Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
//===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The inline spiller modifies the machine function directly instead of
// inserting spills and restores in VirtRegMap.
//
//===----------------------------------------------------------------------===//

#include "SplitKit.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervalCalc.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveRangeEdit.h"
#include "llvm/CodeGen/LiveStacks.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/Spiller.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <iterator>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "regalloc"

STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
STATISTIC(NumSnippets,        "Number of spilled snippets");
STATISTIC(NumSpills,          "Number of spills inserted");
STATISTIC(NumSpillsRemoved,   "Number of spills removed");
STATISTIC(NumReloads,         "Number of reloads inserted");
STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
STATISTIC(NumFolded,          "Number of folded stack accesses");
STATISTIC(NumFoldedLoads,     "Number of folded loads");
STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");

static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
                                     cl::desc("Disable inline spill hoisting"));
static cl::opt<bool>
RestrictStatepointRemat("restrict-statepoint-remat",
                       cl::init(false), cl::Hidden,
                       cl::desc("Restrict remat for statepoint operands"));

namespace {

class HoistSpillHelper : private LiveRangeEdit::Delegate {
  MachineFunction &MF;
  LiveIntervals &LIS;
  LiveStacks &LSS;
  AliasAnalysis *AA;
  MachineDominatorTree &MDT;
  MachineLoopInfo &Loops;
  VirtRegMap &VRM;
  MachineRegisterInfo &MRI;
  const TargetInstrInfo &TII;
  const TargetRegisterInfo &TRI;
  const MachineBlockFrequencyInfo &MBFI;

  InsertPointAnalysis IPA;

  // Map from StackSlot to the LiveInterval of the original register.
  // Note the LiveInterval of the original register may have been deleted
  // after it is spilled. We keep a copy here to track the range where
  // spills can be moved.
  DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI;

  // Map from pair of (StackSlot and Original VNI) to a set of spills which
  // have the same stackslot and have equal values defined by Original VNI.
  // These spills are mergeable and are hoist candiates.
  using MergeableSpillsMap =
      MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
  MergeableSpillsMap MergeableSpills;

  /// This is the map from original register to a set containing all its
  /// siblings. To hoist a spill to another BB, we need to find out a live
  /// sibling there and use it as the source of the new spill.
  DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap;

  bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
                     MachineBasicBlock &BB, Register &LiveReg);

  void rmRedundantSpills(
      SmallPtrSet<MachineInstr *, 16> &Spills,
      SmallVectorImpl<MachineInstr *> &SpillsToRm,
      DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);

  void getVisitOrders(
      MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
      SmallVectorImpl<MachineDomTreeNode *> &Orders,
      SmallVectorImpl<MachineInstr *> &SpillsToRm,
      DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
      DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);

  void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
                      SmallPtrSet<MachineInstr *, 16> &Spills,
                      SmallVectorImpl<MachineInstr *> &SpillsToRm,
                      DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);

public:
  HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
                   VirtRegMap &vrm)
      : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
        LSS(pass.getAnalysis<LiveStacks>()),
        AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
        MDT(pass.getAnalysis<MachineDominatorTree>()),
        Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
        MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
        TRI(*mf.getSubtarget().getRegisterInfo()),
        MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
        IPA(LIS, mf.getNumBlockIDs()) {}

  void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
                            unsigned Original);
  bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
  void hoistAllSpills();
  void LRE_DidCloneVirtReg(unsigned, unsigned) override;
};

class InlineSpiller : public Spiller {
  MachineFunction &MF;
  LiveIntervals &LIS;
  LiveStacks &LSS;
  AliasAnalysis *AA;
  MachineDominatorTree &MDT;
  MachineLoopInfo &Loops;
  VirtRegMap &VRM;
  MachineRegisterInfo &MRI;
  const TargetInstrInfo &TII;
  const TargetRegisterInfo &TRI;
  const MachineBlockFrequencyInfo &MBFI;

  // Variables that are valid during spill(), but used by multiple methods.
  LiveRangeEdit *Edit;
  LiveInterval *StackInt;
  int StackSlot;
  unsigned Original;

