Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
//===----------------------Hexagon builtin routine ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// Double Precision Divide

#define A r1:0
#define AH r1
#define AL r0

#define B r3:2
#define BH r3
#define BL r2

#define Q r5:4
#define QH r5
#define QL r4

#define PROD r7:6
#define PRODHI r7
#define PRODLO r6

#define SFONE r8
#define SFDEN r9
#define SFERROR r10
#define SFRECIP r11

#define EXPBA r13:12
#define EXPB r13
#define EXPA r12

#define REMSUB2 r15:14



#define SIGN r28

#define Q_POSITIVE p3
#define NORMAL p2
#define NO_OVF_UNF p1
#define P_TMP p0

#define RECIPEST_SHIFT 3
#define QADJ 61

#define DFCLASS_NORMAL 0x02
#define DFCLASS_NUMBER 0x0F
#define DFCLASS_INFINITE 0x08
#define DFCLASS_ZERO 0x01
#define DFCLASS_NONZERO (DFCLASS_NUMBER ^ DFCLASS_ZERO)
#define DFCLASS_NONINFINITE (DFCLASS_NUMBER ^ DFCLASS_INFINITE)

#define DF_MANTBITS 52
#define DF_EXPBITS 11
#define SF_MANTBITS 23
#define SF_EXPBITS 8
#define DF_BIAS 0x3ff

#define SR_ROUND_OFF 22

#define Q6_ALIAS(TAG) .global __qdsp_##TAG ; .set __qdsp_##TAG, __hexagon_##TAG
#define FAST_ALIAS(TAG) .global __hexagon_fast_##TAG ; .set __hexagon_fast_##TAG, __hexagon_##TAG
#define FAST2_ALIAS(TAG) .global __hexagon_fast2_##TAG ; .set __hexagon_fast2_##TAG, __hexagon_##TAG
#define END(TAG) .size TAG,.-TAG

	.text
	.global __hexagon_divdf3
	.type __hexagon_divdf3,@function
	Q6_ALIAS(divdf3)
        FAST_ALIAS(divdf3)
        FAST2_ALIAS(divdf3)
	.p2align 5
__hexagon_divdf3:
	{
		NORMAL = dfclass(A,#DFCLASS_NORMAL)
		NORMAL = dfclass(B,#DFCLASS_NORMAL)
		EXPBA = combine(BH,AH)
		SIGN = xor(AH,BH)
	}
#undef A
#undef AH
#undef AL
#undef B
#undef BH
#undef BL
#define REM r1:0
#define REMHI r1
#define REMLO r0
#define DENOM r3:2
#define DENOMHI r3
#define DENOMLO r2
	{
		if (!NORMAL) jump .Ldiv_abnormal
		PROD = extractu(DENOM,#SF_MANTBITS,#DF_MANTBITS-SF_MANTBITS)
		SFONE = ##0x3f800001
	}
	{
		SFDEN = or(SFONE,PRODLO)
		EXPB = extractu(EXPB,#DF_EXPBITS,#DF_MANTBITS-32)
		EXPA = extractu(EXPA,#DF_EXPBITS,#DF_MANTBITS-32)
		Q_POSITIVE = cmp.gt(SIGN,#-1)
	}
#undef SIGN
#define ONE r28
.Ldenorm_continue:
	{
		SFRECIP,P_TMP = sfrecipa(SFONE,SFDEN)
		SFERROR = and(SFONE,#-2)
		ONE = #1
		EXPA = sub(EXPA,EXPB)
	}
#undef EXPB
#define RECIPEST r13
	{
		SFERROR -= sfmpy(SFRECIP,SFDEN):lib
		REMHI = insert(ONE,#DF_EXPBITS+1,#DF_MANTBITS-32)
		RECIPEST = ##0x00800000 << RECIPEST_SHIFT
	}
	{
		SFRECIP += sfmpy(SFRECIP,SFERROR):lib
		DENOMHI = insert(ONE,#DF_EXPBITS+1,#DF_MANTBITS-32)
		SFERROR = and(SFONE,#-2)
	}
	{
		SFERROR -= sfmpy(SFRECIP,SFDEN):lib
		QH = #-DF_BIAS+1
		QL = #DF_BIAS-1
	}
	{
		SFRECIP += sfmpy(SFRECIP,SFERROR):lib
		NO_OVF_UNF = cmp.gt(EXPA,QH)
		NO_OVF_UNF = !cmp.gt(EXPA,QL)
	}
	{
		RECIPEST = insert(SFRECIP,#SF_MANTBITS,#RECIPEST_SHIFT)
		Q = #0
		EXPA = add(EXPA,#-QADJ)
	}
#undef SFERROR
#undef SFRECIP
#define TMP r10
#define TMP1 r11
	{
		RECIPEST = add(RECIPEST,#((-3) << RECIPEST_SHIFT))
	}

