Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
//== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file defines RangeConstraintManager, a class that tracks simple
//  equality and inequality constraints on symbolic values of ProgramState.
//
//===----------------------------------------------------------------------===//

#include "clang/Basic/JsonSupport.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/ImmutableSet.h"
#include "llvm/Support/raw_ostream.h"

using namespace clang;
using namespace ento;

// This class can be extended with other tables which will help to reason
// about ranges more precisely.
class OperatorRelationsTable {
  static_assert(BO_LT < BO_GT && BO_GT < BO_LE && BO_LE < BO_GE &&
                    BO_GE < BO_EQ && BO_EQ < BO_NE,
                "This class relies on operators order. Rework it otherwise.");

public:
  enum TriStateKind {
    False = 0,
    True,
    Unknown,
  };

private:
  // CmpOpTable holds states which represent the corresponding range for
  // branching an exploded graph. We can reason about the branch if there is
  // a previously known fact of the existence of a comparison expression with
  // operands used in the current expression.
  // E.g. assuming (x < y) is true that means (x != y) is surely true.
  // if (x previous_operation y)  // <    | !=      | >
  //   if (x operation y)         // !=   | >       | <
  //     tristate                 // True | Unknown | False
  //
  // CmpOpTable represents next:
  // __|< |> |<=|>=|==|!=|UnknownX2|
  // < |1 |0 |* |0 |0 |* |1        |
  // > |0 |1 |0 |* |0 |* |1        |
  // <=|1 |0 |1 |* |1 |* |0        |
  // >=|0 |1 |* |1 |1 |* |0        |
  // ==|0 |0 |* |* |1 |0 |1        |
  // !=|1 |1 |* |* |0 |1 |0        |
  //
  // Columns stands for a previous operator.
  // Rows stands for a current operator.
  // Each row has exactly two `Unknown` cases.
  // UnknownX2 means that both `Unknown` previous operators are met in code,
  // and there is a special column for that, for example:
  // if (x >= y)
  //   if (x != y)
  //     if (x <= y)
  //       False only
  static constexpr size_t CmpOpCount = BO_NE - BO_LT + 1;
  const TriStateKind CmpOpTable[CmpOpCount][CmpOpCount + 1] = {
      // <      >      <=     >=     ==     !=    UnknownX2
      {True, False, Unknown, False, False, Unknown, True}, // <
      {False, True, False, Unknown, False, Unknown, True}, // >
      {True, False, True, Unknown, True, Unknown, False},  // <=
      {False, True, Unknown, True, True, Unknown, False},  // >=
      {False, False, Unknown, Unknown, True, False, True}, // ==
      {True, True, Unknown, Unknown, False, True, False},  // !=
  };

  static size_t getIndexFromOp(BinaryOperatorKind OP) {
    return static_cast<size_t>(OP - BO_LT);
  }

public:
  constexpr size_t getCmpOpCount() const { return CmpOpCount; }

  static BinaryOperatorKind getOpFromIndex(size_t Index) {
    return static_cast<BinaryOperatorKind>(Index + BO_LT);
  }

  TriStateKind getCmpOpState(BinaryOperatorKind CurrentOP,
                         BinaryOperatorKind QueriedOP) const {
    return CmpOpTable[getIndexFromOp(CurrentOP)][getIndexFromOp(QueriedOP)];
  }

  TriStateKind getCmpOpStateForUnknownX2(BinaryOperatorKind CurrentOP) const {
    return CmpOpTable[getIndexFromOp(CurrentOP)][CmpOpCount];
  }
};
//===----------------------------------------------------------------------===//
//                           RangeSet implementation
//===----------------------------------------------------------------------===//

void RangeSet::IntersectInRange(BasicValueFactory &BV, Factory &F,
                                const llvm::APSInt &Lower,
                                const llvm::APSInt &Upper,
                                PrimRangeSet &newRanges,
                                PrimRangeSet::iterator &i,
                                PrimRangeSet::iterator &e) const {
  // There are six cases for each range R in the set:
  //   1. R is entirely before the intersection range.
  //   2. R is entirely after the intersection range.
  //   3. R contains the entire intersection range.
  //   4. R starts before the intersection range and ends in the middle.
  //   5. R starts in the middle of the intersection range and ends after it.
  //   6. R is entirely contained in the intersection range.
  // These correspond to each of the conditions below.
  for (/* i = begin(), e = end() */; i != e; ++i) {
    if (i->To() < Lower) {
      continue;
    }
    if (i->From() > Upper) {
      break;
    }

    if (i->Includes(Lower)) {
      if (i->Includes(Upper)) {
        newRanges =
            F.add(newRanges, Range(BV.getValue(Lower), BV.getValue(Upper)));
        break;
      } else
        newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
    } else {
      if (i->Includes(Upper)) {
        newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
        break;
      } else
        newRanges = F.add(newRanges, *i);
    }
  }
}

const llvm::APSInt &RangeSet::getMinValue() const {
  assert(!isEmpty());
  return begin()->From();
}

const llvm::APSInt &RangeSet::getMaxValue() const {
  assert(!isEmpty());
  // NOTE: It's a shame that we can't implement 'getMaxValue' without scanning
  //       the whole tree to get to the last element.
  //       llvm::ImmutableSet should support decrement for 'end' iterators
  //       or reverse order iteration.
  auto It = begin();
  for (auto End = end(); std::next(It) != End; ++It) {
  }
  return It->To();
}

bool RangeSet::pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
  if (isEmpty()) {
    // This range is already infeasible.
    return false;
  }

  // This function has nine cases, the cartesian product of range-testing
  // both the upper and lower bounds against the symbol's type.
  // Each case requires a different pinning operation.
  // The function returns false if the described range is entirely outside
  // the range of values for the associated symbol.
  APSIntType Type(getMinValue());
  APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
  APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);

  switch (LowerTest) {
  case APSIntType::RTR_Below:
    switch (UpperTest) {
    case APSIntType::RTR_Below:
      // The entire range is outside the symbol's set of possible values.
      // If this is a conventionally-ordered range, the state is infeasible.
      if (Lower <= Upper)
        return false;