  // All registers to spill to StackSlot, including the main register.
  SmallVector<Register, 8> RegsToSpill;

  // All COPY instructions to/from snippets.
  // They are ignored since both operands refer to the same stack slot.
  SmallPtrSet<MachineInstr*, 8> SnippetCopies;

  // Values that failed to remat at some point.
  SmallPtrSet<VNInfo*, 8> UsedValues;

  // Dead defs generated during spilling.
  SmallVector<MachineInstr*, 8> DeadDefs;

  // Object records spills information and does the hoisting.
  HoistSpillHelper HSpiller;

  ~InlineSpiller() override = default;

public:
  InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm)
      : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
        LSS(pass.getAnalysis<LiveStacks>()),
        AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
        MDT(pass.getAnalysis<MachineDominatorTree>()),
        Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
        MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
        TRI(*mf.getSubtarget().getRegisterInfo()),
        MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
        HSpiller(pass, mf, vrm) {}

  void spill(LiveRangeEdit &) override;
  void postOptimization() override;

private:
  bool isSnippet(const LiveInterval &SnipLI);
  void collectRegsToSpill();

  bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); }

  bool isSibling(Register Reg);
  bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
  void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);

  void markValueUsed(LiveInterval*, VNInfo*);
  bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI);
  bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
  void reMaterializeAll();

  bool coalesceStackAccess(MachineInstr *MI, Register Reg);
  bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
                         MachineInstr *LoadMI = nullptr);
  void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI);
  void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI);

  void spillAroundUses(Register Reg);
  void spillAll();
};

} // end anonymous namespace

Spiller::~Spiller() = default;

void Spiller::anchor() {}

Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass,
                                   MachineFunction &mf,
                                   VirtRegMap &vrm) {
  return new InlineSpiller(pass, mf, vrm);
}

//===----------------------------------------------------------------------===//
//                                Snippets
//===----------------------------------------------------------------------===//

// When spilling a virtual register, we also spill any snippets it is connected
// to. The snippets are small live ranges that only have a single real use,
// leftovers from live range splitting. Spilling them enables memory operand
// folding or tightens the live range around the single use.
//
// This minimizes register pressure and maximizes the store-to-load distance for
// spill slots which can be important in tight loops.

/// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
/// otherwise return 0.
static Register isFullCopyOf(const MachineInstr &MI, Register Reg) {
  if (!MI.isFullCopy())
    return Register();
  if (MI.getOperand(0).getReg() == Reg)
    return MI.getOperand(1).getReg();
  if (MI.getOperand(1).getReg() == Reg)
    return MI.getOperand(0).getReg();
  return Register();
}

/// isSnippet - Identify if a live interval is a snippet that should be spilled.
/// It is assumed that SnipLI is a virtual register with the same original as
/// Edit->getReg().
bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
  Register Reg = Edit->getReg();

  // A snippet is a tiny live range with only a single instruction using it
  // besides copies to/from Reg or spills/fills. We accept:
  //
  //   %snip = COPY %Reg / FILL fi#
  //   %snip = USE %snip
  //   %Reg = COPY %snip / SPILL %snip, fi#
  //
  if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
    return false;

  MachineInstr *UseMI = nullptr;

  // Check that all uses satisfy our criteria.
  for (MachineRegisterInfo::reg_instr_nodbg_iterator
       RI = MRI.reg_instr_nodbg_begin(SnipLI.reg),
       E = MRI.reg_instr_nodbg_end(); RI != E; ) {
    MachineInstr &MI = *RI++;

    // Allow copies to/from Reg.
    if (isFullCopyOf(MI, Reg))
      continue;

    // Allow stack slot loads.
    int FI;
    if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
      continue;

    // Allow stack slot stores.
    if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
      continue;

    // Allow a single additional instruction.
    if (UseMI && &MI != UseMI)
      return false;
    UseMI = &MI;
  }
  return true;
}

/// collectRegsToSpill - Collect live range snippets that only have a single
/// real use.
void InlineSpiller::collectRegsToSpill() {
  Register Reg = Edit->getReg();

