Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
//===-- SemaConcept.cpp - Semantic Analysis for Constraints and Concepts --===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements semantic analysis for C++ constraints and concepts.
//
//===----------------------------------------------------------------------===//

#include "clang/Sema/SemaConcept.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "clang/Sema/TemplateDeduction.h"
#include "clang/Sema/Template.h"
#include "clang/Sema/Overload.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/AST/ExprConcepts.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/OperatorPrecedence.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerUnion.h"
using namespace clang;
using namespace sema;

namespace {
class LogicalBinOp {
  OverloadedOperatorKind Op = OO_None;
  const Expr *LHS = nullptr;
  const Expr *RHS = nullptr;

public:
  LogicalBinOp(const Expr *E) {
    if (auto *BO = dyn_cast<BinaryOperator>(E)) {
      Op = BinaryOperator::getOverloadedOperator(BO->getOpcode());
      LHS = BO->getLHS();
      RHS = BO->getRHS();
    } else if (auto *OO = dyn_cast<CXXOperatorCallExpr>(E)) {
      Op = OO->getOperator();
      LHS = OO->getArg(0);
      RHS = OO->getArg(1);
    }
  }

  bool isAnd() const { return Op == OO_AmpAmp; }
  bool isOr() const { return Op == OO_PipePipe; }
  explicit operator bool() const { return isAnd() || isOr(); }

  const Expr *getLHS() const { return LHS; }
  const Expr *getRHS() const { return RHS; }
};
}

bool Sema::CheckConstraintExpression(const Expr *ConstraintExpression,
                                     Token NextToken, bool *PossibleNonPrimary,
                                     bool IsTrailingRequiresClause) {
  // C++2a [temp.constr.atomic]p1
  // ..E shall be a constant expression of type bool.

  ConstraintExpression = ConstraintExpression->IgnoreParenImpCasts();

  if (LogicalBinOp BO = ConstraintExpression) {
    return CheckConstraintExpression(BO.getLHS(), NextToken,
                                     PossibleNonPrimary) &&
           CheckConstraintExpression(BO.getRHS(), NextToken,
                                     PossibleNonPrimary);
  } else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpression))
    return CheckConstraintExpression(C->getSubExpr(), NextToken,
                                     PossibleNonPrimary);

  QualType Type = ConstraintExpression->getType();

  auto CheckForNonPrimary = [&] {
    if (PossibleNonPrimary)
      *PossibleNonPrimary =
          // We have the following case:
          // template<typename> requires func(0) struct S { };
          // The user probably isn't aware of the parentheses required around
          // the function call, and we're only going to parse 'func' as the
          // primary-expression, and complain that it is of non-bool type.
          (NextToken.is(tok::l_paren) &&
           (IsTrailingRequiresClause ||
            (Type->isDependentType() &&
             isa<UnresolvedLookupExpr>(ConstraintExpression)) ||
            Type->isFunctionType() ||
            Type->isSpecificBuiltinType(BuiltinType::Overload))) ||
          // We have the following case:
          // template<typename T> requires size_<T> == 0 struct S { };
          // The user probably isn't aware of the parentheses required around
          // the binary operator, and we're only going to parse 'func' as the
          // first operand, and complain that it is of non-bool type.
          getBinOpPrecedence(NextToken.getKind(),
                             /*GreaterThanIsOperator=*/true,
                             getLangOpts().CPlusPlus11) > prec::LogicalAnd;
  };

  // An atomic constraint!
  if (ConstraintExpression->isTypeDependent()) {
    CheckForNonPrimary();
    return true;
  }

  if (!Context.hasSameUnqualifiedType(Type, Context.BoolTy)) {
    Diag(ConstraintExpression->getExprLoc(),
         diag::err_non_bool_atomic_constraint) << Type
        << ConstraintExpression->getSourceRange();
    CheckForNonPrimary();
    return false;
  }

  if (PossibleNonPrimary)
      *PossibleNonPrimary = false;
  return true;
}

template <typename AtomicEvaluator>
static bool
calculateConstraintSatisfaction(Sema &S, const Expr *ConstraintExpr,
                                ConstraintSatisfaction &Satisfaction,
                                AtomicEvaluator &&Evaluator) {
  ConstraintExpr = ConstraintExpr->IgnoreParenImpCasts();

  if (LogicalBinOp BO = ConstraintExpr) {
    if (calculateConstraintSatisfaction(S, BO.getLHS(), Satisfaction,
                                        Evaluator))
      return true;

    bool IsLHSSatisfied = Satisfaction.IsSatisfied;

    if (BO.isOr() && IsLHSSatisfied)
      // [temp.constr.op] p3
      //    A disjunction is a constraint taking two operands. To determine if
      //    a disjunction is satisfied, the satisfaction of the first operand
      //    is checked. If that is satisfied, the disjunction is satisfied.
      //    Otherwise, the disjunction is satisfied if and only if the second
      //    operand is satisfied.
      return false;

    if (BO.isAnd() && !IsLHSSatisfied)
      // [temp.constr.op] p2
      //    A conjunction is a constraint taking two operands. To determine if
      //    a conjunction is satisfied, the satisfaction of the first operand
      //    is checked. If that is not satisfied, the conjunction is not
      //    satisfied. Otherwise, the conjunction is satisfied if and only if
      //    the second operand is satisfied.
      return false;

    return calculateConstraintSatisfaction(
        S, BO.getRHS(), Satisfaction, std::forward<AtomicEvaluator>(Evaluator));
  } else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpr)) {
    return calculateConstraintSatisfaction(S, C->getSubExpr(), Satisfaction,
        std::forward<AtomicEvaluator>(Evaluator));
  }