#define DIV_ITER1B(QSHIFTINSN,QSHIFT,REMSHIFT,EXTRA) \
	{ \
		PROD = mpyu(RECIPEST,REMHI); \
		REM = asl(REM,# ## ( REMSHIFT )); \
	}; \
	{ \
		PRODLO = # ## 0; \
		REM -= mpyu(PRODHI,DENOMLO); \
		REMSUB2 = mpyu(PRODHI,DENOMHI); \
	}; \
	{ \
		Q += QSHIFTINSN(PROD, # ## ( QSHIFT )); \
		REM -= asl(REMSUB2, # ## 32); \
		EXTRA \
	}


	DIV_ITER1B(ASL,14,15,)
	DIV_ITER1B(ASR,1,15,)
	DIV_ITER1B(ASR,16,15,)
	DIV_ITER1B(ASR,31,15,PROD=# ( 0 );)

#undef REMSUB2
#define TMPPAIR r15:14
#define TMPPAIRHI r15
#define TMPPAIRLO r14
#undef RECIPEST
#define EXPB r13
	{
		// compare or sub with carry
		TMPPAIR = sub(REM,DENOM)
		P_TMP = cmp.gtu(DENOM,REM)
		// set up amt to add to q
		if (!P_TMP.new) PRODLO  = #2
	}
	{
		Q = add(Q,PROD)
		if (!P_TMP) REM = TMPPAIR
		TMPPAIR = #0
	}
	{
		P_TMP = cmp.eq(REM,TMPPAIR)
		if (!P_TMP.new) QL = or(QL,ONE)
	}
	{
		PROD = neg(Q)
	}
	{
		if (!Q_POSITIVE) Q = PROD
	}
#undef REM
#undef REMHI
#undef REMLO
#undef DENOM
#undef DENOMLO
#undef DENOMHI
#define A r1:0
#define AH r1
#define AL r0
#define B r3:2
#define BH r3
#define BL r2
	{
		A = convert_d2df(Q)
		if (!NO_OVF_UNF) jump .Ldiv_ovf_unf
	}
	{
		AH += asl(EXPA,#DF_MANTBITS-32)
		jumpr r31
	}

.Ldiv_ovf_unf:
	{
		AH += asl(EXPA,#DF_MANTBITS-32)
		EXPB = extractu(AH,#DF_EXPBITS,#DF_MANTBITS-32)
	}
	{
		PROD = abs(Q)
		EXPA = add(EXPA,EXPB)
	}
	{
		P_TMP = cmp.gt(EXPA,##DF_BIAS+DF_BIAS)		// overflow
		if (P_TMP.new) jump:nt .Ldiv_ovf
	}
	{
		P_TMP = cmp.gt(EXPA,#0)
		if (P_TMP.new) jump:nt .Lpossible_unf		// round up to normal possible...
	}
	// Underflow
	// We know what the infinite range exponent should be (EXPA)
	// Q is 2's complement, PROD is abs(Q)
	// Normalize Q, shift right, add a high bit, convert, change exponent

#define FUDGE1 7	// how much to shift right
#define FUDGE2 4	// how many guard/round to keep at lsbs

