Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
//===-- scudo_allocator.cpp -------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// Scudo Hardened Allocator implementation.
/// It uses the sanitizer_common allocator as a base and aims at mitigating
/// heap corruption vulnerabilities. It provides a checksum-guarded chunk
/// header, a delayed free list, and additional sanity checks.
///
//===----------------------------------------------------------------------===//

#include "scudo_allocator.h"
#include "scudo_crc32.h"
#include "scudo_errors.h"
#include "scudo_flags.h"
#include "scudo_interface_internal.h"
#include "scudo_tsd.h"
#include "scudo_utils.h"

#include "sanitizer_common/sanitizer_allocator_checks.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_quarantine.h"

#ifdef GWP_ASAN_HOOKS
# include "gwp_asan/guarded_pool_allocator.h"
# include "gwp_asan/optional/backtrace.h"
# include "gwp_asan/optional/options_parser.h"
#endif // GWP_ASAN_HOOKS

#include <errno.h>
#include <string.h>

namespace __scudo {

// Global static cookie, initialized at start-up.
static u32 Cookie;

// We default to software CRC32 if the alternatives are not supported, either
// at compilation or at runtime.
static atomic_uint8_t HashAlgorithm = { CRC32Software };

INLINE u32 computeCRC32(u32 Crc, uptr Value, uptr *Array, uptr ArraySize) {
  // If the hardware CRC32 feature is defined here, it was enabled everywhere,
  // as opposed to only for scudo_crc32.cpp. This means that other hardware
  // specific instructions were likely emitted at other places, and as a
  // result there is no reason to not use it here.
#if defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32)
  Crc = CRC32_INTRINSIC(Crc, Value);
  for (uptr i = 0; i < ArraySize; i++)
    Crc = CRC32_INTRINSIC(Crc, Array[i]);
  return Crc;
#else
  if (atomic_load_relaxed(&HashAlgorithm) == CRC32Hardware) {
    Crc = computeHardwareCRC32(Crc, Value);
    for (uptr i = 0; i < ArraySize; i++)
      Crc = computeHardwareCRC32(Crc, Array[i]);
    return Crc;
  }
  Crc = computeSoftwareCRC32(Crc, Value);
  for (uptr i = 0; i < ArraySize; i++)
    Crc = computeSoftwareCRC32(Crc, Array[i]);
  return Crc;
#endif  // defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32)
}

static BackendT &getBackend();

namespace Chunk {
  static INLINE AtomicPackedHeader *getAtomicHeader(void *Ptr) {
    return reinterpret_cast<AtomicPackedHeader *>(reinterpret_cast<uptr>(Ptr) -
        getHeaderSize());
  }
  static INLINE
  const AtomicPackedHeader *getConstAtomicHeader(const void *Ptr) {
    return reinterpret_cast<const AtomicPackedHeader *>(
        reinterpret_cast<uptr>(Ptr) - getHeaderSize());
  }

  static INLINE bool isAligned(const void *Ptr) {
    return IsAligned(reinterpret_cast<uptr>(Ptr), MinAlignment);
  }

  // We can't use the offset member of the chunk itself, as we would double
  // fetch it without any warranty that it wouldn't have been tampered. To
  // prevent this, we work with a local copy of the header.
  static INLINE void *getBackendPtr(const void *Ptr, UnpackedHeader *Header) {
    return reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
        getHeaderSize() - (Header->Offset << MinAlignmentLog));
  }

  // Returns the usable size for a chunk, meaning the amount of bytes from the
  // beginning of the user data to the end of the backend allocated chunk.
  static INLINE uptr getUsableSize(const void *Ptr, UnpackedHeader *Header) {
    const uptr ClassId = Header->ClassId;
    if (ClassId)
      return PrimaryT::ClassIdToSize(ClassId) - getHeaderSize() -
          (Header->Offset << MinAlignmentLog);
    return SecondaryT::GetActuallyAllocatedSize(
        getBackendPtr(Ptr, Header)) - getHeaderSize();
  }

  // Returns the size the user requested when allocating the chunk.
  static INLINE uptr getSize(const void *Ptr, UnpackedHeader *Header) {
    const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes;
    if (Header->ClassId)
      return SizeOrUnusedBytes;
    return SecondaryT::GetActuallyAllocatedSize(
        getBackendPtr(Ptr, Header)) - getHeaderSize() - SizeOrUnusedBytes;
  }