  // An atomic constraint expression
  ExprResult SubstitutedAtomicExpr = Evaluator(ConstraintExpr);

  if (SubstitutedAtomicExpr.isInvalid())
    return true;

  if (!SubstitutedAtomicExpr.isUsable())
    // Evaluator has decided satisfaction without yielding an expression.
    return false;

  EnterExpressionEvaluationContext ConstantEvaluated(
      S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
  SmallVector<PartialDiagnosticAt, 2> EvaluationDiags;
  Expr::EvalResult EvalResult;
  EvalResult.Diag = &EvaluationDiags;
  if (!SubstitutedAtomicExpr.get()->EvaluateAsRValue(EvalResult, S.Context)) {
      // C++2a [temp.constr.atomic]p1
      //   ...E shall be a constant expression of type bool.
    S.Diag(SubstitutedAtomicExpr.get()->getBeginLoc(),
           diag::err_non_constant_constraint_expression)
        << SubstitutedAtomicExpr.get()->getSourceRange();
    for (const PartialDiagnosticAt &PDiag : EvaluationDiags)
      S.Diag(PDiag.first, PDiag.second);
    return true;
  }

  Satisfaction.IsSatisfied = EvalResult.Val.getInt().getBoolValue();
  if (!Satisfaction.IsSatisfied)
    Satisfaction.Details.emplace_back(ConstraintExpr,
                                      SubstitutedAtomicExpr.get());

  return false;
}

static bool calculateConstraintSatisfaction(
    Sema &S, const NamedDecl *Template, ArrayRef<TemplateArgument> TemplateArgs,
    SourceLocation TemplateNameLoc, MultiLevelTemplateArgumentList &MLTAL,
    const Expr *ConstraintExpr, ConstraintSatisfaction &Satisfaction) {
  return calculateConstraintSatisfaction(
      S, ConstraintExpr, Satisfaction, [&](const Expr *AtomicExpr) {
        EnterExpressionEvaluationContext ConstantEvaluated(
            S, Sema::ExpressionEvaluationContext::ConstantEvaluated);

        // Atomic constraint - substitute arguments and check satisfaction.
        ExprResult SubstitutedExpression;
        {
          TemplateDeductionInfo Info(TemplateNameLoc);
          Sema::InstantiatingTemplate Inst(S, AtomicExpr->getBeginLoc(),
              Sema::InstantiatingTemplate::ConstraintSubstitution{},
              const_cast<NamedDecl *>(Template), Info,
              AtomicExpr->getSourceRange());
          if (Inst.isInvalid())
            return ExprError();
          // We do not want error diagnostics escaping here.
          Sema::SFINAETrap Trap(S);
          SubstitutedExpression = S.SubstExpr(const_cast<Expr *>(AtomicExpr),
                                              MLTAL);
          if (SubstitutedExpression.isInvalid() || Trap.hasErrorOccurred()) {
            // C++2a [temp.constr.atomic]p1
            //   ...If substitution results in an invalid type or expression, the
            //   constraint is not satisfied.
            if (!Trap.hasErrorOccurred())
              // A non-SFINAE error has occured as a result of this
              // substitution.
              return ExprError();

            PartialDiagnosticAt SubstDiag{SourceLocation(),
                                          PartialDiagnostic::NullDiagnostic()};
            Info.takeSFINAEDiagnostic(SubstDiag);
            // FIXME: Concepts: This is an unfortunate consequence of there
            //  being no serialization code for PartialDiagnostics and the fact
            //  that serializing them would likely take a lot more storage than
            //  just storing them as strings. We would still like, in the
            //  future, to serialize the proper PartialDiagnostic as serializing
            //  it as a string defeats the purpose of the diagnostic mechanism.
            SmallString<128> DiagString;
            DiagString = ": ";
            SubstDiag.second.EmitToString(S.getDiagnostics(), DiagString);
            unsigned MessageSize = DiagString.size();
            char *Mem = new (S.Context) char[MessageSize];
            memcpy(Mem, DiagString.c_str(), MessageSize);
            Satisfaction.Details.emplace_back(
                AtomicExpr,
                new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{
                        SubstDiag.first, StringRef(Mem, MessageSize)});
            Satisfaction.IsSatisfied = false;
            return ExprEmpty();
          }
        }

        if (!S.CheckConstraintExpression(SubstitutedExpression.get()))
          return ExprError();

        return SubstitutedExpression;
      });
}

static bool CheckConstraintSatisfaction(Sema &S, const NamedDecl *Template,
                                        ArrayRef<const Expr *> ConstraintExprs,
                                        ArrayRef<TemplateArgument> TemplateArgs,
                                        SourceRange TemplateIDRange,
                                        ConstraintSatisfaction &Satisfaction) {
  if (ConstraintExprs.empty()) {
    Satisfaction.IsSatisfied = true;
    return false;
  }

  for (auto& Arg : TemplateArgs)
    if (Arg.isInstantiationDependent()) {
      // No need to check satisfaction for dependent constraint expressions.
      Satisfaction.IsSatisfied = true;
      return false;
    }

  Sema::InstantiatingTemplate Inst(S, TemplateIDRange.getBegin(),
      Sema::InstantiatingTemplate::ConstraintsCheck{},
      const_cast<NamedDecl *>(Template), TemplateArgs, TemplateIDRange);
  if (Inst.isInvalid())
    return true;