	{
		EXPB = add(clb(PROD),#-1)			// doesn't need to be added in since
		EXPA = sub(#FUDGE1,EXPA)			// we extract post-converted exponent
		TMP = USR
		TMP1 = #63
	}
	{
		EXPB = min(EXPA,TMP1)
		TMP1 = or(TMP,#0x030)
		PROD = asl(PROD,EXPB)
		EXPA = #0
	}
	{
		TMPPAIR = extractu(PROD,EXPBA)				// bits that will get shifted out
		PROD = lsr(PROD,EXPB)					// shift out bits
		B = #1
	}
	{
		P_TMP = cmp.gtu(B,TMPPAIR)
		if (!P_TMP.new) PRODLO = or(BL,PRODLO)
		PRODHI = setbit(PRODHI,#DF_MANTBITS-32+FUDGE2)
	}
	{
		Q = neg(PROD)
		P_TMP = bitsclr(PRODLO,#(1<<FUDGE2)-1)
		if (!P_TMP.new) TMP = TMP1
	}
	{
		USR = TMP
		if (Q_POSITIVE) Q = PROD
		TMP = #-DF_BIAS-(DF_MANTBITS+FUDGE2)
	}
	{
		A = convert_d2df(Q)
	}
	{
		AH += asl(TMP,#DF_MANTBITS-32)
		jumpr r31
	}


.Lpossible_unf:
	// If upper parts of Q were all F's, but abs(A) == 0x00100000_00000000, we rounded up to min_normal
	// The answer is correct, but we need to raise Underflow
	{
		B = extractu(A,#63,#0)
		TMPPAIR = combine(##0x00100000,#0)		// min normal
		TMP = #0x7FFF
	}
	{
		P_TMP = dfcmp.eq(TMPPAIR,B)		// Is everything zero in the rounded value...
		P_TMP = bitsset(PRODHI,TMP)		// but a bunch of bits set in the unrounded abs(quotient)?
	}

#if (__HEXAGON_ARCH__ == 60)
		TMP = USR		// If not, just return
		if (!P_TMP) jumpr r31   // Else, we want to set Unf+Inexact
					// Note that inexact is already set...
#else
	{
		if (!P_TMP) jumpr r31			// If not, just return
		TMP = USR				// Else, we want to set Unf+Inexact
	}						// Note that inexact is already set...
#endif
	{
		TMP = or(TMP,#0x30)
	}
	{
		USR = TMP
	}
	{
		p0 = dfcmp.eq(A,A)
		jumpr r31
	}

.Ldiv_ovf:

	// Raise Overflow, and choose the correct overflow value (saturated normal or infinity)

	{
		TMP = USR
		B = combine(##0x7fefffff,#-1)
		AH = mux(Q_POSITIVE,#0,#-1)
	}
	{
		PROD = combine(##0x7ff00000,#0)
		QH = extractu(TMP,#2,#SR_ROUND_OFF)
		TMP = or(TMP,#0x28)
	}
	{
		USR = TMP
		QH ^= lsr(AH,#31)
		QL = QH
	}
	{
		p0 = !cmp.eq(QL,#1)		// if not round-to-zero
		p0 = !cmp.eq(QH,#2)		// and not rounding the other way
		if (p0.new) B = PROD		// go to inf
		p0 = dfcmp.eq(B,B)		// get exceptions
	}
	{
		A = insert(B,#63,#0)
		jumpr r31
	}