  // Compute the checksum of the chunk pointer and its header.
  static INLINE u16 computeChecksum(const void *Ptr, UnpackedHeader *Header) {
    UnpackedHeader ZeroChecksumHeader = *Header;
    ZeroChecksumHeader.Checksum = 0;
    uptr HeaderHolder[sizeof(UnpackedHeader) / sizeof(uptr)];
    memcpy(&HeaderHolder, &ZeroChecksumHeader, sizeof(HeaderHolder));
    const u32 Crc = computeCRC32(Cookie, reinterpret_cast<uptr>(Ptr),
                                 HeaderHolder, ARRAY_SIZE(HeaderHolder));
    return static_cast<u16>(Crc);
  }

  // Checks the validity of a chunk by verifying its checksum. It doesn't
  // incur termination in the event of an invalid chunk.
  static INLINE bool isValid(const void *Ptr) {
    PackedHeader NewPackedHeader =
        atomic_load_relaxed(getConstAtomicHeader(Ptr));
    UnpackedHeader NewUnpackedHeader =
        bit_cast<UnpackedHeader>(NewPackedHeader);
    return (NewUnpackedHeader.Checksum ==
            computeChecksum(Ptr, &NewUnpackedHeader));
  }

  // Ensure that ChunkAvailable is 0, so that if a 0 checksum is ever valid
  // for a fully nulled out header, its state will be available anyway.
  COMPILER_CHECK(ChunkAvailable == 0);

  // Loads and unpacks the header, verifying the checksum in the process.
  static INLINE
  void loadHeader(const void *Ptr, UnpackedHeader *NewUnpackedHeader) {
    PackedHeader NewPackedHeader =
        atomic_load_relaxed(getConstAtomicHeader(Ptr));
    *NewUnpackedHeader = bit_cast<UnpackedHeader>(NewPackedHeader);
    if (UNLIKELY(NewUnpackedHeader->Checksum !=
        computeChecksum(Ptr, NewUnpackedHeader)))
      dieWithMessage("corrupted chunk header at address %p\n", Ptr);
  }

  // Packs and stores the header, computing the checksum in the process.
  static INLINE void storeHeader(void *Ptr, UnpackedHeader *NewUnpackedHeader) {
    NewUnpackedHeader->Checksum = computeChecksum(Ptr, NewUnpackedHeader);
    PackedHeader NewPackedHeader = bit_cast<PackedHeader>(*NewUnpackedHeader);
    atomic_store_relaxed(getAtomicHeader(Ptr), NewPackedHeader);
  }

  // Packs and stores the header, computing the checksum in the process. We
  // compare the current header with the expected provided one to ensure that
  // we are not being raced by a corruption occurring in another thread.
  static INLINE void compareExchangeHeader(void *Ptr,
                                           UnpackedHeader *NewUnpackedHeader,
                                           UnpackedHeader *OldUnpackedHeader) {
    NewUnpackedHeader->Checksum = computeChecksum(Ptr, NewUnpackedHeader);
    PackedHeader NewPackedHeader = bit_cast<PackedHeader>(*NewUnpackedHeader);
    PackedHeader OldPackedHeader = bit_cast<PackedHeader>(*OldUnpackedHeader);
    if (UNLIKELY(!atomic_compare_exchange_strong(
            getAtomicHeader(Ptr), &OldPackedHeader, NewPackedHeader,
            memory_order_relaxed)))
      dieWithMessage("race on chunk header at address %p\n", Ptr);
  }
}  // namespace Chunk

struct QuarantineCallback {
  explicit QuarantineCallback(AllocatorCacheT *Cache)
    : Cache_(Cache) {}

  // Chunk recycling function, returns a quarantined chunk to the backend,
  // first making sure it hasn't been tampered with.
  void Recycle(void *Ptr) {
    UnpackedHeader Header;
    Chunk::loadHeader(Ptr, &Header);
    if (UNLIKELY(Header.State != ChunkQuarantine))
      dieWithMessage("invalid chunk state when recycling address %p\n", Ptr);
    UnpackedHeader NewHeader = Header;
    NewHeader.State = ChunkAvailable;
    Chunk::compareExchangeHeader(Ptr, &NewHeader, &Header);
    void *BackendPtr = Chunk::getBackendPtr(Ptr, &Header);
    if (Header.ClassId)
      getBackend().deallocatePrimary(Cache_, BackendPtr, Header.ClassId);
    else
      getBackend().deallocateSecondary(BackendPtr);
  }