  // Main register always spills.
  RegsToSpill.assign(1, Reg);
  SnippetCopies.clear();

  // Snippets all have the same original, so there can't be any for an original
  // register.
  if (Original == Reg)
    return;

  for (MachineRegisterInfo::reg_instr_iterator
       RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) {
    MachineInstr &MI = *RI++;
    Register SnipReg = isFullCopyOf(MI, Reg);
    if (!isSibling(SnipReg))
      continue;
    LiveInterval &SnipLI = LIS.getInterval(SnipReg);
    if (!isSnippet(SnipLI))
      continue;
    SnippetCopies.insert(&MI);
    if (isRegToSpill(SnipReg))
      continue;
    RegsToSpill.push_back(SnipReg);
    LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
    ++NumSnippets;
  }
}

bool InlineSpiller::isSibling(Register Reg) {
  return Reg.isVirtual() && VRM.getOriginal(Reg) == Original;
}

/// It is beneficial to spill to earlier place in the same BB in case
/// as follows:
/// There is an alternative def earlier in the same MBB.
/// Hoist the spill as far as possible in SpillMBB. This can ease
/// register pressure:
///
///   x = def
///   y = use x
///   s = copy x
///
/// Hoisting the spill of s to immediately after the def removes the
/// interference between x and y:
///
///   x = def
///   spill x
///   y = use killed x
///
/// This hoist only helps when the copy kills its source.
///
bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
                                       MachineInstr &CopyMI) {
  SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
#ifndef NDEBUG
  VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
  assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
#endif

  Register SrcReg = CopyMI.getOperand(1).getReg();
  LiveInterval &SrcLI = LIS.getInterval(SrcReg);
  VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
  LiveQueryResult SrcQ = SrcLI.Query(Idx);
  MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
  if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
    return false;

  // Conservatively extend the stack slot range to the range of the original
  // value. We may be able to do better with stack slot coloring by being more
  // careful here.
  assert(StackInt && "No stack slot assigned yet.");
  LiveInterval &OrigLI = LIS.getInterval(Original);
  VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
  StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
  LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
                    << *StackInt << '\n');

  // We are going to spill SrcVNI immediately after its def, so clear out
  // any later spills of the same value.
  eliminateRedundantSpills(SrcLI, SrcVNI);

  MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
  MachineBasicBlock::iterator MII;
  if (SrcVNI->isPHIDef())
    MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
  else {
    MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
    assert(DefMI && "Defining instruction disappeared");
    MII = DefMI;
    ++MII;
  }
  // Insert spill without kill flag immediately after def.
  TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
                          MRI.getRegClass(SrcReg), &TRI);
  --MII; // Point to store instruction.
  LIS.InsertMachineInstrInMaps(*MII);
  LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);

  HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
  ++NumSpills;
  return true;
}

/// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
/// redundant spills of this value in SLI.reg and sibling copies.
void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
  assert(VNI && "Missing value");
  SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
  WorkList.push_back(std::make_pair(&SLI, VNI));
  assert(StackInt && "No stack slot assigned yet.");

  do {
    LiveInterval *LI;
    std::tie(LI, VNI) = WorkList.pop_back_val();
    Register Reg = LI->reg;
    LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@'
                      << VNI->def << " in " << *LI << '\n');

    // Regs to spill are taken care of.
    if (isRegToSpill(Reg))
      continue;

    // Add all of VNI's live range to StackInt.
    StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
    LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');

    // Find all spills and copies of VNI.
    for (MachineRegisterInfo::use_instr_nodbg_iterator
         UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
         UI != E; ) {
      MachineInstr &MI = *UI++;
      if (!MI.isCopy() && !MI.mayStore())
        continue;
      SlotIndex Idx = LIS.getInstructionIndex(MI);
      if (LI->getVNInfoAt(Idx) != VNI)
        continue;

      // Follow sibling copies down the dominator tree.
      if (Register DstReg = isFullCopyOf(MI, Reg)) {
        if (isSibling(DstReg)) {
           LiveInterval &DstLI = LIS.getInterval(DstReg);
           VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
           assert(DstVNI && "Missing defined value");
           assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
           WorkList.push_back(std::make_pair(&DstLI, DstVNI));
        }
        continue;
      }