  MultiLevelTemplateArgumentList MLTAL;
  MLTAL.addOuterTemplateArguments(TemplateArgs);

  for (const Expr *ConstraintExpr : ConstraintExprs) {
    if (calculateConstraintSatisfaction(S, Template, TemplateArgs,
                                        TemplateIDRange.getBegin(), MLTAL,
                                        ConstraintExpr, Satisfaction))
      return true;
    if (!Satisfaction.IsSatisfied)
      // [temp.constr.op] p2
      //   [...] To determine if a conjunction is satisfied, the satisfaction
      //   of the first operand is checked. If that is not satisfied, the
      //   conjunction is not satisfied. [...]
      return false;
  }
  return false;
}

bool Sema::CheckConstraintSatisfaction(
    const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
    ArrayRef<TemplateArgument> TemplateArgs, SourceRange TemplateIDRange,
    ConstraintSatisfaction &OutSatisfaction) {
  if (ConstraintExprs.empty()) {
    OutSatisfaction.IsSatisfied = true;
    return false;
  }

  llvm::FoldingSetNodeID ID;
  void *InsertPos;
  ConstraintSatisfaction *Satisfaction = nullptr;
  bool ShouldCache = LangOpts.ConceptSatisfactionCaching && Template;
  if (ShouldCache) {
    ConstraintSatisfaction::Profile(ID, Context, Template, TemplateArgs);
    Satisfaction = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos);
    if (Satisfaction) {
      OutSatisfaction = *Satisfaction;
      return false;
    }
    Satisfaction = new ConstraintSatisfaction(Template, TemplateArgs);
  } else {
    Satisfaction = &OutSatisfaction;
  }
  if (::CheckConstraintSatisfaction(*this, Template, ConstraintExprs,
                                    TemplateArgs, TemplateIDRange,
                                    *Satisfaction)) {
    if (ShouldCache)
      delete Satisfaction;
    return true;
  }

  if (ShouldCache) {
    // We cannot use InsertNode here because CheckConstraintSatisfaction might
    // have invalidated it.
    SatisfactionCache.InsertNode(Satisfaction);
    OutSatisfaction = *Satisfaction;
  }
  return false;
}

bool Sema::CheckConstraintSatisfaction(const Expr *ConstraintExpr,
                                       ConstraintSatisfaction &Satisfaction) {
  return calculateConstraintSatisfaction(
      *this, ConstraintExpr, Satisfaction,
      [](const Expr *AtomicExpr) -> ExprResult {
        return ExprResult(const_cast<Expr *>(AtomicExpr));
      });
}

bool Sema::CheckFunctionConstraints(const FunctionDecl *FD,
                                    ConstraintSatisfaction &Satisfaction,
                                    SourceLocation UsageLoc) {
  const Expr *RC = FD->getTrailingRequiresClause();
  if (RC->isInstantiationDependent()) {
    Satisfaction.IsSatisfied = true;
    return false;
  }
  Qualifiers ThisQuals;
  CXXRecordDecl *Record = nullptr;
  if (auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
    ThisQuals = Method->getMethodQualifiers();
    Record = const_cast<CXXRecordDecl *>(Method->getParent());
  }
  CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr);
  // We substitute with empty arguments in order to rebuild the atomic
  // constraint in a constant-evaluated context.
  // FIXME: Should this be a dedicated TreeTransform?
  return CheckConstraintSatisfaction(
      FD, {RC}, /*TemplateArgs=*/{},
      SourceRange(UsageLoc.isValid() ? UsageLoc : FD->getLocation()),
      Satisfaction);
}

bool Sema::EnsureTemplateArgumentListConstraints(
    TemplateDecl *TD, ArrayRef<TemplateArgument> TemplateArgs,
    SourceRange TemplateIDRange) {
  ConstraintSatisfaction Satisfaction;
  llvm::SmallVector<const Expr *, 3> AssociatedConstraints;
  TD->getAssociatedConstraints(AssociatedConstraints);
  if (CheckConstraintSatisfaction(TD, AssociatedConstraints, TemplateArgs,
                                  TemplateIDRange, Satisfaction))
    return true;

  if (!Satisfaction.IsSatisfied) {
    SmallString<128> TemplateArgString;
    TemplateArgString = " ";
    TemplateArgString += getTemplateArgumentBindingsText(
        TD->getTemplateParameters(), TemplateArgs.data(), TemplateArgs.size());

    Diag(TemplateIDRange.getBegin(),
         diag::err_template_arg_list_constraints_not_satisfied)
        << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << TD
        << TemplateArgString << TemplateIDRange;
    DiagnoseUnsatisfiedConstraint(Satisfaction);
    return true;
  }
  return false;
}

