MODE_OP_OR:
		arg1 = ecore_init_cmd_mode_match(p_hwfn, p_offset, modes);
		arg2 = ecore_init_cmd_mode_match(p_hwfn, p_offset, modes);
		return arg1 | arg2;
	case INIT_MODE_OP_AND:
		arg1 = ecore_init_cmd_mode_match(p_hwfn, p_offset, modes);
		arg2 = ecore_init_cmd_mode_match(p_hwfn, p_offset, modes);
		return arg1 & arg2;
	default:
		tree_val -= MAX_INIT_MODE_OPS;
		return (modes & (1 << tree_val)) ? 1 : 0;
	}
}

static u32 ecore_init_cmd_mode(struct ecore_hwfn *p_hwfn,
			       struct init_if_mode_op *p_cmd, int modes)
{
	u16 offset = OSAL_LE16_TO_CPU(p_cmd->modes_buf_offset);

	if (ecore_init_cmd_mode_match(p_hwfn, &offset, modes))
		return 0;
	else
		return GET_FIELD(OSAL_LE32_TO_CPU(p_cmd->op_data),
				 INIT_IF_MODE_OP_CMD_OFFSET);
}

static u32 ecore_init_cmd_phase(struct init_if_phase_op *p_cmd,
				u32 phase, u32 phase_id)
{
	u32 data = OSAL_LE32_TO_CPU(p_cmd->phase_data);
	u32 op_data = OSAL_LE32_TO_CPU(p_cmd->op_data);

	if (!(GET_FIELD(data, INIT_IF_PHASE_OP_PHASE) == phase &&
	      (GET_FIELD(data, INIT_IF_PHASE_OP_PHASE_ID) == ANY_PHASE_ID ||
	       GET_FIELD(data, INIT_IF_PHASE_OP_PHASE_ID) == phase_id)))
		return GET_FIELD(op_data, INIT_IF_PHASE_OP_CMD_OFFSET);
	else
		return 0;
}

enum _ecore_status_t ecore_init_run(struct ecore_hwfn *p_hwfn,
				    struct ecore_ptt *p_ptt,
				    int phase,
				    int phase_id,
				    int modes)
{
	struct ecore_dev *p_dev = p_hwfn->p_dev;
	u32 cmd_num, num_init_ops;
	union init_op *init_ops;
	bool b_dmae = false;
	enum _ecore_status_t rc = ECORE_SUCCESS;

	num_init_ops = p_dev->fw_data->init_ops_size;
	init_ops = p_dev->fw_data->init_ops;

#ifdef CONFIG_ECORE_ZIPPED_FW
	p_hwfn->unzip_buf = OSAL_ZALLOC(p_hwfn->p_dev, GFP_ATOMIC,
					MAX_ZIPPED_SIZE * 4);
	if (!p_hwfn->unzip_buf) {
		DP_NOTICE(p_hwfn, true, "Failed to allocate unzip buffer\n");
		return ECORE_NOMEM;
	}
#endif

	for (cmd_num = 0; cmd_num < num_init_ops; cmd_num++) {
		union init_op *cmd = &init_ops[cmd_num];
		u32 data = OSAL_LE32_TO_CPU(cmd->raw.op_data);

		switch (GET_FIELD(data, INIT_CALLBACK_OP_OP)) {
		case INIT_OP_WRITE:
			rc = ecore_init_cmd_wr(p_hwfn, p_ptt, &cmd->write,
					       b_dmae);
			break;

		case INIT_OP_READ:
			ecore_init_cmd_rd(p_hwfn, p_ptt, &cmd->read);
			break;

		case INIT_OP_IF_MODE:
			cmd_num += ecore_init_cmd_mode(p_hwfn, &cmd->if_mode,
						       modes);
			break;
		case INIT_OP_IF_PHASE:
			cmd_num += ecore_init_cmd_phase(&cmd->if_phase, phase,
							phase_id);
			b_dmae = GET_FIELD(data,
					   INIT_IF_PHASE_OP_DMAE_ENABLE);
			break;
		case INIT_OP_DELAY:
			/* ecore_init_run is always invoked from
			 * sleep-able context
			 */
			OSAL_UDELAY(cmd->delay.delay);
			break;