      // However, if the range wraps around, it spans all possible values.
      Lower = Type.getMinValue();
      Upper = Type.getMaxValue();
      break;
    case APSIntType::RTR_Within:
      // The range starts below what's possible but ends within it. Pin.
      Lower = Type.getMinValue();
      Type.apply(Upper);
      break;
    case APSIntType::RTR_Above:
      // The range spans all possible values for the symbol. Pin.
      Lower = Type.getMinValue();
      Upper = Type.getMaxValue();
      break;
    }
    break;
  case APSIntType::RTR_Within:
    switch (UpperTest) {
    case APSIntType::RTR_Below:
      // The range wraps around, but all lower values are not possible.
      Type.apply(Lower);
      Upper = Type.getMaxValue();
      break;
    case APSIntType::RTR_Within:
      // The range may or may not wrap around, but both limits are valid.
      Type.apply(Lower);
      Type.apply(Upper);
      break;
    case APSIntType::RTR_Above:
      // The range starts within what's possible but ends above it. Pin.
      Type.apply(Lower);
      Upper = Type.getMaxValue();
      break;
    }
    break;
  case APSIntType::RTR_Above:
    switch (UpperTest) {
    case APSIntType::RTR_Below:
      // The range wraps but is outside the symbol's set of possible values.
      return false;
    case APSIntType::RTR_Within:
      // The range starts above what's possible but ends within it (wrap).
      Lower = Type.getMinValue();
      Type.apply(Upper);
      break;
    case APSIntType::RTR_Above:
      // The entire range is outside the symbol's set of possible values.
      // If this is a conventionally-ordered range, the state is infeasible.
      if (Lower <= Upper)
        return false;

      // However, if the range wraps around, it spans all possible values.
      Lower = Type.getMinValue();
      Upper = Type.getMaxValue();
      break;
    }
    break;
  }

  return true;
}

// Returns a set containing the values in the receiving set, intersected with
// the closed range [Lower, Upper]. Unlike the Range type, this range uses
// modular arithmetic, corresponding to the common treatment of C integer
// overflow. Thus, if the Lower bound is greater than the Upper bound, the
// range is taken to wrap around. This is equivalent to taking the
// intersection with the two ranges [Min, Upper] and [Lower, Max],
// or, alternatively, /removing/ all integers between Upper and Lower.
RangeSet RangeSet::Intersect(BasicValueFactory &BV, Factory &F,
                             llvm::APSInt Lower, llvm::APSInt Upper) const {
  PrimRangeSet newRanges = F.getEmptySet();

  if (isEmpty() || !pin(Lower, Upper))
    return newRanges;

  PrimRangeSet::iterator i = begin(), e = end();
  if (Lower <= Upper)
    IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
  else {
    // The order of the next two statements is important!
    // IntersectInRange() does not reset the iteration state for i and e.
    // Therefore, the lower range most be handled first.
    IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
    IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
  }

  return newRanges;
}

// Returns a set containing the values in the receiving set, intersected with
// the range set passed as parameter.
RangeSet RangeSet::Intersect(BasicValueFactory &BV, Factory &F,
                             const RangeSet &Other) const {
  PrimRangeSet newRanges = F.getEmptySet();

  for (iterator i = Other.begin(), e = Other.end(); i != e; ++i) {
    RangeSet newPiece = Intersect(BV, F, i->From(), i->To());
    for (iterator j = newPiece.begin(), ee = newPiece.end(); j != ee; ++j) {
      newRanges = F.add(newRanges, *j);
    }
  }

  return newRanges;
}

// Turn all [A, B] ranges to [-B, -A], when "-" is a C-like unary minus
// operation under the values of the type.
//
// We also handle MIN because applying unary minus to MIN does not change it.
// Example 1:
// char x = -128;        // -128 is a MIN value in a range of 'char'
// char y = -x;          // y: -128
// Example 2:
// unsigned char x = 0;  // 0 is a MIN value in a range of 'unsigned char'
// unsigned char y = -x; // y: 0
//
// And it makes us to separate the range
// like [MIN, N] to [MIN, MIN] U [-N,MAX].
// For instance, whole range is {-128..127} and subrange is [-128,-126],
// thus [-128,-127,-126,.....] negates to [-128,.....,126,127].
//
// Negate restores disrupted ranges on bounds,
// e.g. [MIN, B] => [MIN, MIN] U [-B, MAX] => [MIN, B].
RangeSet RangeSet::Negate(BasicValueFactory &BV, Factory &F) const {
  PrimRangeSet newRanges = F.getEmptySet();

  if (isEmpty())
    return newRanges;

  const llvm::APSInt sampleValue = getMinValue();
  const llvm::APSInt &MIN = BV.getMinValue(sampleValue);
  const llvm::APSInt &MAX = BV.getMaxValue(sampleValue);

  // Handle a special case for MIN value.
  iterator i = begin();
  const llvm::APSInt &from = i->From();
  const llvm::APSInt &to = i->To();
  if (from == MIN) {
    // If [from, to] are [MIN, MAX], then just return the same [MIN, MAX].
    if (to == MAX) {
      newRanges = ranges;
    } else {
      // Add separate range for the lowest value.
      newRanges = F.add(newRanges, Range(MIN, MIN));
      // Skip adding the second range in case when [from, to] are [MIN, MIN].
      if (to != MIN) {
        newRanges = F.add(newRanges, Range(BV.getValue(-to), MAX));
      }
    }
    // Skip the first range in the loop.
    ++i;
  }

  // Negate all other ranges.
  for (iterator e = end(); i != e; ++i) {
    // Negate int values.
    const llvm::APSInt &newFrom = BV.getValue(-i->To());
    const llvm::APSInt &newTo = BV.getValue(-i->From());
    // Add a negated range.
    newRanges = F.add(newRanges, Range(newFrom, newTo));
  }

  if (newRanges.isSingleton())
    return newRanges;