static void diagnoseUnsatisfiedRequirement(Sema &S,
                                           concepts::ExprRequirement *Req,
                                           bool First) {
  assert(!Req->isSatisfied()
         && "Diagnose() can only be used on an unsatisfied requirement");
  switch (Req->getSatisfactionStatus()) {
    case concepts::ExprRequirement::SS_Dependent:
      llvm_unreachable("Diagnosing a dependent requirement");
      break;
    case concepts::ExprRequirement::SS_ExprSubstitutionFailure: {
      auto *SubstDiag = Req->getExprSubstitutionDiagnostic();
      if (!SubstDiag->DiagMessage.empty())
        S.Diag(SubstDiag->DiagLoc,
               diag::note_expr_requirement_expr_substitution_error)
               << (int)First << SubstDiag->SubstitutedEntity
               << SubstDiag->DiagMessage;
      else
        S.Diag(SubstDiag->DiagLoc,
               diag::note_expr_requirement_expr_unknown_substitution_error)
            << (int)First << SubstDiag->SubstitutedEntity;
      break;
    }
    case concepts::ExprRequirement::SS_NoexceptNotMet:
      S.Diag(Req->getNoexceptLoc(),
             diag::note_expr_requirement_noexcept_not_met)
          << (int)First << Req->getExpr();
      break;
    case concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure: {
      auto *SubstDiag =
          Req->getReturnTypeRequirement().getSubstitutionDiagnostic();
      if (!SubstDiag->DiagMessage.empty())
        S.Diag(SubstDiag->DiagLoc,
               diag::note_expr_requirement_type_requirement_substitution_error)
            << (int)First << SubstDiag->SubstitutedEntity
            << SubstDiag->DiagMessage;
      else
        S.Diag(SubstDiag->DiagLoc,
               diag::note_expr_requirement_type_requirement_unknown_substitution_error)
            << (int)First << SubstDiag->SubstitutedEntity;
      break;
    }
    case concepts::ExprRequirement::SS_ConstraintsNotSatisfied: {
      ConceptSpecializationExpr *ConstraintExpr =
          Req->getReturnTypeRequirementSubstitutedConstraintExpr();
      if (ConstraintExpr->getTemplateArgsAsWritten()->NumTemplateArgs == 1)
        // A simple case - expr type is the type being constrained and the concept
        // was not provided arguments.
        S.Diag(ConstraintExpr->getBeginLoc(),
               diag::note_expr_requirement_constraints_not_satisfied_simple)
            << (int)First << S.BuildDecltypeType(Req->getExpr(),
                                                 Req->getExpr()->getBeginLoc())
            << ConstraintExpr->getNamedConcept();
      else
        S.Diag(ConstraintExpr->getBeginLoc(),
               diag::note_expr_requirement_constraints_not_satisfied)
            << (int)First << ConstraintExpr;
      S.DiagnoseUnsatisfiedConstraint(ConstraintExpr->getSatisfaction());
      break;
    }
    case concepts::ExprRequirement::SS_Satisfied:
      llvm_unreachable("We checked this above");
  }
}

static void diagnoseUnsatisfiedRequirement(Sema &S,
                                           concepts::TypeRequirement *Req,
                                           bool First) {
  assert(!Req->isSatisfied()
         && "Diagnose() can only be used on an unsatisfied requirement");
  switch (Req->getSatisfactionStatus()) {
  case concepts::TypeRequirement::SS_Dependent:
    llvm_unreachable("Diagnosing a dependent requirement");
    return;
  case concepts::TypeRequirement::SS_SubstitutionFailure: {
    auto *SubstDiag = Req->getSubstitutionDiagnostic();
    if (!SubstDiag->DiagMessage.empty())
      S.Diag(SubstDiag->DiagLoc,
             diag::note_type_requirement_substitution_error) << (int)First
          << SubstDiag->SubstitutedEntity << SubstDiag->DiagMessage;
    else
      S.Diag(SubstDiag->DiagLoc,
             diag::note_type_requirement_unknown_substitution_error)
          << (int)First << SubstDiag->SubstitutedEntity;
    return;
  }
  default:
    llvm_unreachable("Unknown satisfaction status");
    return;
  }
}

static void diagnoseUnsatisfiedRequirement(Sema &S,
                                           concepts::NestedRequirement *Req,
                                           bool First) {
  if (Req->isSubstitutionFailure()) {
    concepts::Requirement::SubstitutionDiagnostic *SubstDiag =
        Req->getSubstitutionDiagnostic();
    if (!SubstDiag->DiagMessage.empty())
      S.Diag(SubstDiag->DiagLoc,
             diag::note_nested_requirement_substitution_error)
             << (int)First << SubstDiag->SubstitutedEntity
             << SubstDiag->DiagMessage;
    else
      S.Diag(SubstDiag->DiagLoc,
             diag::note_nested_requirement_unknown_substitution_error)
          << (int)First << SubstDiag->SubstitutedEntity;
    return;
  }
  S.DiagnoseUnsatisfiedConstraint(Req->getConstraintSatisfaction(), First);
}


static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S,
                                                        Expr *SubstExpr,
                                                        bool First = true) {
  SubstExpr = SubstExpr->IgnoreParenImpCasts();
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SubstExpr)) {
    switch (BO->getOpcode()) {
    // These two cases will in practice only be reached when using fold
    // expressions with || and &&, since otherwise the || and && will have been
    // broken down into atomic constraints during satisfaction checking.
    case BO_LOr:
      // Or evaluated to false - meaning both RHS and LHS evaluated to false.
      diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);
      diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
                                                  /*First=*/false);
      return;
    case BO_LAnd:
      bool LHSSatisfied;
      BO->getLHS()->EvaluateAsBooleanCondition(LHSSatisfied, S.Context);
      if (LHSSatisfied) {
        // LHS is true, so RHS must be false.
        diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), First);
        return;
      }
      // LHS is false
      diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);

