//===-- guarded_pool_allocator.cpp ------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "gwp_asan/guarded_pool_allocator.h"
#include "gwp_asan/optional/segv_handler.h"
#include "gwp_asan/options.h"
#include "gwp_asan/random.h"
#include "gwp_asan/utilities.h"
// RHEL creates the PRIu64 format macro (for printing uint64_t's) only when this
// macro is defined before including <inttypes.h>.
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS 1
#endif
#include <assert.h>
#include <inttypes.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
using AllocationMetadata = gwp_asan::AllocationMetadata;
using Error = gwp_asan::Error;
namespace gwp_asan {
namespace {
// Forward declare the pointer to the singleton version of this class.
// Instantiated during initialisation, this allows the signal handler
// to find this class in order to deduce the root cause of failures. Must not be
// referenced by users outside this translation unit, in order to avoid
// init-order-fiasco.
GuardedPoolAllocator *SingletonPtr = nullptr;
class ScopedBoolean {
public:
ScopedBoolean(bool &B) : Bool(B) { Bool = true; }
~ScopedBoolean() { Bool = false; }
private:
bool &Bool;
};
} // anonymous namespace
// Gets the singleton implementation of this class. Thread-compatible until
// init() is called, thread-safe afterwards.
GuardedPoolAllocator *GuardedPoolAllocator::getSingleton() {
return SingletonPtr;
}
void GuardedPoolAllocator::init(const options::Options &Opts) {
// Note: We return from the constructor here if GWP-ASan is not available.
// This will stop heap-allocation of class members, as well as mmap() of the
// guarded slots.
if (!Opts.Enabled || Opts.SampleRate == 0 ||
Opts.MaxSimultaneousAllocations == 0)
return;
Check(Opts.SampleRate >= 0, "GWP-ASan Error: SampleRate is < 0.");
Check(Opts.SampleRate <= INT32_MAX, "GWP-ASan Error: SampleRate is > 2^31.");
Check(Opts.MaxSimultaneousAllocations >= 0,
"GWP-ASan Error: MaxSimultaneousAllocations is < 0.");
SingletonPtr = this;
Backtrace = Opts.Backtrace;
State.MaxSimultaneousAllocations = Opts.MaxSimultaneousAllocations;
State.PageSize = getPlatformPageSize();
PerfectlyRightAlign = Opts.PerfectlyRightAlign;
size_t PoolBytesRequired =
State.PageSize * (1 + State.MaxSimultaneousAllocations) +
State.MaxSimultaneousAllocations * State.maximumAllocationSize();
void *GuardedPoolMemory = mapMemory(PoolBytesRequired, kGwpAsanGuardPageName);
size_t BytesRequired = State.MaxSimultaneousAllocations * sizeof(*Metadata);
Metadata = reinterpret_cast<AllocationMetadata *>(
mapMemory(BytesRequired, kGwpAsanMetadataName));
markReadWrite(Metadata, BytesRequired, kGwpAsanMetadataName);
// Allocate memory and set up the free pages queue.
BytesRequired = State.MaxSimultaneousAllocations * sizeof(*FreeSlots);
FreeSlots = reinterpret_cast<size_t *>(
mapMemory(BytesRequired, kGwpAsanFreeSlotsName));
markReadWrite(FreeSlots, BytesRequired, kGwpAsanFreeSlotsName);
// Multiply the sample rate by 2 to give a good, fast approximation for (1 /
// SampleRate) chance of sampling.
if (Opts.SampleRate != 1)
AdjustedSampleRatePlusOne = static_cast<uint32_t>(Opts.SampleRate) * 2 + 1;
else
AdjustedSampleRatePlusOne = 2;
initPRNG();
ThreadLocals.NextSampleCounter =
(getRandomUnsigned32() % (AdjustedSampleRatePlusOne - 1)) + 1;
State.GuardedPagePool = reinterpret_cast<uintptr_t>(GuardedPoolMemory);
State.GuardedPagePoolEnd =
reinterpret_cast<uintptr_t>(GuardedPoolMemory) + PoolBytesRequired;
if (Opts.InstallForkHandlers)
installAtFork();
}
void GuardedPoolAllocator::disable() { PoolMutex.lock(); }
void GuardedPoolAllocator::enable() { PoolMutex.unlock(); }
void GuardedPoolAllocator::iterate(void *Base, size_t Size, iterate_callback Cb,
void *Arg) {
uintptr_t Start = reinterpret_cast<uintptr_t>(Base);
for (size_t i = 0; i < State.MaxSimultaneousAllocations; ++i) {
const AllocationMetadata &Meta = Metadata[i];
if (Meta.Addr && !Meta.IsDeallocated && Meta.Addr >= Start &&
Meta.Addr < Start + Size)
Cb(Meta.Addr, Meta.Size, Arg);
}
}
void GuardedPoolAllocator::uninitTestOnly() {
if (State.GuardedPagePool) {
unmapMemory(reinterpret_cast<void *>(State.GuardedPagePool),
State.GuardedPagePoolEnd - State.GuardedPagePool,
kGwpAsanGuardPageName);
State.GuardedPagePool = 0;
State.GuardedPagePoolEnd = 0;
}
if (Metadata) {
unmapMemory(Metadata, State.MaxSimultaneousAllocations * sizeof(*Metadata),
kGwpAsanMetadataName);
Metadata = nullptr;
}
if (FreeSlots) {
unmapMemory(FreeSlots,
State.MaxSimultaneousAllocations * sizeof(*FreeSlots),
kGwpAsanFreeSlotsName);
FreeSlots = nullptr;
}
}
static uintptr_t getPageAddr(uintptr_t Ptr, uintptr_t PageSize) {
return Ptr & ~(PageSize - 1);
}
void *GuardedPoolAllocator::allocate(size_t Size) {
// GuardedPagePoolEnd == 0 when GWP-ASan is disabled. If we are disabled, fall
// back to the supporting allocator.
