Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
//===- ASTVector.h - Vector that uses ASTContext for allocation ---*- C++ -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file provides ASTVector, a vector  ADT whose contents are
//  allocated using the allocator associated with an ASTContext..
//
//===----------------------------------------------------------------------===//

// FIXME: Most of this is copy-and-paste from BumpVector.h and SmallVector.h.
// We can refactor this core logic into something common.

#ifndef LLVM_CLANG_AST_ASTVECTOR_H
#define LLVM_CLANG_AST_ASTVECTOR_H

#include "clang/AST/ASTContextAllocate.h"
#include "llvm/ADT/PointerIntPair.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstring>
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>

namespace clang {

class ASTContext;

template<typename T>
class ASTVector {
private:
  T *Begin = nullptr;
  T *End = nullptr;
  llvm::PointerIntPair<T *, 1, bool> Capacity;

  void setEnd(T *P) { this->End = P; }

protected:
  // Make a tag bit available to users of this class.
  // FIXME: This is a horrible hack.
  bool getTag() const { return Capacity.getInt(); }
  void setTag(bool B) { Capacity.setInt(B); }

public:
  // Default ctor - Initialize to empty.
  ASTVector() : Capacity(nullptr, false) {}

  ASTVector(ASTVector &&O) : Begin(O.Begin), End(O.End), Capacity(O.Capacity) {
    O.Begin = O.End = nullptr;
    O.Capacity.setPointer(nullptr);
    O.Capacity.setInt(false);
  }

  ASTVector(const ASTContext &C, unsigned N) : Capacity(nullptr, false) {
    reserve(C, N);
  }

  ASTVector &operator=(ASTVector &&RHS) {
    ASTVector O(std::move(RHS));

    using std::swap;

    swap(Begin, O.Begin);
    swap(End, O.End);
    swap(Capacity, O.Capacity);
    return *this;
  }

  ~ASTVector() {
    if (std::is_class<T>::value) {
      // Destroy the constructed elements in the vector.
      destroy_range(Begin, End);
    }
  }

  using size_type = size_t;
  using difference_type = ptrdiff_t;
  using value_type = T;
  using iterator = T *;
  using const_iterator = const T *;

  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
  using reverse_iterator = std::reverse_iterator<iterator>;

  using reference = T &;
  using const_reference = const T &;
  using pointer = T *;
  using const_pointer = const T *;

  // forward iterator creation methods.
  iterator begin() { return Begin; }
  const_iterator begin() const { return Begin; }
  iterator end() { return End; }
  const_iterator end() const { return End; }

  // reverse iterator creation methods.
  reverse_iterator rbegin()            { return reverse_iterator(end()); }
  const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
  reverse_iterator rend()              { return reverse_iterator(begin()); }
  const_reverse_iterator rend() const { return const_reverse_iterator(begin());}

  bool empty() const { return Begin == End; }
  size_type size() const { return End-Begin; }

  reference operator[](unsigned idx) {
    assert(Begin + idx < End);
    return Begin[idx];
  }
  const_reference operator[](unsigned idx) const {
    assert(Begin + idx < End);
    return Begin[idx];
  }

  reference front() {
    return begin()[0];
  }
  const_reference front() const {
    return begin()[0];
  }

  reference back() {
    return end()[-1];
  }
  const_reference back() const {
    return end()[-1];
  }

  void pop_back() {
    --End;
    End->~T();
  }

  T pop_back_val() {
    T Result = back();
    pop_back();
    return Result;
  }

  void clear() {
    if (std::is_class<T>::value) {
      destroy_range(Begin, End);
    }
    End = Begin;
  }

  /// data - Return a pointer to the vector's buffer, even if empty().
  pointer data() {
    return pointer(Begin);
  }