      // RHS might also be false
      bool RHSSatisfied;
      BO->getRHS()->EvaluateAsBooleanCondition(RHSSatisfied, S.Context);
      if (!RHSSatisfied)
        diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
                                                    /*First=*/false);
      return;
    case BO_GE:
    case BO_LE:
    case BO_GT:
    case BO_LT:
    case BO_EQ:
    case BO_NE:
      if (BO->getLHS()->getType()->isIntegerType() &&
          BO->getRHS()->getType()->isIntegerType()) {
        Expr::EvalResult SimplifiedLHS;
        Expr::EvalResult SimplifiedRHS;
        BO->getLHS()->EvaluateAsInt(SimplifiedLHS, S.Context);
        BO->getRHS()->EvaluateAsInt(SimplifiedRHS, S.Context);
        if (!SimplifiedLHS.Diag && ! SimplifiedRHS.Diag) {
          S.Diag(SubstExpr->getBeginLoc(),
                 diag::note_atomic_constraint_evaluated_to_false_elaborated)
              << (int)First << SubstExpr
              << SimplifiedLHS.Val.getInt().toString(10)
              << BinaryOperator::getOpcodeStr(BO->getOpcode())
              << SimplifiedRHS.Val.getInt().toString(10);
          return;
        }
      }
      break;

    default:
      break;
    }
  } else if (auto *CSE = dyn_cast<ConceptSpecializationExpr>(SubstExpr)) {
    if (CSE->getTemplateArgsAsWritten()->NumTemplateArgs == 1) {
      S.Diag(
          CSE->getSourceRange().getBegin(),
          diag::
          note_single_arg_concept_specialization_constraint_evaluated_to_false)
          << (int)First
          << CSE->getTemplateArgsAsWritten()->arguments()[0].getArgument()
          << CSE->getNamedConcept();
    } else {
      S.Diag(SubstExpr->getSourceRange().getBegin(),
             diag::note_concept_specialization_constraint_evaluated_to_false)
          << (int)First << CSE;
    }
    S.DiagnoseUnsatisfiedConstraint(CSE->getSatisfaction());
    return;
  } else if (auto *RE = dyn_cast<RequiresExpr>(SubstExpr)) {
    for (concepts::Requirement *Req : RE->getRequirements())
      if (!Req->isDependent() && !Req->isSatisfied()) {
        if (auto *E = dyn_cast<concepts::ExprRequirement>(Req))
          diagnoseUnsatisfiedRequirement(S, E, First);
        else if (auto *T = dyn_cast<concepts::TypeRequirement>(Req))
          diagnoseUnsatisfiedRequirement(S, T, First);
        else
          diagnoseUnsatisfiedRequirement(
              S, cast<concepts::NestedRequirement>(Req), First);
        break;
      }
    return;
  }

  S.Diag(SubstExpr->getSourceRange().getBegin(),
         diag::note_atomic_constraint_evaluated_to_false)
      << (int)First << SubstExpr;
}

template<typename SubstitutionDiagnostic>
static void diagnoseUnsatisfiedConstraintExpr(
    Sema &S, const Expr *E,
    const llvm::PointerUnion<Expr *, SubstitutionDiagnostic *> &Record,
    bool First = true) {
  if (auto *Diag = Record.template dyn_cast<SubstitutionDiagnostic *>()){
    S.Diag(Diag->first, diag::note_substituted_constraint_expr_is_ill_formed)
        << Diag->second;
    return;
  }

  diagnoseWellFormedUnsatisfiedConstraintExpr(S,
      Record.template get<Expr *>(), First);
}

void
Sema::DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction& Satisfaction,
                                    bool First) {
  assert(!Satisfaction.IsSatisfied &&
         "Attempted to diagnose a satisfied constraint");
  for (auto &Pair : Satisfaction.Details) {
    diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First);
    First = false;
  }
}

void Sema::DiagnoseUnsatisfiedConstraint(
    const ASTConstraintSatisfaction &Satisfaction,
    bool First) {
  assert(!Satisfaction.IsSatisfied &&
         "Attempted to diagnose a satisfied constraint");
  for (auto &Pair : Satisfaction) {
    diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First);
    First = false;
  }
}

const NormalizedConstraint *
Sema::getNormalizedAssociatedConstraints(
    NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints) {
  auto CacheEntry = NormalizationCache.find(ConstrainedDecl);
  if (CacheEntry == NormalizationCache.end()) {
    auto Normalized =
        NormalizedConstraint::fromConstraintExprs(*this, ConstrainedDecl,
                                                  AssociatedConstraints);
    CacheEntry =
        NormalizationCache
            .try_emplace(ConstrainedDecl,
                         Normalized
                             ? new (Context) NormalizedConstraint(
                                 std::move(*Normalized))
                             : nullptr)
            .first;
  }
  return CacheEntry->second;
}

static bool substituteParameterMappings(Sema &S, NormalizedConstraint &N,
    ConceptDecl *Concept, ArrayRef<TemplateArgument> TemplateArgs,
    const ASTTemplateArgumentListInfo *ArgsAsWritten) {
  if (!N.isAtomic()) {
    if (substituteParameterMappings(S, N.getLHS(), Concept, TemplateArgs,
                                    ArgsAsWritten))
      return true;
    return substituteParameterMappings(S, N.getRHS(), Concept, TemplateArgs,
                                       ArgsAsWritten);
  }
  TemplateParameterList *TemplateParams = Concept->getTemplateParameters();