  // Internal quarantine allocation and deallocation functions. We first check
  // that the batches are indeed serviced by the Primary.
  // TODO(kostyak): figure out the best way to protect the batches.
  void *Allocate(uptr Size) {
    const uptr BatchClassId = SizeClassMap::ClassID(sizeof(QuarantineBatch));
    return getBackend().allocatePrimary(Cache_, BatchClassId);
  }

  void Deallocate(void *Ptr) {
    const uptr BatchClassId = SizeClassMap::ClassID(sizeof(QuarantineBatch));
    getBackend().deallocatePrimary(Cache_, Ptr, BatchClassId);
  }

  AllocatorCacheT *Cache_;
  COMPILER_CHECK(sizeof(QuarantineBatch) < SizeClassMap::kMaxSize);
};

typedef Quarantine<QuarantineCallback, void> QuarantineT;
typedef QuarantineT::Cache QuarantineCacheT;
COMPILER_CHECK(sizeof(QuarantineCacheT) <=
               sizeof(ScudoTSD::QuarantineCachePlaceHolder));

QuarantineCacheT *getQuarantineCache(ScudoTSD *TSD) {
  return reinterpret_cast<QuarantineCacheT *>(TSD->QuarantineCachePlaceHolder);
}

#ifdef GWP_ASAN_HOOKS
static gwp_asan::GuardedPoolAllocator GuardedAlloc;
#endif // GWP_ASAN_HOOKS

struct Allocator {
  static const uptr MaxAllowedMallocSize =
      FIRST_32_SECOND_64(2UL << 30, 1ULL << 40);

  BackendT Backend;
  QuarantineT Quarantine;

  u32 QuarantineChunksUpToSize;

  bool DeallocationTypeMismatch;
  bool ZeroContents;
  bool DeleteSizeMismatch;

  bool CheckRssLimit;
  uptr HardRssLimitMb;
  uptr SoftRssLimitMb;
  atomic_uint8_t RssLimitExceeded;
  atomic_uint64_t RssLastCheckedAtNS;

  explicit Allocator(LinkerInitialized)
    : Quarantine(LINKER_INITIALIZED) {}

  NOINLINE void performSanityChecks();

  void init() {
    SanitizerToolName = "Scudo";
    PrimaryAllocatorName = "ScudoPrimary";
    SecondaryAllocatorName = "ScudoSecondary";

    initFlags();

    performSanityChecks();

    // Check if hardware CRC32 is supported in the binary and by the platform,
    // if so, opt for the CRC32 hardware version of the checksum.
    if (&computeHardwareCRC32 && hasHardwareCRC32())
      atomic_store_relaxed(&HashAlgorithm, CRC32Hardware);

    SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
    Backend.init(common_flags()->allocator_release_to_os_interval_ms);
    HardRssLimitMb = common_flags()->hard_rss_limit_mb;
    SoftRssLimitMb = common_flags()->soft_rss_limit_mb;
    Quarantine.Init(
        static_cast<uptr>(getFlags()->QuarantineSizeKb) << 10,
        static_cast<uptr>(getFlags()->ThreadLocalQuarantineSizeKb) << 10);
    QuarantineChunksUpToSize = (Quarantine.GetCacheSize() == 0) ? 0 :
        getFlags()->QuarantineChunksUpToSize;
    DeallocationTypeMismatch = getFlags()->DeallocationTypeMismatch;
    DeleteSizeMismatch = getFlags()->DeleteSizeMismatch;
    ZeroContents = getFlags()->ZeroContents;

    if (UNLIKELY(!GetRandom(reinterpret_cast<void *>(&Cookie), sizeof(Cookie),
                            /*blocking=*/false))) {
      Cookie = static_cast<u32>((NanoTime() >> 12) ^
                                (reinterpret_cast<uptr>(this) >> 4));
    }

    CheckRssLimit = HardRssLimitMb || SoftRssLimitMb;
    if (CheckRssLimit)
      atomic_store_relaxed(&RssLastCheckedAtNS, MonotonicNanoTime());
  }

  // Helper function that checks for a valid Scudo chunk. nullptr isn't.
  bool isValidPointer(const void *Ptr) {
    initThreadMaybe();
    if (UNLIKELY(!Ptr))
      return false;
    if (!Chunk::isAligned(Ptr))
      return false;
    return Chunk::isValid(Ptr);
  }