  /// data - Return a pointer to the vector's buffer, even if empty().
  const_pointer data() const {
    return const_pointer(Begin);
  }

  void push_back(const_reference Elt, const ASTContext &C) {
    if (End < this->capacity_ptr()) {
    Retry:
      new (End) T(Elt);
      ++End;
      return;
    }
    grow(C);
    goto Retry;
  }

  void reserve(const ASTContext &C, unsigned N) {
    if (unsigned(this->capacity_ptr()-Begin) < N)
      grow(C, N);
  }

  /// capacity - Return the total number of elements in the currently allocated
  /// buffer.
  size_t capacity() const { return this->capacity_ptr() - Begin; }

  /// append - Add the specified range to the end of the SmallVector.
  template<typename in_iter>
  void append(const ASTContext &C, in_iter in_start, in_iter in_end) {
    size_type NumInputs = std::distance(in_start, in_end);

    if (NumInputs == 0)
      return;

    // Grow allocated space if needed.
    if (NumInputs > size_type(this->capacity_ptr()-this->end()))
      this->grow(C, this->size()+NumInputs);

    // Copy the new elements over.
    // TODO: NEED To compile time dispatch on whether in_iter is a random access
    // iterator to use the fast uninitialized_copy.
    std::uninitialized_copy(in_start, in_end, this->end());
    this->setEnd(this->end() + NumInputs);
  }

  /// append - Add the specified range to the end of the SmallVector.
  void append(const ASTContext &C, size_type NumInputs, const T &Elt) {
    // Grow allocated space if needed.
    if (NumInputs > size_type(this->capacity_ptr()-this->end()))
      this->grow(C, this->size()+NumInputs);

    // Copy the new elements over.
    std::uninitialized_fill_n(this->end(), NumInputs, Elt);
    this->setEnd(this->end() + NumInputs);
  }

  /// uninitialized_copy - Copy the range [I, E) onto the uninitialized memory
  /// starting with "Dest", constructing elements into it as needed.
  template<typename It1, typename It2>
  static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
    std::uninitialized_copy(I, E, Dest);
  }

  iterator insert(const ASTContext &C, iterator I, const T &Elt) {
    if (I == this->end()) {  // Important special case for empty vector.
      push_back(Elt, C);
      return this->end()-1;
    }

    if (this->End < this->capacity_ptr()) {
    Retry:
      new (this->end()) T(this->back());
      this->setEnd(this->end()+1);
      // Push everything else over.
      std::copy_backward(I, this->end()-1, this->end());
      *I = Elt;
      return I;
    }
    size_t EltNo = I-this->begin();
    this->grow(C);
    I = this->begin()+EltNo;
    goto Retry;
  }

  iterator insert(const ASTContext &C, iterator I, size_type NumToInsert,
                  const T &Elt) {
    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
    size_t InsertElt = I - this->begin();

    if (I == this->end()) { // Important special case for empty vector.
      append(C, NumToInsert, Elt);
      return this->begin() + InsertElt;
    }

    // Ensure there is enough space.
    reserve(C, static_cast<unsigned>(this->size() + NumToInsert));

    // Uninvalidate the iterator.
    I = this->begin()+InsertElt;

    // If there are more elements between the insertion point and the end of the
    // range than there are being inserted, we can use a simple approach to
    // insertion.  Since we already reserved space, we know that this won't
    // reallocate the vector.
    if (size_t(this->end()-I) >= NumToInsert) {
      T *OldEnd = this->end();
      append(C, this->end()-NumToInsert, this->end());

      // Copy the existing elements that get replaced.
      std::copy_backward(I, OldEnd-NumToInsert, OldEnd);

      std::fill_n(I, NumToInsert, Elt);
      return I;
    }

    // Otherwise, we're inserting more elements than exist already, and we're
    // not inserting at the end.