  AtomicConstraint &Atomic = *N.getAtomicConstraint();
  TemplateArgumentListInfo SubstArgs;
  MultiLevelTemplateArgumentList MLTAL;
  MLTAL.addOuterTemplateArguments(TemplateArgs);
  if (!Atomic.ParameterMapping) {
    llvm::SmallBitVector OccurringIndices(TemplateParams->size());
    S.MarkUsedTemplateParameters(Atomic.ConstraintExpr, /*OnlyDeduced=*/false,
                                 /*Depth=*/0, OccurringIndices);
    Atomic.ParameterMapping.emplace(
        MutableArrayRef<TemplateArgumentLoc>(
            new (S.Context) TemplateArgumentLoc[OccurringIndices.count()],
            OccurringIndices.count()));
    for (unsigned I = 0, J = 0, C = TemplateParams->size(); I != C; ++I)
      if (OccurringIndices[I])
        new (&(*Atomic.ParameterMapping)[J++]) TemplateArgumentLoc(
            S.getIdentityTemplateArgumentLoc(TemplateParams->begin()[I],
                // Here we assume we do not support things like
                // template<typename A, typename B>
                // concept C = ...;
                //
                // template<typename... Ts> requires C<Ts...>
                // struct S { };
                // The above currently yields a diagnostic.
                // We still might have default arguments for concept parameters.
                ArgsAsWritten->NumTemplateArgs > I ?
                ArgsAsWritten->arguments()[I].getLocation() :
                SourceLocation()));
  }
  Sema::InstantiatingTemplate Inst(
      S, ArgsAsWritten->arguments().front().getSourceRange().getBegin(),
      Sema::InstantiatingTemplate::ParameterMappingSubstitution{}, Concept,
      SourceRange(ArgsAsWritten->arguments()[0].getSourceRange().getBegin(),
                  ArgsAsWritten->arguments().back().getSourceRange().getEnd()));
  if (S.SubstTemplateArguments(*Atomic.ParameterMapping, MLTAL, SubstArgs))
    return true;
  Atomic.ParameterMapping.emplace(
        MutableArrayRef<TemplateArgumentLoc>(
            new (S.Context) TemplateArgumentLoc[SubstArgs.size()],
            SubstArgs.size()));
  std::copy(SubstArgs.arguments().begin(), SubstArgs.arguments().end(),
            N.getAtomicConstraint()->ParameterMapping->begin());
  return false;
}

Optional<NormalizedConstraint>
NormalizedConstraint::fromConstraintExprs(Sema &S, NamedDecl *D,
                                          ArrayRef<const Expr *> E) {
  assert(E.size() != 0);
  auto First = fromConstraintExpr(S, D, E[0]);
  if (E.size() == 1)
    return First;
  auto Second = fromConstraintExpr(S, D, E[1]);
  if (!Second)
    return None;
  llvm::Optional<NormalizedConstraint> Conjunction;
  Conjunction.emplace(S.Context, std::move(*First), std::move(*Second),
                      CCK_Conjunction);
  for (unsigned I = 2; I < E.size(); ++I) {
    auto Next = fromConstraintExpr(S, D, E[I]);
    if (!Next)
      return llvm::Optional<NormalizedConstraint>{};
    NormalizedConstraint NewConjunction(S.Context, std::move(*Conjunction),
                                        std::move(*Next), CCK_Conjunction);
    *Conjunction = std::move(NewConjunction);
  }
  return Conjunction;
}

llvm::Optional<NormalizedConstraint>
NormalizedConstraint::fromConstraintExpr(Sema &S, NamedDecl *D, const Expr *E) {
  assert(E != nullptr);

  // C++ [temp.constr.normal]p1.1
  // [...]
  // - The normal form of an expression (E) is the normal form of E.
  // [...]
  E = E->IgnoreParenImpCasts();
  if (LogicalBinOp BO = E) {
    auto LHS = fromConstraintExpr(S, D, BO.getLHS());
    if (!LHS)
      return None;
    auto RHS = fromConstraintExpr(S, D, BO.getRHS());
    if (!RHS)
      return None;

    return NormalizedConstraint(S.Context, std::move(*LHS), std::move(*RHS),
                                BO.isAnd() ? CCK_Conjunction : CCK_Disjunction);
  } else if (auto *CSE = dyn_cast<const ConceptSpecializationExpr>(E)) {
    const NormalizedConstraint *SubNF;
    {
      Sema::InstantiatingTemplate Inst(
          S, CSE->getExprLoc(),
          Sema::InstantiatingTemplate::ConstraintNormalization{}, D,
          CSE->getSourceRange());
      // C++ [temp.constr.normal]p1.1
      // [...]
      // The normal form of an id-expression of the form C<A1, A2, ..., AN>,
      // where C names a concept, is the normal form of the
      // constraint-expression of C, after substituting A1, A2, ..., AN for C’s
      // respective template parameters in the parameter mappings in each atomic
      // constraint. If any such substitution results in an invalid type or
      // expression, the program is ill-formed; no diagnostic is required.
      // [...]
      ConceptDecl *CD = CSE->getNamedConcept();
      SubNF = S.getNormalizedAssociatedConstraints(CD,
                                                   {CD->getConstraintExpr()});
      if (!SubNF)
        return None;
    }

    Optional<NormalizedConstraint> New;
    New.emplace(S.Context, *SubNF);

    if (substituteParameterMappings(
            S, *New, CSE->getNamedConcept(),
            CSE->getTemplateArguments(), CSE->getTemplateArgsAsWritten()))
      return None;

    return New;
  }
  return NormalizedConstraint{new (S.Context) AtomicConstraint(S, E)};
}

using NormalForm =
    llvm::SmallVector<llvm::SmallVector<AtomicConstraint *, 2>, 4>;

static NormalForm makeCNF(const NormalizedConstraint &Normalized) {
  if (Normalized.isAtomic())
    return {{Normalized.getAtomicConstraint()}};