  // Try to find and unite next ranges:
  // [MIN, MIN] & [MIN + 1, N] => [MIN, N].
  iterator iter1 = newRanges.begin();
  iterator iter2 = std::next(iter1);

  if (iter1->To() == MIN && (iter2->From() - 1) == MIN) {
    const llvm::APSInt &to = iter2->To();
    // remove adjacent ranges
    newRanges = F.remove(newRanges, *iter1);
    newRanges = F.remove(newRanges, *newRanges.begin());
    // add united range
    newRanges = F.add(newRanges, Range(MIN, to));
  }

  return newRanges;
}

void RangeSet::print(raw_ostream &os) const {
  bool isFirst = true;
  os << "{ ";
  for (iterator i = begin(), e = end(); i != e; ++i) {
    if (isFirst)
      isFirst = false;
    else
      os << ", ";

    os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
       << ']';
  }
  os << " }";
}

namespace {

/// A little component aggregating all of the reasoning we have about
/// the ranges of symbolic expressions.
///
/// Even when we don't know the exact values of the operands, we still
/// can get a pretty good estimate of the result's range.
class SymbolicRangeInferrer
    : public SymExprVisitor<SymbolicRangeInferrer, RangeSet> {
public:
  static RangeSet inferRange(BasicValueFactory &BV, RangeSet::Factory &F,
                             ProgramStateRef State, SymbolRef Sym) {
    SymbolicRangeInferrer Inferrer(BV, F, State);
    return Inferrer.infer(Sym);
  }

  RangeSet VisitSymExpr(SymbolRef Sym) {
    // If we got to this function, the actual type of the symbolic
    // expression is not supported for advanced inference.
    // In this case, we simply backoff to the default "let's simply
    // infer the range from the expression's type".
    return infer(Sym->getType());
  }

  RangeSet VisitSymIntExpr(const SymIntExpr *Sym) {
    return VisitBinaryOperator(Sym);
  }

  RangeSet VisitIntSymExpr(const IntSymExpr *Sym) {
    return VisitBinaryOperator(Sym);
  }

  RangeSet VisitSymSymExpr(const SymSymExpr *Sym) {
    return VisitBinaryOperator(Sym);
  }

private:
  SymbolicRangeInferrer(BasicValueFactory &BV, RangeSet::Factory &F,
                        ProgramStateRef S)
      : ValueFactory(BV), RangeFactory(F), State(S) {}

  /// Infer range information from the given integer constant.
  ///
  /// It's not a real "inference", but is here for operating with
  /// sub-expressions in a more polymorphic manner.
  RangeSet inferAs(const llvm::APSInt &Val, QualType) {
    return {RangeFactory, Val};
  }

  /// Infer range information from symbol in the context of the given type.
  RangeSet inferAs(SymbolRef Sym, QualType DestType) {
    QualType ActualType = Sym->getType();
    // Check that we can reason about the symbol at all.
    if (ActualType->isIntegralOrEnumerationType() ||
        Loc::isLocType(ActualType)) {
      return infer(Sym);
    }
    // Otherwise, let's simply infer from the destination type.
    // We couldn't figure out nothing else about that expression.
    return infer(DestType);
  }

  RangeSet infer(SymbolRef Sym) {
    const RangeSet *AssociatedRange = State->get<ConstraintRange>(Sym);

    // If Sym is a difference of symbols A - B, then maybe we have range set
    // stored for B - A.
    const RangeSet *RangeAssociatedWithNegatedSym =
        getRangeForMinusSymbol(State, Sym);

    // If we have range set stored for both A - B and B - A then calculate the
    // effective range set by intersecting the range set for A - B and the
    // negated range set of B - A.
    if (AssociatedRange && RangeAssociatedWithNegatedSym)
      return AssociatedRange->Intersect(
          ValueFactory, RangeFactory,
          RangeAssociatedWithNegatedSym->Negate(ValueFactory, RangeFactory));

    if (AssociatedRange)
      return *AssociatedRange;

    if (RangeAssociatedWithNegatedSym)
      return RangeAssociatedWithNegatedSym->Negate(ValueFactory, RangeFactory);

    // If Sym is a comparison expression (except <=>),
    // find any other comparisons with the same operands.
    // See function description.
    const RangeSet CmpRangeSet = getRangeForComparisonSymbol(State, Sym);
    if (!CmpRangeSet.isEmpty())
      return CmpRangeSet;

    return Visit(Sym);
  }

  /// Infer range information solely from the type.
  RangeSet infer(QualType T) {
    // Lazily generate a new RangeSet representing all possible values for the
    // given symbol type.
    RangeSet Result(RangeFactory, ValueFactory.getMinValue(T),
                    ValueFactory.getMaxValue(T));

    // References are known to be non-zero.
    if (T->isReferenceType())
      return assumeNonZero(Result, T);

    return Result;
  }

  template <class BinarySymExprTy>
  RangeSet VisitBinaryOperator(const BinarySymExprTy *Sym) {
    // TODO #1: VisitBinaryOperator implementation might not make a good
    // use of the inferred ranges.  In this case, we might be calculating
    // everything for nothing.  This being said, we should introduce some
    // sort of laziness mechanism here.
    //
    // TODO #2: We didn't go into the nested expressions before, so it
    // might cause us spending much more time doing the inference.
    // This can be a problem for deeply nested expressions that are
    // involved in conditions and get tested continuously.  We definitely
    // need to address this issue and introduce some sort of caching
    // in here.
    QualType ResultType = Sym->getType();
    return VisitBinaryOperator(inferAs(Sym->getLHS(), ResultType),
                               Sym->getOpcode(),
                               inferAs(Sym->getRHS(), ResultType), ResultType);
  }