  NOINLINE bool isRssLimitExceeded();

  // Allocates a chunk.
  void *allocate(uptr Size, uptr Alignment, AllocType Type,
                 bool ForceZeroContents = false) {
    initThreadMaybe();

#ifdef GWP_ASAN_HOOKS
    if (UNLIKELY(GuardedAlloc.shouldSample())) {
      if (void *Ptr = GuardedAlloc.allocate(Size))
        return Ptr;
    }
#endif // GWP_ASAN_HOOKS

    if (UNLIKELY(Alignment > MaxAlignment)) {
      if (AllocatorMayReturnNull())
        return nullptr;
      reportAllocationAlignmentTooBig(Alignment, MaxAlignment);
    }
    if (UNLIKELY(Alignment < MinAlignment))
      Alignment = MinAlignment;

    const uptr NeededSize = RoundUpTo(Size ? Size : 1, MinAlignment) +
        Chunk::getHeaderSize();
    const uptr AlignedSize = (Alignment > MinAlignment) ?
        NeededSize + (Alignment - Chunk::getHeaderSize()) : NeededSize;
    if (UNLIKELY(Size >= MaxAllowedMallocSize) ||
        UNLIKELY(AlignedSize >= MaxAllowedMallocSize)) {
      if (AllocatorMayReturnNull())
        return nullptr;
      reportAllocationSizeTooBig(Size, AlignedSize, MaxAllowedMallocSize);
    }

    if (CheckRssLimit && UNLIKELY(isRssLimitExceeded())) {
      if (AllocatorMayReturnNull())
        return nullptr;
      reportRssLimitExceeded();
    }

    // Primary and Secondary backed allocations have a different treatment. We
    // deal with alignment requirements of Primary serviced allocations here,
    // but the Secondary will take care of its own alignment needs.
    void *BackendPtr;
    uptr BackendSize;
    u8 ClassId;
    if (PrimaryT::CanAllocate(AlignedSize, MinAlignment)) {
      BackendSize = AlignedSize;
      ClassId = SizeClassMap::ClassID(BackendSize);
      bool UnlockRequired;
      ScudoTSD *TSD = getTSDAndLock(&UnlockRequired);
      BackendPtr = Backend.allocatePrimary(&TSD->Cache, ClassId);
      if (UnlockRequired)
        TSD->unlock();
    } else {
      BackendSize = NeededSize;
      ClassId = 0;
      BackendPtr = Backend.allocateSecondary(BackendSize, Alignment);
    }
    if (UNLIKELY(!BackendPtr)) {
      SetAllocatorOutOfMemory();
      if (AllocatorMayReturnNull())
        return nullptr;
      reportOutOfMemory(Size);
    }

    // If requested, we will zero out the entire contents of the returned chunk.
    if ((ForceZeroContents || ZeroContents) && ClassId)
      memset(BackendPtr, 0, PrimaryT::ClassIdToSize(ClassId));

    UnpackedHeader Header = {};
    uptr UserPtr = reinterpret_cast<uptr>(BackendPtr) + Chunk::getHeaderSize();
    if (UNLIKELY(!IsAligned(UserPtr, Alignment))) {
      // Since the Secondary takes care of alignment, a non-aligned pointer
      // means it is from the Primary. It is also the only case where the offset
      // field of the header would be non-zero.
      DCHECK(ClassId);
      const uptr AlignedUserPtr = RoundUpTo(UserPtr, Alignment);
      Header.Offset = (AlignedUserPtr - UserPtr) >> MinAlignmentLog;
      UserPtr = AlignedUserPtr;
    }
    DCHECK_LE(UserPtr + Size, reinterpret_cast<uptr>(BackendPtr) + BackendSize);
    Header.State = ChunkAllocated;
    Header.AllocType = Type;
    if (ClassId) {
      Header.ClassId = ClassId;
      Header.SizeOrUnusedBytes = Size;
    } else {
      // The secondary fits the allocations to a page, so the amount of unused
      // bytes is the difference between the end of the user allocation and the
      // next page boundary.
      const uptr PageSize = GetPageSizeCached();
      const uptr TrailingBytes = (UserPtr + Size) & (PageSize - 1);
      if (TrailingBytes)
        Header.SizeOrUnusedBytes = PageSize - TrailingBytes;
    }
    void *Ptr = reinterpret_cast<void *>(UserPtr);
    Chunk::storeHeader(Ptr, &Header);
    if (SCUDO_CAN_USE_HOOKS && &__sanitizer_malloc_hook)
      __sanitizer_malloc_hook(Ptr, Size);
    return Ptr;
  }