  NormalForm LCNF = makeCNF(Normalized.getLHS());
  NormalForm RCNF = makeCNF(Normalized.getRHS());
  if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Conjunction) {
    LCNF.reserve(LCNF.size() + RCNF.size());
    while (!RCNF.empty())
      LCNF.push_back(RCNF.pop_back_val());
    return LCNF;
  }

  // Disjunction
  NormalForm Res;
  Res.reserve(LCNF.size() * RCNF.size());
  for (auto &LDisjunction : LCNF)
    for (auto &RDisjunction : RCNF) {
      NormalForm::value_type Combined;
      Combined.reserve(LDisjunction.size() + RDisjunction.size());
      std::copy(LDisjunction.begin(), LDisjunction.end(),
                std::back_inserter(Combined));
      std::copy(RDisjunction.begin(), RDisjunction.end(),
                std::back_inserter(Combined));
      Res.emplace_back(Combined);
    }
  return Res;
}

static NormalForm makeDNF(const NormalizedConstraint &Normalized) {
  if (Normalized.isAtomic())
    return {{Normalized.getAtomicConstraint()}};

  NormalForm LDNF = makeDNF(Normalized.getLHS());
  NormalForm RDNF = makeDNF(Normalized.getRHS());
  if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Disjunction) {
    LDNF.reserve(LDNF.size() + RDNF.size());
    while (!RDNF.empty())
      LDNF.push_back(RDNF.pop_back_val());
    return LDNF;
  }

  // Conjunction
  NormalForm Res;
  Res.reserve(LDNF.size() * RDNF.size());
  for (auto &LConjunction : LDNF) {
    for (auto &RConjunction : RDNF) {
      NormalForm::value_type Combined;
      Combined.reserve(LConjunction.size() + RConjunction.size());
      std::copy(LConjunction.begin(), LConjunction.end(),
                std::back_inserter(Combined));
      std::copy(RConjunction.begin(), RConjunction.end(),
                std::back_inserter(Combined));
      Res.emplace_back(Combined);
    }
  }
  return Res;
}

template<typename AtomicSubsumptionEvaluator>
static bool subsumes(NormalForm PDNF, NormalForm QCNF,
                     AtomicSubsumptionEvaluator E) {
  // C++ [temp.constr.order] p2
  //   Then, P subsumes Q if and only if, for every disjunctive clause Pi in the
  //   disjunctive normal form of P, Pi subsumes every conjunctive clause Qj in
  //   the conjuctive normal form of Q, where [...]
  for (const auto &Pi : PDNF) {
    for (const auto &Qj : QCNF) {
      // C++ [temp.constr.order] p2
      //   - [...] a disjunctive clause Pi subsumes a conjunctive clause Qj if
      //     and only if there exists an atomic constraint Pia in Pi for which
      //     there exists an atomic constraint, Qjb, in Qj such that Pia
      //     subsumes Qjb.
      bool Found = false;
      for (const AtomicConstraint *Pia : Pi) {
        for (const AtomicConstraint *Qjb : Qj) {
          if (E(*Pia, *Qjb)) {
            Found = true;
            break;
          }
        }
        if (Found)
          break;
      }
      if (!Found)
        return false;
    }
  }
  return true;
}

template<typename AtomicSubsumptionEvaluator>
static bool subsumes(Sema &S, NamedDecl *DP, ArrayRef<const Expr *> P,
                     NamedDecl *DQ, ArrayRef<const Expr *> Q, bool &Subsumes,
                     AtomicSubsumptionEvaluator E) {
  // C++ [temp.constr.order] p2
  //   In order to determine if a constraint P subsumes a constraint Q, P is
  //   transformed into disjunctive normal form, and Q is transformed into
  //   conjunctive normal form. [...]
  auto *PNormalized = S.getNormalizedAssociatedConstraints(DP, P);
  if (!PNormalized)
    return true;
  const NormalForm PDNF = makeDNF(*PNormalized);

  auto *QNormalized = S.getNormalizedAssociatedConstraints(DQ, Q);
  if (!QNormalized)
    return true;
  const NormalForm QCNF = makeCNF(*QNormalized);

  Subsumes = subsumes(PDNF, QCNF, E);
  return false;
}

bool Sema::IsAtLeastAsConstrained(NamedDecl *D1, ArrayRef<const Expr *> AC1,
                                  NamedDecl *D2, ArrayRef<const Expr *> AC2,
                                  bool &Result) {
  if (AC1.empty()) {
    Result = AC2.empty();
    return false;
  }
  if (AC2.empty()) {
    // TD1 has associated constraints and TD2 does not.
    Result = true;
    return false;
  }

  std::pair<NamedDecl *, NamedDecl *> Key{D1, D2};
  auto CacheEntry = SubsumptionCache.find(Key);
  if (CacheEntry != SubsumptionCache.end()) {
    Result = CacheEntry->second;
    return false;
  }

  if (subsumes(*this, D1, AC1, D2, AC2, Result,
        [this] (const AtomicConstraint &A, const AtomicConstraint &B) {
          return A.subsumes(Context, B);
        }))
    return true;
  SubsumptionCache.try_emplace(Key, Result);
  return false;
}

bool Sema::MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1,
    ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2) {
  if (isSFINAEContext())
    // No need to work here because our notes would be discarded.
    return false;

  if (AC1.empty() || AC2.empty())
    return false;

  auto NormalExprEvaluator =
      [this] (const AtomicConstraint &A, const AtomicConstraint &B) {
        return A.subsumes(Context, B);
      };

  const Expr *AmbiguousAtomic1 = nullptr, *AmbiguousAtomic2 = nullptr;
  auto IdenticalExprEvaluator =
      [&] (const AtomicConstraint &A, const AtomicConstraint &B) {
        if (!A.hasMatchingParameterMapping(Context, B))
          return false;
        const Expr *EA = A.ConstraintExpr, *EB = B.ConstraintExpr;
        if (EA == EB)
          return true;