  RangeSet VisitBinaryOperator(RangeSet LHS, BinaryOperator::Opcode Op,
                               RangeSet RHS, QualType T) {
    switch (Op) {
    case BO_Or:
      return VisitBinaryOperator<BO_Or>(LHS, RHS, T);
    case BO_And:
      return VisitBinaryOperator<BO_And>(LHS, RHS, T);
    case BO_Rem:
      return VisitBinaryOperator<BO_Rem>(LHS, RHS, T);
    default:
      return infer(T);
    }
  }

  //===----------------------------------------------------------------------===//
  //                         Ranges and operators
  //===----------------------------------------------------------------------===//

  /// Return a rough approximation of the given range set.
  ///
  /// For the range set:
  ///   { [x_0, y_0], [x_1, y_1], ... , [x_N, y_N] }
  /// it will return the range [x_0, y_N].
  static Range fillGaps(RangeSet Origin) {
    assert(!Origin.isEmpty());
    return {Origin.getMinValue(), Origin.getMaxValue()};
  }

  /// Try to convert given range into the given type.
  ///
  /// It will return llvm::None only when the trivial conversion is possible.
  llvm::Optional<Range> convert(const Range &Origin, APSIntType To) {
    if (To.testInRange(Origin.From(), false) != APSIntType::RTR_Within ||
        To.testInRange(Origin.To(), false) != APSIntType::RTR_Within) {
      return llvm::None;
    }
    return Range(ValueFactory.Convert(To, Origin.From()),
                 ValueFactory.Convert(To, Origin.To()));
  }

  template <BinaryOperator::Opcode Op>
  RangeSet VisitBinaryOperator(RangeSet LHS, RangeSet RHS, QualType T) {
    // We should propagate information about unfeasbility of one of the
    // operands to the resulting range.
    if (LHS.isEmpty() || RHS.isEmpty()) {
      return RangeFactory.getEmptySet();
    }

    Range CoarseLHS = fillGaps(LHS);
    Range CoarseRHS = fillGaps(RHS);

    APSIntType ResultType = ValueFactory.getAPSIntType(T);

    // We need to convert ranges to the resulting type, so we can compare values
    // and combine them in a meaningful (in terms of the given operation) way.
    auto ConvertedCoarseLHS = convert(CoarseLHS, ResultType);
    auto ConvertedCoarseRHS = convert(CoarseRHS, ResultType);

    // It is hard to reason about ranges when conversion changes
    // borders of the ranges.
    if (!ConvertedCoarseLHS || !ConvertedCoarseRHS) {
      return infer(T);
    }

    return VisitBinaryOperator<Op>(*ConvertedCoarseLHS, *ConvertedCoarseRHS, T);
  }

  template <BinaryOperator::Opcode Op>
  RangeSet VisitBinaryOperator(Range LHS, Range RHS, QualType T) {
    return infer(T);
  }

  /// Return a symmetrical range for the given range and type.
  ///
  /// If T is signed, return the smallest range [-x..x] that covers the original
  /// range, or [-min(T), max(T)] if the aforementioned symmetric range doesn't
  /// exist due to original range covering min(T)).
  ///
  /// If T is unsigned, return the smallest range [0..x] that covers the
  /// original range.
  Range getSymmetricalRange(Range Origin, QualType T) {
    APSIntType RangeType = ValueFactory.getAPSIntType(T);

    if (RangeType.isUnsigned()) {
      return Range(ValueFactory.getMinValue(RangeType), Origin.To());
    }

    if (Origin.From().isMinSignedValue()) {
      // If mini is a minimal signed value, absolute value of it is greater
      // than the maximal signed value.  In order to avoid these
      // complications, we simply return the whole range.
      return {ValueFactory.getMinValue(RangeType),
              ValueFactory.getMaxValue(RangeType)};
    }

    // At this point, we are sure that the type is signed and we can safely
    // use unary - operator.
    //
    // While calculating absolute maximum, we can use the following formula
    // because of these reasons:
    //   * If From >= 0 then To >= From and To >= -From.
    //     AbsMax == To == max(To, -From)
    //   * If To <= 0 then -From >= -To and -From >= From.
    //     AbsMax == -From == max(-From, To)
    //   * Otherwise, From <= 0, To >= 0, and
    //     AbsMax == max(abs(From), abs(To))
    llvm::APSInt AbsMax = std::max(-Origin.From(), Origin.To());

    // Intersection is guaranteed to be non-empty.
    return {ValueFactory.getValue(-AbsMax), ValueFactory.getValue(AbsMax)};
  }

  /// Return a range set subtracting zero from \p Domain.
  RangeSet assumeNonZero(RangeSet Domain, QualType T) {
    APSIntType IntType = ValueFactory.getAPSIntType(T);
    return Domain.Intersect(ValueFactory, RangeFactory,
                            ++IntType.getZeroValue(), --IntType.getZeroValue());
  }

  // FIXME: Once SValBuilder supports unary minus, we should use SValBuilder to
  //        obtain the negated symbolic expression instead of constructing the
  //        symbol manually. This will allow us to support finding ranges of not
  //        only negated SymSymExpr-type expressions, but also of other, simpler
  //        expressions which we currently do not know how to negate.
  const RangeSet *getRangeForMinusSymbol(ProgramStateRef State, SymbolRef Sym) {
    if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(Sym)) {
      if (SSE->getOpcode() == BO_Sub) {
        QualType T = Sym->getType();
        SymbolManager &SymMgr = State->getSymbolManager();
        SymbolRef negSym =
            SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub, SSE->getLHS(), T);

        if (const RangeSet *negV = State->get<ConstraintRange>(negSym)) {
          // Unsigned range set cannot be negated, unless it is [0, 0].
          if (T->isUnsignedIntegerOrEnumerationType() ||
              T->isSignedIntegerOrEnumerationType())
            return negV;
        }
      }
    }
    return nullptr;
  }