    // Copy over the elements that we're about to overwrite.
    T *OldEnd = this->end();
    this->setEnd(this->end() + NumToInsert);
    size_t NumOverwritten = OldEnd-I;
    this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);

    // Replace the overwritten part.
    std::fill_n(I, NumOverwritten, Elt);

    // Insert the non-overwritten middle part.
    std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
    return I;
  }

  template<typename ItTy>
  iterator insert(const ASTContext &C, iterator I, ItTy From, ItTy To) {
    // Convert iterator to elt# to avoid invalidating iterator when we reserve()
    size_t InsertElt = I - this->begin();

    if (I == this->end()) { // Important special case for empty vector.
      append(C, From, To);
      return this->begin() + InsertElt;
    }

    size_t NumToInsert = std::distance(From, To);

    // Ensure there is enough space.
    reserve(C, static_cast<unsigned>(this->size() + NumToInsert));

    // Uninvalidate the iterator.
    I = this->begin()+InsertElt;

    // If there are more elements between the insertion point and the end of the
    // range than there are being inserted, we can use a simple approach to
    // insertion.  Since we already reserved space, we know that this won't
    // reallocate the vector.
    if (size_t(this->end()-I) >= NumToInsert) {
      T *OldEnd = this->end();
      append(C, this->end()-NumToInsert, this->end());

      // Copy the existing elements that get replaced.
      std::copy_backward(I, OldEnd-NumToInsert, OldEnd);

      std::copy(From, To, I);
      return I;
    }

    // Otherwise, we're inserting more elements than exist already, and we're
    // not inserting at the end.

    // Copy over the elements that we're about to overwrite.
    T *OldEnd = this->end();
    this->setEnd(this->end() + NumToInsert);
    size_t NumOverwritten = OldEnd-I;
    this->uninitialized_copy(I, OldEnd, this->end()-NumOverwritten);

    // Replace the overwritten part.
    for (; NumOverwritten > 0; --NumOverwritten) {
      *I = *From;
      ++I; ++From;
    }

    // Insert the non-overwritten middle part.
    this->uninitialized_copy(From, To, OldEnd);
    return I;
  }

  void resize(const ASTContext &C, unsigned N, const T &NV) {
    if (N < this->size()) {
      this->destroy_range(this->begin()+N, this->end());
      this->setEnd(this->begin()+N);
    } else if (N > this->size()) {
      if (this->capacity() < N)
        this->grow(C, N);
      construct_range(this->end(), this->begin()+N, NV);
      this->setEnd(this->begin()+N);
    }
  }

private:
  /// grow - double the size of the allocated memory, guaranteeing space for at
  /// least one more element or MinSize if specified.
  void grow(const ASTContext &C, size_type MinSize = 1);

  void construct_range(T *S, T *E, const T &Elt) {
    for (; S != E; ++S)
      new (S) T(Elt);
  }

  void destroy_range(T *S, T *E) {
    while (S != E) {
      --E;
      E->~T();
    }
  }

protected:
  const_iterator capacity_ptr() const {
    return (iterator) Capacity.getPointer();
  }

  iterator capacity_ptr() { return (iterator)Capacity.getPointer(); }
};

// Define this out-of-line to dissuade the C++ compiler from inlining it.
template <typename T>
void ASTVector<T>::grow(const ASTContext &C, size_t MinSize) {
  size_t CurCapacity = this->capacity();
  size_t CurSize = size();
  size_t NewCapacity = 2*CurCapacity;
  if (NewCapacity < MinSize)
    NewCapacity = MinSize;

  // Allocate the memory from the ASTContext.
  T *NewElts = new (C, alignof(T)) T[NewCapacity];

  // Copy the elements over.
  if (Begin != End) {
    if (std::is_class<T>::value) {
      std::uninitialized_copy(Begin, End, NewElts);
      // Destroy the original elements.
      destroy_range(Begin, End);
    } else {
      // Use memcpy for PODs (std::uninitialized_copy optimizes to memmove).
      memcpy(NewElts, Begin, CurSize * sizeof(T));
    }
  }

  // ASTContext never frees any memory.
  Begin = NewElts;
  End = NewElts+CurSize;
  Capacity.setPointer(Begin+NewCapacity);
}

} // namespace clang

#endif // LLVM_CLANG_AST_ASTVECTOR_H