  // Place a chunk in the quarantine or directly deallocate it in the event of
  // a zero-sized quarantine, or if the size of the chunk is greater than the
  // quarantine chunk size threshold.
  void quarantineOrDeallocateChunk(void *Ptr, UnpackedHeader *Header,
                                   uptr Size) {
    const bool BypassQuarantine = !Size || (Size > QuarantineChunksUpToSize);
    if (BypassQuarantine) {
      UnpackedHeader NewHeader = *Header;
      NewHeader.State = ChunkAvailable;
      Chunk::compareExchangeHeader(Ptr, &NewHeader, Header);
      void *BackendPtr = Chunk::getBackendPtr(Ptr, Header);
      if (Header->ClassId) {
        bool UnlockRequired;
        ScudoTSD *TSD = getTSDAndLock(&UnlockRequired);
        getBackend().deallocatePrimary(&TSD->Cache, BackendPtr,
                                       Header->ClassId);
        if (UnlockRequired)
          TSD->unlock();
      } else {
        getBackend().deallocateSecondary(BackendPtr);
      }
    } else {
      // If a small memory amount was allocated with a larger alignment, we want
      // to take that into account. Otherwise the Quarantine would be filled
      // with tiny chunks, taking a lot of VA memory. This is an approximation
      // of the usable size, that allows us to not call
      // GetActuallyAllocatedSize.
      const uptr EstimatedSize = Size + (Header->Offset << MinAlignmentLog);
      UnpackedHeader NewHeader = *Header;
      NewHeader.State = ChunkQuarantine;
      Chunk::compareExchangeHeader(Ptr, &NewHeader, Header);
      bool UnlockRequired;
      ScudoTSD *TSD = getTSDAndLock(&UnlockRequired);
      Quarantine.Put(getQuarantineCache(TSD), QuarantineCallback(&TSD->Cache),
                     Ptr, EstimatedSize);
      if (UnlockRequired)
        TSD->unlock();
    }
  }

  // Deallocates a Chunk, which means either adding it to the quarantine or
  // directly returning it to the backend if criteria are met.
  void deallocate(void *Ptr, uptr DeleteSize, uptr DeleteAlignment,
                  AllocType Type) {
    // For a deallocation, we only ensure minimal initialization, meaning thread
    // local data will be left uninitialized for now (when using ELF TLS). The
    // fallback cache will be used instead. This is a workaround for a situation
    // where the only heap operation performed in a thread would be a free past
    // the TLS destructors, ending up in initialized thread specific data never
    // being destroyed properly. Any other heap operation will do a full init.
    initThreadMaybe(/*MinimalInit=*/true);
    if (SCUDO_CAN_USE_HOOKS && &__sanitizer_free_hook)
      __sanitizer_free_hook(Ptr);
    if (UNLIKELY(!Ptr))
      return;

#ifdef GWP_ASAN_HOOKS
    if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) {
      GuardedAlloc.deallocate(Ptr);
      return;
    }
#endif // GWP_ASAN_HOOKS

    if (UNLIKELY(!Chunk::isAligned(Ptr)))
      dieWithMessage("misaligned pointer when deallocating address %p\n", Ptr);
    UnpackedHeader Header;
    Chunk::loadHeader(Ptr, &Header);
    if (UNLIKELY(Header.State != ChunkAllocated))
      dieWithMessage("invalid chunk state when deallocating address %p\n", Ptr);
    if (DeallocationTypeMismatch) {
      // The deallocation type has to match the allocation one.
      if (Header.AllocType != Type) {
        // With the exception of memalign'd Chunks, that can be still be free'd.
        if (Header.AllocType != FromMemalign || Type != FromMalloc)
          dieWithMessage("allocation type mismatch when deallocating address "
                         "%p\n", Ptr);
      }
    }
    const uptr Size = Chunk::getSize(Ptr, &Header);
    if (DeleteSizeMismatch) {
      if (DeleteSize && DeleteSize != Size)
        dieWithMessage("invalid sized delete when deallocating address %p\n",
                       Ptr);
    }
    (void)DeleteAlignment;  // TODO(kostyak): verify that the alignment matches.
    quarantineOrDeallocateChunk(Ptr, &Header, Size);
  }