  // Returns ranges only for binary comparison operators (except <=>)
  // when left and right operands are symbolic values.
  // Finds any other comparisons with the same operands.
  // Then do logical calculations and refuse impossible branches.
  // E.g. (x < y) and (x > y) at the same time are impossible.
  // E.g. (x >= y) and (x != y) at the same time makes (x > y) true only.
  // E.g. (x == y) and (y == x) are just reversed but the same.
  // It covers all possible combinations (see CmpOpTable description).
  // Note that `x` and `y` can also stand for subexpressions,
  // not only for actual symbols.
  RangeSet getRangeForComparisonSymbol(ProgramStateRef State, SymbolRef Sym) {
    const RangeSet EmptyRangeSet = RangeFactory.getEmptySet();

    auto SSE = dyn_cast<SymSymExpr>(Sym);
    if (!SSE)
      return EmptyRangeSet;

    BinaryOperatorKind CurrentOP = SSE->getOpcode();

    // We currently do not support <=> (C++20).
    if (!BinaryOperator::isComparisonOp(CurrentOP) || (CurrentOP == BO_Cmp))
      return EmptyRangeSet;

    static const OperatorRelationsTable CmpOpTable{};

    const SymExpr *LHS = SSE->getLHS();
    const SymExpr *RHS = SSE->getRHS();
    QualType T = SSE->getType();

    SymbolManager &SymMgr = State->getSymbolManager();
    const llvm::APSInt &Zero = ValueFactory.getValue(0, T);
    const llvm::APSInt &One = ValueFactory.getValue(1, T);
    const RangeSet TrueRangeSet(RangeFactory, One, One);
    const RangeSet FalseRangeSet(RangeFactory, Zero, Zero);

    int UnknownStates = 0;

    // Loop goes through all of the columns exept the last one ('UnknownX2').
    // We treat `UnknownX2` column separately at the end of the loop body.
    for (size_t i = 0; i < CmpOpTable.getCmpOpCount(); ++i) {

      // Let's find an expression e.g. (x < y).
      BinaryOperatorKind QueriedOP = OperatorRelationsTable::getOpFromIndex(i);
      const SymSymExpr *SymSym = SymMgr.getSymSymExpr(LHS, QueriedOP, RHS, T);
      const RangeSet *QueriedRangeSet = State->get<ConstraintRange>(SymSym);

      // If ranges were not previously found,
      // try to find a reversed expression (y > x).
      if (!QueriedRangeSet) {
        const BinaryOperatorKind ROP =
            BinaryOperator::reverseComparisonOp(QueriedOP);
        SymSym = SymMgr.getSymSymExpr(RHS, ROP, LHS, T);
        QueriedRangeSet = State->get<ConstraintRange>(SymSym);
      }

      if (!QueriedRangeSet || QueriedRangeSet->isEmpty())
        continue;

      const llvm::APSInt *ConcreteValue = QueriedRangeSet->getConcreteValue();
      const bool isInFalseBranch =
          ConcreteValue ? (*ConcreteValue == 0) : false;

      // If it is a false branch, we shall be guided by opposite operator,
      // because the table is made assuming we are in the true branch.
      // E.g. when (x <= y) is false, then (x > y) is true.
      if (isInFalseBranch)
        QueriedOP = BinaryOperator::negateComparisonOp(QueriedOP);

      OperatorRelationsTable::TriStateKind BranchState =
          CmpOpTable.getCmpOpState(CurrentOP, QueriedOP);

      if (BranchState == OperatorRelationsTable::Unknown) {
        if (++UnknownStates == 2)
          // If we met both Unknown states.
          // if (x <= y)    // assume true
          //   if (x != y)  // assume true
          //     if (x < y) // would be also true
          // Get a state from `UnknownX2` column.
          BranchState = CmpOpTable.getCmpOpStateForUnknownX2(CurrentOP);
        else
          continue;
      }

      return (BranchState == OperatorRelationsTable::True) ? TrueRangeSet
                                                           : FalseRangeSet;
    }

    return EmptyRangeSet;
  }

  BasicValueFactory &ValueFactory;
  RangeSet::Factory &RangeFactory;
  ProgramStateRef State;
};

template <>
RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Or>(Range LHS, Range RHS,
                                                           QualType T) {
  APSIntType ResultType = ValueFactory.getAPSIntType(T);
  llvm::APSInt Zero = ResultType.getZeroValue();

  bool IsLHSPositiveOrZero = LHS.From() >= Zero;
  bool IsRHSPositiveOrZero = RHS.From() >= Zero;

  bool IsLHSNegative = LHS.To() < Zero;
  bool IsRHSNegative = RHS.To() < Zero;

  // Check if both ranges have the same sign.
  if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) ||
      (IsLHSNegative && IsRHSNegative)) {
    // The result is definitely greater or equal than any of the operands.
    const llvm::APSInt &Min = std::max(LHS.From(), RHS.From());

    // We estimate maximal value for positives as the maximal value for the
    // given type.  For negatives, we estimate it with -1 (e.g. 0x11111111).
    //
    // TODO: We basically, limit the resulting range from below, but don't do
    //       anything with the upper bound.
    //
    //       For positive operands, it can be done as follows: for the upper
    //       bound of LHS and RHS we calculate the most significant bit set.
    //       Let's call it the N-th bit.  Then we can estimate the maximal
    //       number to be 2^(N+1)-1, i.e. the number with all the bits up to
    //       the N-th bit set.
    const llvm::APSInt &Max = IsLHSNegative
                                  ? ValueFactory.getValue(--Zero)
                                  : ValueFactory.getMaxValue(ResultType);

    return {RangeFactory, ValueFactory.getValue(Min), Max};
  }

  // Otherwise, let's check if at least one of the operands is negative.
  if (IsLHSNegative || IsRHSNegative) {
    // This means that the result is definitely negative as well.
    return {RangeFactory, ValueFactory.getMinValue(ResultType),
            ValueFactory.getValue(--Zero)};
  }

  RangeSet DefaultRange = infer(T);

  // It is pretty hard to reason about operands with different signs
  // (and especially with possibly different signs).  We simply check if it
  // can be zero.  In order to conclude that the result could not be zero,
  // at least one of the operands should be definitely not zero itself.
  if (!LHS.Includes(Zero) || !RHS.Includes(Zero)) {
    return assumeNonZero(DefaultRange, T);
  }