		case INIT_OP_CALLBACK:
			rc = ecore_init_cmd_cb(p_hwfn, p_ptt, &cmd->callback);
			break;
		}

		if (rc)
			break;
	}
#ifdef CONFIG_ECORE_ZIPPED_FW
	OSAL_FREE(p_hwfn->p_dev, p_hwfn->unzip_buf);
	p_hwfn->unzip_buf = OSAL_NULL;
#endif
	return rc;
}

void ecore_gtt_init(struct ecore_hwfn *p_hwfn,
		    struct ecore_ptt *p_ptt)
{
	u32 gtt_base;
	u32 i;

#ifndef ASIC_ONLY
	if (CHIP_REV_IS_SLOW(p_hwfn->p_dev)) {
		/* This is done by MFW on ASIC; regardless, this should only
		 * be done once per chip [i.e., common]. Implementation is
		 * not too bright, but it should work on the simple FPGA/EMUL
		 * scenarios.
		 */
		static bool initialized = false;
		int poll_cnt = 500;
		u32 val;

		/* initialize PTT/GTT (poll for completion) */
		if (!initialized) {
			ecore_wr(p_hwfn, p_ptt,
				 PGLUE_B_REG_START_INIT_PTT_GTT, 1);
			initialized = true;
		}

		do {
			/* ptt might be overrided by HW until this is done */
			OSAL_UDELAY(10);
			ecore_ptt_invalidate(p_hwfn);
			val = ecore_rd(p_hwfn, p_ptt,
				       PGLUE_B_REG_INIT_DONE_PTT_GTT);
		} while ((val != 1) && --poll_cnt);

		if (!poll_cnt)
			DP_ERR(p_hwfn, "PGLUE_B_REG_INIT_DONE didn't complete\n");
	}
#endif

	/* Set the global windows */
	gtt_base = PXP_PF_WINDOW_ADMIN_START + PXP_PF_WINDOW_ADMIN_GLOBAL_START;

	for (i = 0; i < OSAL_ARRAY_SIZE(pxp_global_win); i++)
		if (pxp_global_win[i])
			REG_WR(p_hwfn, gtt_base + i * PXP_GLOBAL_ENTRY_SIZE,
			       pxp_global_win[i]);
}

enum _ecore_status_t ecore_init_fw_data(struct ecore_dev *p_dev,
#ifdef CONFIG_ECORE_BINARY_FW
					const u8 *fw_data)
#else
					const u8 OSAL_UNUSED *fw_data)
#endif
{
	struct ecore_fw_data *fw = p_dev->fw_data;

#ifdef CONFIG_ECORE_BINARY_FW
	struct bin_buffer_hdr *buf_hdr;
	u32 offset, len;

	if (!fw_data) {
		DP_NOTICE(p_dev, true, "Invalid fw data\n");
		return ECORE_INVAL;
	}

	buf_hdr = (struct bin_buffer_hdr *)fw_data;

	offset = buf_hdr[BIN_BUF_INIT_FW_VER_INFO].offset;
	fw->fw_ver_info = (struct fw_ver_info *)(fw_data + offset);

	offset = buf_hdr[BIN_BUF_INIT_CMD].offset;
	fw->init_ops = (union init_op *)(fw_data + offset);

	offset = buf_hdr[BIN_BUF_INIT_VAL].offset;
	fw->arr_data = (u32 *)(fw_data + offset);

	offset = buf_hdr[BIN_BUF_INIT_MODE_TREE].offset;
	fw->modes_tree_buf = (u8 *)(fw_data + offset);
	len = buf_hdr[BIN_BUF_INIT_CMD].length;
	fw->init_ops_size = len / sizeof(struct init_raw_op);
#else
	fw->init_ops = (union init_op *)init_ops;
	fw->arr_data = (u32 *)init_val;
	fw->modes_tree_buf = (u8 *)modes_tree_buf;
	fw->init_ops_size = init_ops_size;
#endif

	return ECORE_SUCCESS;
}