if (State.GuardedPagePoolEnd == 0)
return nullptr;
// Protect against recursivity.
if (ThreadLocals.RecursiveGuard)
return nullptr;
ScopedBoolean SB(ThreadLocals.RecursiveGuard);
if (Size == 0 || Size > State.maximumAllocationSize())
return nullptr;
size_t Index;
{
ScopedLock L(PoolMutex);
Index = reserveSlot();
}
if (Index == kInvalidSlotID)
return nullptr;
uintptr_t Ptr = State.slotToAddr(Index);
// Should we right-align this allocation?
if (getRandomUnsigned32() % 2 == 0) {
AlignmentStrategy Align = AlignmentStrategy::DEFAULT;
if (PerfectlyRightAlign)
Align = AlignmentStrategy::PERFECT;
Ptr +=
State.maximumAllocationSize() - rightAlignedAllocationSize(Size, Align);
}
AllocationMetadata *Meta = addrToMetadata(Ptr);
// If a slot is multiple pages in size, and the allocation takes up a single
// page, we can improve overflow detection by leaving the unused pages as
// unmapped.
markReadWrite(reinterpret_cast<void *>(getPageAddr(Ptr, State.PageSize)),
Size, kGwpAsanAliveSlotName);
Meta->RecordAllocation(Ptr, Size);
Meta->AllocationTrace.RecordBacktrace(Backtrace);
return reinterpret_cast<void *>(Ptr);
}
void GuardedPoolAllocator::trapOnAddress(uintptr_t Address, Error E) {
State.FailureType = E;
State.FailureAddress = Address;
// Raise a SEGV by touching first guard page.
volatile char *p = reinterpret_cast<char *>(State.GuardedPagePool);
*p = 0;
__builtin_unreachable();
}
void GuardedPoolAllocator::stop() {
ThreadLocals.RecursiveGuard = true;
PoolMutex.tryLock();
}
void GuardedPoolAllocator::deallocate(void *Ptr) {
assert(pointerIsMine(Ptr) && "Pointer is not mine!");
uintptr_t UPtr = reinterpret_cast<uintptr_t>(Ptr);
size_t Slot = State.getNearestSlot(UPtr);
uintptr_t SlotStart = State.slotToAddr(Slot);
AllocationMetadata *Meta = addrToMetadata(UPtr);
if (Meta->Addr != UPtr) {
// If multiple errors occur at the same time, use the first one.
ScopedLock L(PoolMutex);
trapOnAddress(UPtr, Error::INVALID_FREE);
}
// Intentionally scope the mutex here, so that other threads can access the
// pool during the expensive markInaccessible() call.
{
ScopedLock L(PoolMutex);
if (Meta->IsDeallocated) {
trapOnAddress(UPtr, Error::DOUBLE_FREE);
}
// Ensure that the deallocation is recorded before marking the page as
// inaccessible. Otherwise, a racy use-after-free will have inconsistent
// metadata.
Meta->RecordDeallocation();
// Ensure that the unwinder is not called if the recursive flag is set,
// otherwise non-reentrant unwinders may deadlock.
if (!ThreadLocals.RecursiveGuard) {
ScopedBoolean B(ThreadLocals.RecursiveGuard);
Meta->DeallocationTrace.RecordBacktrace(Backtrace);
}
}
markInaccessible(reinterpret_cast<void *>(SlotStart),
State.maximumAllocationSize(), kGwpAsanGuardPageName);
// And finally, lock again to release the slot back into the pool.
ScopedLock L(PoolMutex);
freeSlot(Slot);
}
size_t GuardedPoolAllocator::getSize(const void *Ptr) {
assert(pointerIsMine(Ptr));
ScopedLock L(PoolMutex);
AllocationMetadata *Meta = addrToMetadata(reinterpret_cast<uintptr_t>(Ptr));
assert(Meta->Addr == reinterpret_cast<uintptr_t>(Ptr));
return Meta->Size;
}
AllocationMetadata *GuardedPoolAllocator::addrToMetadata(uintptr_t Ptr) const {
return &Metadata[State.getNearestSlot(Ptr)];
}
size_t GuardedPoolAllocator::reserveSlot() {
// Avoid potential reuse of a slot before we have made at least a single
// allocation in each slot. Helps with our use-after-free detection.
if (NumSampledAllocations < State.MaxSimultaneousAllocations)
return NumSampledAllocations++;
if (FreeSlotsLength == 0)
return kInvalidSlotID;
size_t ReservedIndex = getRandomUnsigned32() % FreeSlotsLength;
size_t SlotIndex = FreeSlots[ReservedIndex];
FreeSlots[ReservedIndex] = FreeSlots[--FreeSlotsLength];
return SlotIndex;
}
void GuardedPoolAllocator::freeSlot(size_t SlotIndex) {
assert(FreeSlotsLength < State.MaxSimultaneousAllocations);
FreeSlots[FreeSlotsLength++] = SlotIndex;
}
GWP_ASAN_TLS_INITIAL_EXEC
GuardedPoolAllocator::ThreadLocalPackedVariables
GuardedPoolAllocator::ThreadLocals;
} // namespace gwp_asan