  // Reallocates a chunk. We can save on a new allocation if the new requested
  // size still fits in the chunk.
  void *reallocate(void *OldPtr, uptr NewSize) {
    initThreadMaybe();

#ifdef GWP_ASAN_HOOKS
    if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) {
      size_t OldSize = GuardedAlloc.getSize(OldPtr);
      void *NewPtr = allocate(NewSize, MinAlignment, FromMalloc);
      if (NewPtr)
        memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize);
      GuardedAlloc.deallocate(OldPtr);
      return NewPtr;
    }
#endif // GWP_ASAN_HOOKS

    if (UNLIKELY(!Chunk::isAligned(OldPtr)))
      dieWithMessage("misaligned address when reallocating address %p\n",
                     OldPtr);
    UnpackedHeader OldHeader;
    Chunk::loadHeader(OldPtr, &OldHeader);
    if (UNLIKELY(OldHeader.State != ChunkAllocated))
      dieWithMessage("invalid chunk state when reallocating address %p\n",
                     OldPtr);
    if (DeallocationTypeMismatch) {
      if (UNLIKELY(OldHeader.AllocType != FromMalloc))
        dieWithMessage("allocation type mismatch when reallocating address "
                       "%p\n", OldPtr);
    }
    const uptr UsableSize = Chunk::getUsableSize(OldPtr, &OldHeader);
    // The new size still fits in the current chunk, and the size difference
    // is reasonable.
    if (NewSize <= UsableSize &&
        (UsableSize - NewSize) < (SizeClassMap::kMaxSize / 2)) {
      UnpackedHeader NewHeader = OldHeader;
      NewHeader.SizeOrUnusedBytes =
          OldHeader.ClassId ? NewSize : UsableSize - NewSize;
      Chunk::compareExchangeHeader(OldPtr, &NewHeader, &OldHeader);
      return OldPtr;
    }
    // Otherwise, we have to allocate a new chunk and copy the contents of the
    // old one.
    void *NewPtr = allocate(NewSize, MinAlignment, FromMalloc);
    if (NewPtr) {
      const uptr OldSize = OldHeader.ClassId ? OldHeader.SizeOrUnusedBytes :
          UsableSize - OldHeader.SizeOrUnusedBytes;
      memcpy(NewPtr, OldPtr, Min(NewSize, UsableSize));
      quarantineOrDeallocateChunk(OldPtr, &OldHeader, OldSize);
    }
    return NewPtr;
  }

  // Helper function that returns the actual usable size of a chunk.
  uptr getUsableSize(const void *Ptr) {
    initThreadMaybe();
    if (UNLIKELY(!Ptr))
      return 0;

#ifdef GWP_ASAN_HOOKS
    if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr)))
      return GuardedAlloc.getSize(Ptr);
#endif // GWP_ASAN_HOOKS

    UnpackedHeader Header;
    Chunk::loadHeader(Ptr, &Header);
    // Getting the usable size of a chunk only makes sense if it's allocated.
    if (UNLIKELY(Header.State != ChunkAllocated))
      dieWithMessage("invalid chunk state when sizing address %p\n", Ptr);
    return Chunk::getUsableSize(Ptr, &Header);
  }

  void *calloc(uptr NMemB, uptr Size) {
    initThreadMaybe();
    if (UNLIKELY(CheckForCallocOverflow(NMemB, Size))) {
      if (AllocatorMayReturnNull())
        return nullptr;
      reportCallocOverflow(NMemB, Size);
    }
    return allocate(NMemB * Size, MinAlignment, FromMalloc, true);
  }

  void commitBack(ScudoTSD *TSD) {
    Quarantine.Drain(getQuarantineCache(TSD), QuarantineCallback(&TSD->Cache));
    Backend.destroyCache(&TSD->Cache);
  }

  uptr getStats(AllocatorStat StatType) {
    initThreadMaybe();
    uptr stats[AllocatorStatCount];
    Backend.getStats(stats);
    return stats[StatType];
  }

  bool canReturnNull() {
    initThreadMaybe();
    return AllocatorMayReturnNull();
  }

  void setRssLimit(uptr LimitMb, bool HardLimit) {
    if (HardLimit)
      HardRssLimitMb = LimitMb;
    else
      SoftRssLimitMb = LimitMb;
    CheckRssLimit = HardRssLimitMb || SoftRssLimitMb;
  }

  void printStats() {
    initThreadMaybe();
    Backend.printStats();
  }
};