  // Nothing much else to do here.
  return DefaultRange;
}

template <>
RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_And>(Range LHS,
                                                            Range RHS,
                                                            QualType T) {
  APSIntType ResultType = ValueFactory.getAPSIntType(T);
  llvm::APSInt Zero = ResultType.getZeroValue();

  bool IsLHSPositiveOrZero = LHS.From() >= Zero;
  bool IsRHSPositiveOrZero = RHS.From() >= Zero;

  bool IsLHSNegative = LHS.To() < Zero;
  bool IsRHSNegative = RHS.To() < Zero;

  // Check if both ranges have the same sign.
  if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) ||
      (IsLHSNegative && IsRHSNegative)) {
    // The result is definitely less or equal than any of the operands.
    const llvm::APSInt &Max = std::min(LHS.To(), RHS.To());

    // We conservatively estimate lower bound to be the smallest positive
    // or negative value corresponding to the sign of the operands.
    const llvm::APSInt &Min = IsLHSNegative
                                  ? ValueFactory.getMinValue(ResultType)
                                  : ValueFactory.getValue(Zero);

    return {RangeFactory, Min, Max};
  }

  // Otherwise, let's check if at least one of the operands is positive.
  if (IsLHSPositiveOrZero || IsRHSPositiveOrZero) {
    // This makes result definitely positive.
    //
    // We can also reason about a maximal value by finding the maximal
    // value of the positive operand.
    const llvm::APSInt &Max = IsLHSPositiveOrZero ? LHS.To() : RHS.To();

    // The minimal value on the other hand is much harder to reason about.
    // The only thing we know for sure is that the result is positive.
    return {RangeFactory, ValueFactory.getValue(Zero),
            ValueFactory.getValue(Max)};
  }

  // Nothing much else to do here.
  return infer(T);
}

template <>
RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Rem>(Range LHS,
                                                            Range RHS,
                                                            QualType T) {
  llvm::APSInt Zero = ValueFactory.getAPSIntType(T).getZeroValue();

  Range ConservativeRange = getSymmetricalRange(RHS, T);

  llvm::APSInt Max = ConservativeRange.To();
  llvm::APSInt Min = ConservativeRange.From();

  if (Max == Zero) {
    // It's an undefined behaviour to divide by 0 and it seems like we know
    // for sure that RHS is 0.  Let's say that the resulting range is
    // simply infeasible for that matter.
    return RangeFactory.getEmptySet();
  }

  // At this point, our conservative range is closed.  The result, however,
  // couldn't be greater than the RHS' maximal absolute value.  Because of
  // this reason, we turn the range into open (or half-open in case of
  // unsigned integers).
  //
  // While we operate on integer values, an open interval (a, b) can be easily
  // represented by the closed interval [a + 1, b - 1].  And this is exactly
  // what we do next.
  //
  // If we are dealing with unsigned case, we shouldn't move the lower bound.
  if (Min.isSigned()) {
    ++Min;
  }
  --Max;

  bool IsLHSPositiveOrZero = LHS.From() >= Zero;
  bool IsRHSPositiveOrZero = RHS.From() >= Zero;

  // Remainder operator results with negative operands is implementation
  // defined.  Positive cases are much easier to reason about though.
  if (IsLHSPositiveOrZero && IsRHSPositiveOrZero) {
    // If maximal value of LHS is less than maximal value of RHS,
    // the result won't get greater than LHS.To().
    Max = std::min(LHS.To(), Max);
    // We want to check if it is a situation similar to the following:
    //
    // <------------|---[  LHS  ]--------[  RHS  ]----->
    //  -INF        0                              +INF
    //
    // In this situation, we can conclude that (LHS / RHS) == 0 and
    // (LHS % RHS) == LHS.
    Min = LHS.To() < RHS.From() ? LHS.From() : Zero;
  }

  // Nevertheless, the symmetrical range for RHS is a conservative estimate
  // for any sign of either LHS, or RHS.
  return {RangeFactory, ValueFactory.getValue(Min), ValueFactory.getValue(Max)};
}

class RangeConstraintManager : public RangedConstraintManager {
public:
  RangeConstraintManager(ExprEngine *EE, SValBuilder &SVB)
      : RangedConstraintManager(EE, SVB) {}

  //===------------------------------------------------------------------===//
  // Implementation for interface from ConstraintManager.
  //===------------------------------------------------------------------===//

  bool haveEqualConstraints(ProgramStateRef S1,
                            ProgramStateRef S2) const override {
    return S1->get<ConstraintRange>() == S2->get<ConstraintRange>();
  }

  bool canReasonAbout(SVal X) const override;

  ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;

  const llvm::APSInt *getSymVal(ProgramStateRef State,
                                SymbolRef Sym) const override;

  ProgramStateRef removeDeadBindings(ProgramStateRef State,
                                     SymbolReaper &SymReaper) override;

  void printJson(raw_ostream &Out, ProgramStateRef State, const char *NL = "\n",
                 unsigned int Space = 0, bool IsDot = false) const override;

  //===------------------------------------------------------------------===//
  // Implementation for interface from RangedConstraintManager.
  //===------------------------------------------------------------------===//

  ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym,
                              const llvm::APSInt &V,
                              const llvm::APSInt &Adjustment) override;

  ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym,
                              const llvm::APSInt &V,
                              const llvm::APSInt &Adjustment) override;

  ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym,
                              const llvm::APSInt &V,
                              const llvm::APSInt &Adjustment) override;

  ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym,
                              const llvm::APSInt &V,
                              const llvm::APSInt &Adjustment) override;

  ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym,
                              const llvm::APSInt &V,
                              const llvm::APSInt &Adjustment) override;

  ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym,
                              const llvm::APSInt &V,
                              const llvm::APSInt &Adjustment) override;

  ProgramStateRef assumeSymWithinInclusiveRange(
      ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
      const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;