      // Erase spills.
      int FI;
      if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
        LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
        // eliminateDeadDefs won't normally remove stores, so switch opcode.
        MI.setDesc(TII.get(TargetOpcode::KILL));
        DeadDefs.push_back(&MI);
        ++NumSpillsRemoved;
        if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
          --NumSpills;
      }
    }
  } while (!WorkList.empty());
}

//===----------------------------------------------------------------------===//
//                            Rematerialization
//===----------------------------------------------------------------------===//

/// markValueUsed - Remember that VNI failed to rematerialize, so its defining
/// instruction cannot be eliminated. See through snippet copies
void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
  SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
  WorkList.push_back(std::make_pair(LI, VNI));
  do {
    std::tie(LI, VNI) = WorkList.pop_back_val();
    if (!UsedValues.insert(VNI).second)
      continue;

    if (VNI->isPHIDef()) {
      MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
      for (MachineBasicBlock *P : MBB->predecessors()) {
        VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
        if (PVNI)
          WorkList.push_back(std::make_pair(LI, PVNI));
      }
      continue;
    }

    // Follow snippet copies.
    MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
    if (!SnippetCopies.count(MI))
      continue;
    LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
    assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
    VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
    assert(SnipVNI && "Snippet undefined before copy");
    WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
  } while (!WorkList.empty());
}

bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg,
                                                     MachineInstr &MI) {
  if (!RestrictStatepointRemat)
    return true;
  // Here's a quick explanation of the problem we're trying to handle here:
  // * There are some pseudo instructions with more vreg uses than there are
  //   physical registers on the machine.
  // * This is normally handled by spilling the vreg, and folding the reload
  //   into the user instruction.  (Thus decreasing the number of used vregs
  //   until the remainder can be assigned to physregs.)
  // * However, since we may try to spill vregs in any order, we can end up
  //   trying to spill each operand to the instruction, and then rematting it
  //   instead.  When that happens, the new live intervals (for the remats) are
  //   expected to be trivially assignable (i.e. RS_Done).  However, since we
  //   may have more remats than physregs, we're guaranteed to fail to assign
  //   one.
  // At the moment, we only handle this for STATEPOINTs since they're the only
  // pseudo op where we've seen this.  If we start seeing other instructions
  // with the same problem, we need to revisit this.
  if (MI.getOpcode() != TargetOpcode::STATEPOINT)
    return true;
  // For STATEPOINTs we allow re-materialization for fixed arguments only hoping
  // that number of physical registers is enough to cover all fixed arguments.
  // If it is not true we need to revisit it.
  for (unsigned Idx = StatepointOpers(&MI).getVarIdx(),
                EndIdx = MI.getNumOperands();
       Idx < EndIdx; ++Idx) {
    MachineOperand &MO = MI.getOperand(Idx);
    if (MO.isReg() && MO.getReg() == VReg)
      return false;
  }
  return true;
}

/// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
  // Analyze instruction
  SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
  VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg, &Ops);

  if (!RI.Reads)
    return false;

  SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
  VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());

  if (!ParentVNI) {
    LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ");
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI.getOperand(i);
      if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
        MO.setIsUndef();
    }
    LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI);
    return true;
  }

  if (SnippetCopies.count(&MI))
    return false;

  LiveInterval &OrigLI = LIS.getInterval(Original);
  VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
  LiveRangeEdit::Remat RM(ParentVNI);
  RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);

  if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
    markValueUsed(&VirtReg, ParentVNI);
    LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
    return false;
  }

  // If the instruction also writes VirtReg.reg, it had better not require the
  // same register for uses and defs.
  if (RI.Tied) {
    markValueUsed(&VirtReg, ParentVNI);
    LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
    return false;
  }