NOINLINE void Allocator::performSanityChecks() {
  // Verify that the header offset field can hold the maximum offset. In the
  // case of the Secondary allocator, it takes care of alignment and the
  // offset will always be 0. In the case of the Primary, the worst case
  // scenario happens in the last size class, when the backend allocation
  // would already be aligned on the requested alignment, which would happen
  // to be the maximum alignment that would fit in that size class. As a
  // result, the maximum offset will be at most the maximum alignment for the
  // last size class minus the header size, in multiples of MinAlignment.
  UnpackedHeader Header = {};
  const uptr MaxPrimaryAlignment =
      1 << MostSignificantSetBitIndex(SizeClassMap::kMaxSize - MinAlignment);
  const uptr MaxOffset =
      (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog;
  Header.Offset = MaxOffset;
  if (Header.Offset != MaxOffset)
    dieWithMessage("maximum possible offset doesn't fit in header\n");
  // Verify that we can fit the maximum size or amount of unused bytes in the
  // header. Given that the Secondary fits the allocation to a page, the worst
  // case scenario happens in the Primary. It will depend on the second to
  // last and last class sizes, as well as the dynamic base for the Primary.
  // The following is an over-approximation that works for our needs.
  const uptr MaxSizeOrUnusedBytes = SizeClassMap::kMaxSize - 1;
  Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
  if (Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes)
    dieWithMessage("maximum possible unused bytes doesn't fit in header\n");

  const uptr LargestClassId = SizeClassMap::kLargestClassID;
  Header.ClassId = LargestClassId;
  if (Header.ClassId != LargestClassId)
    dieWithMessage("largest class ID doesn't fit in header\n");
}

// Opportunistic RSS limit check. This will update the RSS limit status, if
// it can, every 250ms, otherwise it will just return the current one.
NOINLINE bool Allocator::isRssLimitExceeded() {
  u64 LastCheck = atomic_load_relaxed(&RssLastCheckedAtNS);
  const u64 CurrentCheck = MonotonicNanoTime();
  if (LIKELY(CurrentCheck < LastCheck + (250ULL * 1000000ULL)))
    return atomic_load_relaxed(&RssLimitExceeded);
  if (!atomic_compare_exchange_weak(&RssLastCheckedAtNS, &LastCheck,
                                    CurrentCheck, memory_order_relaxed))
    return atomic_load_relaxed(&RssLimitExceeded);
  // TODO(kostyak): We currently use sanitizer_common's GetRSS which reads the
  //                RSS from /proc/self/statm by default. We might want to
  //                call getrusage directly, even if it's less accurate.
  const uptr CurrentRssMb = GetRSS() >> 20;
  if (HardRssLimitMb && UNLIKELY(HardRssLimitMb < CurrentRssMb))
    dieWithMessage("hard RSS limit exhausted (%zdMb vs %zdMb)\n",
                   HardRssLimitMb, CurrentRssMb);
  if (SoftRssLimitMb) {
    if (atomic_load_relaxed(&RssLimitExceeded)) {
      if (CurrentRssMb <= SoftRssLimitMb)
        atomic_store_relaxed(&RssLimitExceeded, false);
    } else {
      if (CurrentRssMb > SoftRssLimitMb) {
        atomic_store_relaxed(&RssLimitExceeded, true);
        Printf("Scudo INFO: soft RSS limit exhausted (%zdMb vs %zdMb)\n",
               SoftRssLimitMb, CurrentRssMb);
      }
    }
  }
  return atomic_load_relaxed(&RssLimitExceeded);
}

static Allocator Instance(LINKER_INITIALIZED);

static BackendT &getBackend() {
  return Instance.Backend;
}

void initScudo() {
  Instance.init();
#ifdef GWP_ASAN_HOOKS
  gwp_asan::options::initOptions();
  gwp_asan::options::Options &Opts = gwp_asan::options::getOptions();
  Opts.Backtrace = gwp_asan::options::getBacktraceFunction();
  GuardedAlloc.init(Opts);

  if (Opts.InstallSignalHandlers)
    gwp_asan::crash_handler::installSignalHandlers(
        &GuardedAlloc, __sanitizer::Printf,
        gwp_asan::options::getPrintBacktraceFunction(), Opts.Backtrace);
#endif // GWP_ASAN_HOOKS
}

void ScudoTSD::init() {
  getBackend().initCache(&Cache);
  memset(QuarantineCachePlaceHolder, 0, sizeof(QuarantineCachePlaceHolder));
}