  ProgramStateRef assumeSymOutsideInclusiveRange(
      ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
      const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;

private:
  RangeSet::Factory F;

  RangeSet getRange(ProgramStateRef State, SymbolRef Sym);

  RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym,
                         const llvm::APSInt &Int,
                         const llvm::APSInt &Adjustment);
  RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym,
                         const llvm::APSInt &Int,
                         const llvm::APSInt &Adjustment);
  RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym,
                         const llvm::APSInt &Int,
                         const llvm::APSInt &Adjustment);
  RangeSet getSymLERange(llvm::function_ref<RangeSet()> RS,
                         const llvm::APSInt &Int,
                         const llvm::APSInt &Adjustment);
  RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym,
                         const llvm::APSInt &Int,
                         const llvm::APSInt &Adjustment);
};

} // end anonymous namespace

std::unique_ptr<ConstraintManager>
ento::CreateRangeConstraintManager(ProgramStateManager &StMgr,
                                   ExprEngine *Eng) {
  return std::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder());
}

bool RangeConstraintManager::canReasonAbout(SVal X) const {
  Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
  if (SymVal && SymVal->isExpression()) {
    const SymExpr *SE = SymVal->getSymbol();

    if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
      switch (SIE->getOpcode()) {
      // We don't reason yet about bitwise-constraints on symbolic values.
      case BO_And:
      case BO_Or:
      case BO_Xor:
        return false;
      // We don't reason yet about these arithmetic constraints on
      // symbolic values.
      case BO_Mul:
      case BO_Div:
      case BO_Rem:
      case BO_Shl:
      case BO_Shr:
        return false;
      // All other cases.
      default:
        return true;
      }
    }

    if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
      // FIXME: Handle <=> here.
      if (BinaryOperator::isEqualityOp(SSE->getOpcode()) ||
          BinaryOperator::isRelationalOp(SSE->getOpcode())) {
        // We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc.
        // We've recently started producing Loc <> NonLoc comparisons (that
        // result from casts of one of the operands between eg. intptr_t and
        // void *), but we can't reason about them yet.
        if (Loc::isLocType(SSE->getLHS()->getType())) {
          return Loc::isLocType(SSE->getRHS()->getType());
        }
      }
    }

    return false;
  }

  return true;
}

ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
                                                    SymbolRef Sym) {
  const RangeSet *Ranges = State->get<ConstraintRange>(Sym);

  // If we don't have any information about this symbol, it's underconstrained.
  if (!Ranges)
    return ConditionTruthVal();

  // If we have a concrete value, see if it's zero.
  if (const llvm::APSInt *Value = Ranges->getConcreteValue())
    return *Value == 0;

  BasicValueFactory &BV = getBasicVals();
  APSIntType IntType = BV.getAPSIntType(Sym->getType());
  llvm::APSInt Zero = IntType.getZeroValue();

  // Check if zero is in the set of possible values.
  if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty())
    return false;

  // Zero is a possible value, but it is not the /only/ possible value.
  return ConditionTruthVal();
}

const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St,
                                                      SymbolRef Sym) const {
  const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(Sym);
  return T ? T->getConcreteValue() : nullptr;
}

/// Scan all symbols referenced by the constraints. If the symbol is not alive
/// as marked in LSymbols, mark it as dead in DSymbols.
ProgramStateRef
RangeConstraintManager::removeDeadBindings(ProgramStateRef State,
                                           SymbolReaper &SymReaper) {
  bool Changed = false;
  ConstraintRangeTy CR = State->get<ConstraintRange>();
  ConstraintRangeTy::Factory &CRFactory = State->get_context<ConstraintRange>();

  for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
    SymbolRef Sym = I.getKey();
    if (SymReaper.isDead(Sym)) {
      Changed = true;
      CR = CRFactory.remove(CR, Sym);
    }
  }

  return Changed ? State->set<ConstraintRange>(CR) : State;
}

RangeSet RangeConstraintManager::getRange(ProgramStateRef State,
                                          SymbolRef Sym) {
  return SymbolicRangeInferrer::inferRange(getBasicVals(), F, State, Sym);
}

//===------------------------------------------------------------------------===
// assumeSymX methods: protected interface for RangeConstraintManager.
//===------------------------------------------------------------------------===/

// The syntax for ranges below is mathematical, using [x, y] for closed ranges
// and (x, y) for open ranges. These ranges are modular, corresponding with
// a common treatment of C integer overflow. This means that these methods
// do not have to worry about overflow; RangeSet::Intersect can handle such a
// "wraparound" range.
// As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
// UINT_MAX, 0, 1, and 2.

ProgramStateRef
RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
                                    const llvm::APSInt &Int,
                                    const llvm::APSInt &Adjustment) {
  // Before we do any real work, see if the value can even show up.
  APSIntType AdjustmentType(Adjustment);
  if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
    return St;

  llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment;
  llvm::APSInt Upper = Lower;
  --Lower;
  ++Upper;

  // [Int-Adjustment+1, Int-Adjustment-1]
  // Notice that the lower bound is greater than the upper bound.
  RangeSet New = getRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower);
  return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
}

ProgramStateRef
RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
                                    const llvm::APSInt &Int,
                                    const llvm::APSInt &Adjustment) {
  // Before we do any real work, see if the value can even show up.
  APSIntType AdjustmentType(Adjustment);
  if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
    return nullptr;

  // [Int-Adjustment, Int-Adjustment]
  llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
  RangeSet New = getRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt);
  return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
}

RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St,
                                               SymbolRef Sym,
                                               const llvm::APSInt &Int,
                                               const llvm::APSInt &Adjustment) {
  // Before we do any real work, see if the value can even show up.
  APSIntType AdjustmentType(Adjustment);
  switch (AdjustmentType.testInRange(Int, true)) {
  case APSIntType::RTR_Below:
    return F.getEmptySet();
  case APSIntType::RTR_Within:
    break;
  case APSIntType::RTR_Above:
    return getRange(St, Sym);
  }