#undef ONE
#define SIGN r28
#undef NORMAL
#undef NO_OVF_UNF
#define P_INF p1
#define P_ZERO p2
.Ldiv_abnormal:
	{
		P_TMP = dfclass(A,#DFCLASS_NUMBER)
		P_TMP = dfclass(B,#DFCLASS_NUMBER)
		Q_POSITIVE = cmp.gt(SIGN,#-1)
	}
	{
		P_INF = dfclass(A,#DFCLASS_INFINITE)
		P_INF = dfclass(B,#DFCLASS_INFINITE)
	}
	{
		P_ZERO = dfclass(A,#DFCLASS_ZERO)
		P_ZERO = dfclass(B,#DFCLASS_ZERO)
	}
	{
		if (!P_TMP) jump .Ldiv_nan
		if (P_INF) jump .Ldiv_invalid
	}
	{
		if (P_ZERO) jump .Ldiv_invalid
	}
	{
		P_ZERO = dfclass(A,#DFCLASS_NONZERO)		// nonzero
		P_ZERO = dfclass(B,#DFCLASS_NONINFINITE)	// non-infinite
	}
	{
		P_INF = dfclass(A,#DFCLASS_NONINFINITE)	// non-infinite
		P_INF = dfclass(B,#DFCLASS_NONZERO)	// nonzero
	}
	{
		if (!P_ZERO) jump .Ldiv_zero_result
		if (!P_INF) jump .Ldiv_inf_result
	}
	// Now we've narrowed it down to (de)normal / (de)normal
	// Set up A/EXPA B/EXPB and go back
#undef P_ZERO
#undef P_INF
#define P_TMP2 p1
	{
		P_TMP = dfclass(A,#DFCLASS_NORMAL)
		P_TMP2 = dfclass(B,#DFCLASS_NORMAL)
		TMP = ##0x00100000
	}
	{
		EXPBA = combine(BH,AH)
		AH = insert(TMP,#DF_EXPBITS+1,#DF_MANTBITS-32)		// clear out hidden bit, sign bit
		BH = insert(TMP,#DF_EXPBITS+1,#DF_MANTBITS-32)		// clear out hidden bit, sign bit
	}
	{
		if (P_TMP) AH = or(AH,TMP)				// if normal, add back in hidden bit
		if (P_TMP2) BH = or(BH,TMP)				// if normal, add back in hidden bit
	}
	{
		QH = add(clb(A),#-DF_EXPBITS)
		QL = add(clb(B),#-DF_EXPBITS)
		TMP = #1
	}
	{
		EXPA = extractu(EXPA,#DF_EXPBITS,#DF_MANTBITS-32)
		EXPB = extractu(EXPB,#DF_EXPBITS,#DF_MANTBITS-32)
	}
	{
		A = asl(A,QH)
		B = asl(B,QL)
		if (!P_TMP) EXPA = sub(TMP,QH)
		if (!P_TMP2) EXPB = sub(TMP,QL)
	}	// recreate values needed by resume coke
	{
		PROD = extractu(B,#SF_MANTBITS,#DF_MANTBITS-SF_MANTBITS)
	}
	{
		SFDEN = or(SFONE,PRODLO)
		jump .Ldenorm_continue
	}

.Ldiv_zero_result:
	{
		AH = xor(AH,BH)
		B = #0
	}
	{
		A = insert(B,#63,#0)
		jumpr r31
	}
.Ldiv_inf_result:
	{
		p2 = dfclass(B,#DFCLASS_ZERO)
		p2 = dfclass(A,#DFCLASS_NONINFINITE)
	}
	{
		TMP = USR
		if (!p2) jump 1f
		AH = xor(AH,BH)
	}
	{
		TMP = or(TMP,#0x04)		// DBZ
	}
	{
		USR = TMP
	}
1:
	{
		B = combine(##0x7ff00000,#0)
		p0 = dfcmp.uo(B,B)		// take possible exception
	}
	{
		A = insert(B,#63,#0)
		jumpr r31
	}
.Ldiv_nan:
	{
		p0 = dfclass(A,#0x10)
		p1 = dfclass(B,#0x10)
		if (!p0.new) A = B
		if (!p1.new) B = A
	}
	{
		QH = convert_df2sf(A)	// get possible invalid exceptions
		QL = convert_df2sf(B)
	}
	{
		A = #-1
		jumpr r31
	}

.Ldiv_invalid:
	{
		TMP = ##0x7f800001
	}
	{
		A = convert_sf2df(TMP)		// get invalid, get DF qNaN
		jumpr r31
	}
END(__hexagon_divdf3)