void ScudoTSD::commitBack() {
  Instance.commitBack(this);
}

void *scudoAllocate(uptr Size, uptr Alignment, AllocType Type) {
  if (Alignment && UNLIKELY(!IsPowerOfTwo(Alignment))) {
    errno = EINVAL;
    if (Instance.canReturnNull())
      return nullptr;
    reportAllocationAlignmentNotPowerOfTwo(Alignment);
  }
  return SetErrnoOnNull(Instance.allocate(Size, Alignment, Type));
}

void scudoDeallocate(void *Ptr, uptr Size, uptr Alignment, AllocType Type) {
  Instance.deallocate(Ptr, Size, Alignment, Type);
}

void *scudoRealloc(void *Ptr, uptr Size) {
  if (!Ptr)
    return SetErrnoOnNull(Instance.allocate(Size, MinAlignment, FromMalloc));
  if (Size == 0) {
    Instance.deallocate(Ptr, 0, 0, FromMalloc);
    return nullptr;
  }
  return SetErrnoOnNull(Instance.reallocate(Ptr, Size));
}

void *scudoCalloc(uptr NMemB, uptr Size) {
  return SetErrnoOnNull(Instance.calloc(NMemB, Size));
}

void *scudoValloc(uptr Size) {
  return SetErrnoOnNull(
      Instance.allocate(Size, GetPageSizeCached(), FromMemalign));
}

void *scudoPvalloc(uptr Size) {
  const uptr PageSize = GetPageSizeCached();
  if (UNLIKELY(CheckForPvallocOverflow(Size, PageSize))) {
    errno = ENOMEM;
    if (Instance.canReturnNull())
      return nullptr;
    reportPvallocOverflow(Size);
  }
  // pvalloc(0) should allocate one page.
  Size = Size ? RoundUpTo(Size, PageSize) : PageSize;
  return SetErrnoOnNull(Instance.allocate(Size, PageSize, FromMemalign));
}

int scudoPosixMemalign(void **MemPtr, uptr Alignment, uptr Size) {
  if (UNLIKELY(!CheckPosixMemalignAlignment(Alignment))) {
    if (!Instance.canReturnNull())
      reportInvalidPosixMemalignAlignment(Alignment);
    return EINVAL;
  }
  void *Ptr = Instance.allocate(Size, Alignment, FromMemalign);
  if (UNLIKELY(!Ptr))
    return ENOMEM;
  *MemPtr = Ptr;
  return 0;
}

void *scudoAlignedAlloc(uptr Alignment, uptr Size) {
  if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(Alignment, Size))) {
    errno = EINVAL;
    if (Instance.canReturnNull())
      return nullptr;
    reportInvalidAlignedAllocAlignment(Size, Alignment);
  }
  return SetErrnoOnNull(Instance.allocate(Size, Alignment, FromMalloc));
}

uptr scudoMallocUsableSize(void *Ptr) {
  return Instance.getUsableSize(Ptr);
}

}  // namespace __scudo

using namespace __scudo;

// MallocExtension helper functions

uptr __sanitizer_get_current_allocated_bytes() {
  return Instance.getStats(AllocatorStatAllocated);
}

uptr __sanitizer_get_heap_size() {
  return Instance.getStats(AllocatorStatMapped);
}

uptr __sanitizer_get_free_bytes() {
  return 1;
}

uptr __sanitizer_get_unmapped_bytes() {
  return 1;
}

uptr __sanitizer_get_estimated_allocated_size(uptr Size) {
  return Size;
}

int __sanitizer_get_ownership(const void *Ptr) {
  return Instance.isValidPointer(Ptr);
}

uptr __sanitizer_get_allocated_size(const void *Ptr) {
  return Instance.getUsableSize(Ptr);
}

#if !SANITIZER_SUPPORTS_WEAK_HOOKS
SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_malloc_hook,
                             void *Ptr, uptr Size) {
  (void)Ptr;
  (void)Size;
}

SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_free_hook, void *Ptr) {
  (void)Ptr;
}
#endif

// Interface functions

void __scudo_set_rss_limit(uptr LimitMb, s32 HardLimit) {
  if (!SCUDO_CAN_USE_PUBLIC_INTERFACE)
    return;
  Instance.setRssLimit(LimitMb, !!HardLimit);
}

void __scudo_print_stats() {
  Instance.printStats();
}