  // Special case for Int == Min. This is always false.
  llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
  llvm::APSInt Min = AdjustmentType.getMinValue();
  if (ComparisonVal == Min)
    return F.getEmptySet();

  llvm::APSInt Lower = Min - Adjustment;
  llvm::APSInt Upper = ComparisonVal - Adjustment;
  --Upper;

  return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
}

ProgramStateRef
RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
                                    const llvm::APSInt &Int,
                                    const llvm::APSInt &Adjustment) {
  RangeSet New = getSymLTRange(St, Sym, Int, Adjustment);
  return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
}

RangeSet RangeConstraintManager::getSymGTRange(ProgramStateRef St,
                                               SymbolRef Sym,
                                               const llvm::APSInt &Int,
                                               const llvm::APSInt &Adjustment) {
  // Before we do any real work, see if the value can even show up.
  APSIntType AdjustmentType(Adjustment);
  switch (AdjustmentType.testInRange(Int, true)) {
  case APSIntType::RTR_Below:
    return getRange(St, Sym);
  case APSIntType::RTR_Within:
    break;
  case APSIntType::RTR_Above:
    return F.getEmptySet();
  }

  // Special case for Int == Max. This is always false.
  llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
  llvm::APSInt Max = AdjustmentType.getMaxValue();
  if (ComparisonVal == Max)
    return F.getEmptySet();

  llvm::APSInt Lower = ComparisonVal - Adjustment;
  llvm::APSInt Upper = Max - Adjustment;
  ++Lower;

  return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
}

ProgramStateRef
RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
                                    const llvm::APSInt &Int,
                                    const llvm::APSInt &Adjustment) {
  RangeSet New = getSymGTRange(St, Sym, Int, Adjustment);
  return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
}

RangeSet RangeConstraintManager::getSymGERange(ProgramStateRef St,
                                               SymbolRef Sym,
                                               const llvm::APSInt &Int,
                                               const llvm::APSInt &Adjustment) {
  // Before we do any real work, see if the value can even show up.
  APSIntType AdjustmentType(Adjustment);
  switch (AdjustmentType.testInRange(Int, true)) {
  case APSIntType::RTR_Below:
    return getRange(St, Sym);
  case APSIntType::RTR_Within:
    break;
  case APSIntType::RTR_Above:
    return F.getEmptySet();
  }

  // Special case for Int == Min. This is always feasible.
  llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
  llvm::APSInt Min = AdjustmentType.getMinValue();
  if (ComparisonVal == Min)
    return getRange(St, Sym);

  llvm::APSInt Max = AdjustmentType.getMaxValue();
  llvm::APSInt Lower = ComparisonVal - Adjustment;
  llvm::APSInt Upper = Max - Adjustment;

  return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
}

ProgramStateRef
RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
                                    const llvm::APSInt &Int,
                                    const llvm::APSInt &Adjustment) {
  RangeSet New = getSymGERange(St, Sym, Int, Adjustment);
  return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
}

RangeSet RangeConstraintManager::getSymLERange(
      llvm::function_ref<RangeSet()> RS,
      const llvm::APSInt &Int,
      const llvm::APSInt &Adjustment) {
  // Before we do any real work, see if the value can even show up.
  APSIntType AdjustmentType(Adjustment);
  switch (AdjustmentType.testInRange(Int, true)) {
  case APSIntType::RTR_Below:
    return F.getEmptySet();
  case APSIntType::RTR_Within:
    break;
  case APSIntType::RTR_Above:
    return RS();
  }

  // Special case for Int == Max. This is always feasible.
  llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
  llvm::APSInt Max = AdjustmentType.getMaxValue();
  if (ComparisonVal == Max)
    return RS();

  llvm::APSInt Min = AdjustmentType.getMinValue();
  llvm::APSInt Lower = Min - Adjustment;
  llvm::APSInt Upper = ComparisonVal - Adjustment;

  return RS().Intersect(getBasicVals(), F, Lower, Upper);
}

RangeSet RangeConstraintManager::getSymLERange(ProgramStateRef St,
                                               SymbolRef Sym,
                                               const llvm::APSInt &Int,
                                               const llvm::APSInt &Adjustment) {
  return getSymLERange([&] { return getRange(St, Sym); }, Int, Adjustment);
}

ProgramStateRef
RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
                                    const llvm::APSInt &Int,
                                    const llvm::APSInt &Adjustment) {
  RangeSet New = getSymLERange(St, Sym, Int, Adjustment);
  return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
}

ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange(
    ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
    const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
  RangeSet New = getSymGERange(State, Sym, From, Adjustment);
  if (New.isEmpty())
    return nullptr;
  RangeSet Out = getSymLERange([&] { return New; }, To, Adjustment);
  return Out.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, Out);
}

ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange(
    ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
    const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
  RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment);
  RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment);
  RangeSet New(RangeLT.addRange(F, RangeGT));
  return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New);
}

//===----------------------------------------------------------------------===//
// Pretty-printing.
//===----------------------------------------------------------------------===//

void RangeConstraintManager::printJson(raw_ostream &Out, ProgramStateRef State,
                                       const char *NL, unsigned int Space,
                                       bool IsDot) const {
  ConstraintRangeTy Constraints = State->get<ConstraintRange>();

  Indent(Out, Space, IsDot) << "\"constraints\": ";
  if (Constraints.isEmpty()) {
    Out << "null," << NL;
    return;
  }

  ++Space;
  Out << '[' << NL;
  for (ConstraintRangeTy::iterator I = Constraints.begin();
       I != Constraints.end(); ++I) {
    Indent(Out, Space, IsDot)
        << "{ \"symbol\": \"" << I.getKey() << "\", \"range\": \"";
    I.getData().print(Out);
    Out << "\" }";

    if (std::next(I) != Constraints.end())
      Out << ',';
    Out << NL;
  }

  --Space;
  Indent(Out, Space, IsDot) << "]," << NL;
}