        // Not the same source level expression - are the expressions
        // identical?
        llvm::FoldingSetNodeID IDA, IDB;
        EA->Profile(IDA, Context, /*Cannonical=*/true);
        EB->Profile(IDB, Context, /*Cannonical=*/true);
        if (IDA != IDB)
          return false;

        AmbiguousAtomic1 = EA;
        AmbiguousAtomic2 = EB;
        return true;
      };

  {
    // The subsumption checks might cause diagnostics
    SFINAETrap Trap(*this);
    auto *Normalized1 = getNormalizedAssociatedConstraints(D1, AC1);
    if (!Normalized1)
      return false;
    const NormalForm DNF1 = makeDNF(*Normalized1);
    const NormalForm CNF1 = makeCNF(*Normalized1);

    auto *Normalized2 = getNormalizedAssociatedConstraints(D2, AC2);
    if (!Normalized2)
      return false;
    const NormalForm DNF2 = makeDNF(*Normalized2);
    const NormalForm CNF2 = makeCNF(*Normalized2);

    bool Is1AtLeastAs2Normally = subsumes(DNF1, CNF2, NormalExprEvaluator);
    bool Is2AtLeastAs1Normally = subsumes(DNF2, CNF1, NormalExprEvaluator);
    bool Is1AtLeastAs2 = subsumes(DNF1, CNF2, IdenticalExprEvaluator);
    bool Is2AtLeastAs1 = subsumes(DNF2, CNF1, IdenticalExprEvaluator);
    if (Is1AtLeastAs2 == Is1AtLeastAs2Normally &&
        Is2AtLeastAs1 == Is2AtLeastAs1Normally)
      // Same result - no ambiguity was caused by identical atomic expressions.
      return false;
  }

  // A different result! Some ambiguous atomic constraint(s) caused a difference
  assert(AmbiguousAtomic1 && AmbiguousAtomic2);

  Diag(AmbiguousAtomic1->getBeginLoc(), diag::note_ambiguous_atomic_constraints)
      << AmbiguousAtomic1->getSourceRange();
  Diag(AmbiguousAtomic2->getBeginLoc(),
       diag::note_ambiguous_atomic_constraints_similar_expression)
      << AmbiguousAtomic2->getSourceRange();
  return true;
}

concepts::ExprRequirement::ExprRequirement(
    Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
    ReturnTypeRequirement Req, SatisfactionStatus Status,
    ConceptSpecializationExpr *SubstitutedConstraintExpr) :
    Requirement(IsSimple ? RK_Simple : RK_Compound, Status == SS_Dependent,
                Status == SS_Dependent &&
                (E->containsUnexpandedParameterPack() ||
                 Req.containsUnexpandedParameterPack()),
                Status == SS_Satisfied), Value(E), NoexceptLoc(NoexceptLoc),
    TypeReq(Req), SubstitutedConstraintExpr(SubstitutedConstraintExpr),
    Status(Status) {
  assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&
         "Simple requirement must not have a return type requirement or a "
         "noexcept specification");
  assert((Status > SS_TypeRequirementSubstitutionFailure && Req.isTypeConstraint()) ==
         (SubstitutedConstraintExpr != nullptr));
}

concepts::ExprRequirement::ExprRequirement(
    SubstitutionDiagnostic *ExprSubstDiag, bool IsSimple,
    SourceLocation NoexceptLoc, ReturnTypeRequirement Req) :
    Requirement(IsSimple ? RK_Simple : RK_Compound, Req.isDependent(),
                Req.containsUnexpandedParameterPack(), /*IsSatisfied=*/false),
    Value(ExprSubstDiag), NoexceptLoc(NoexceptLoc), TypeReq(Req),
    Status(SS_ExprSubstitutionFailure) {
  assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&
         "Simple requirement must not have a return type requirement or a "
         "noexcept specification");
}

concepts::ExprRequirement::ReturnTypeRequirement::
ReturnTypeRequirement(TemplateParameterList *TPL) :
    TypeConstraintInfo(TPL, 0) {
  assert(TPL->size() == 1);
  const TypeConstraint *TC =
      cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint();
  assert(TC &&
         "TPL must have a template type parameter with a type constraint");
  auto *Constraint =
      cast_or_null<ConceptSpecializationExpr>(
          TC->getImmediatelyDeclaredConstraint());
  bool Dependent = false;
  if (Constraint->getTemplateArgsAsWritten()) {
    for (auto &ArgLoc :
         Constraint->getTemplateArgsAsWritten()->arguments().drop_front(1)) {
      if (ArgLoc.getArgument().isDependent()) {
        Dependent = true;
        break;
      }
    }
  }
  TypeConstraintInfo.setInt(Dependent ? 1 : 0);
}

concepts::TypeRequirement::TypeRequirement(TypeSourceInfo *T) :
    Requirement(RK_Type, T->getType()->isDependentType(),
                T->getType()->containsUnexpandedParameterPack(),
                // We reach this ctor with either dependent types (in which
                // IsSatisfied doesn't matter) or with non-dependent type in
                // which the existence of the type indicates satisfaction.
                /*IsSatisfied=*/true
                ), Value(T),
    Status(T->getType()->isDependentType() ? SS_Dependent : SS_Satisfied) {}