  // Before rematerializing into a register for a single instruction, try to
  // fold a load into the instruction. That avoids allocating a new register.
  if (RM.OrigMI->canFoldAsLoad() &&
      foldMemoryOperand(Ops, RM.OrigMI)) {
    Edit->markRematerialized(RM.ParentVNI);
    ++NumFoldedLoads;
    return true;
  }

  // If we can't guarantee that we'll be able to actually assign the new vreg,
  // we can't remat.
  if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg, MI)) {
    markValueUsed(&VirtReg, ParentVNI);
    LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
    return false;
  }

  // Allocate a new register for the remat.
  Register NewVReg = Edit->createFrom(Original);

  // Finally we can rematerialize OrigMI before MI.
  SlotIndex DefIdx =
      Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);

  // We take the DebugLoc from MI, since OrigMI may be attributed to a
  // different source location.
  auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
  NewMI->setDebugLoc(MI.getDebugLoc());

  (void)DefIdx;
  LLVM_DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
                    << *LIS.getInstructionFromIndex(DefIdx));

  // Replace operands
  for (const auto &OpPair : Ops) {
    MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
    if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
      MO.setReg(NewVReg);
      MO.setIsKill();
    }
  }
  LLVM_DEBUG(dbgs() << "\t        " << UseIdx << '\t' << MI << '\n');

  ++NumRemats;
  return true;
}

/// reMaterializeAll - Try to rematerialize as many uses as possible,
/// and trim the live ranges after.
void InlineSpiller::reMaterializeAll() {
  if (!Edit->anyRematerializable(AA))
    return;

  UsedValues.clear();

  // Try to remat before all uses of snippets.
  bool anyRemat = false;
  for (Register Reg : RegsToSpill) {
    LiveInterval &LI = LIS.getInterval(Reg);
    for (MachineRegisterInfo::reg_bundle_iterator
           RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
         RegI != E; ) {
      MachineInstr &MI = *RegI++;

      // Debug values are not allowed to affect codegen.
      if (MI.isDebugValue())
        continue;

      assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
             "instruction that isn't a DBG_VALUE");

      anyRemat |= reMaterializeFor(LI, MI);
    }
  }
  if (!anyRemat)
    return;

  // Remove any values that were completely rematted.
  for (Register Reg : RegsToSpill) {
    LiveInterval &LI = LIS.getInterval(Reg);
    for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
         I != E; ++I) {
      VNInfo *VNI = *I;
      if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
        continue;
      MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
      MI->addRegisterDead(Reg, &TRI);
      if (!MI->allDefsAreDead())
        continue;
      LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
      DeadDefs.push_back(MI);
    }
  }

  // Eliminate dead code after remat. Note that some snippet copies may be
  // deleted here.
  if (DeadDefs.empty())
    return;
  LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
  Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);

  // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
  // after rematerialization.  To remove a VNI for a vreg from its LiveInterval,
  // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
  // removed, PHI VNI are still left in the LiveInterval.
  // So to get rid of unused reg, we need to check whether it has non-dbg
  // reference instead of whether it has non-empty interval.
  unsigned ResultPos = 0;
  for (Register Reg : RegsToSpill) {
    if (MRI.reg_nodbg_empty(Reg)) {
      Edit->eraseVirtReg(Reg);
      continue;
    }

    assert(LIS.hasInterval(Reg) &&
           (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
           "Empty and not used live-range?!");

    RegsToSpill[ResultPos++] = Reg;
  }
  RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
  LLVM_DEBUG(dbgs() << RegsToSpill.size()
                    << " registers to spill after remat.\n");
}

//===----------------------------------------------------------------------===//
//                                 Spilling
//===----------------------------------------------------------------------===//

/// If MI is a load or store of StackSlot, it can be removed.
bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) {
  int FI = 0;
  Register InstrReg = TII.isLoadFromStackSlot(*MI, FI);
  bool IsLoad = InstrReg;
  if (!IsLoad)
    InstrReg = TII.isStoreToStackSlot(*MI, FI);

  // We have a stack access. Is it the right register and slot?
  if (InstrReg != Reg || FI != StackSlot)
    return false;

  if (!IsLoad)
    HSpiller.rmFromMergeableSpills(*MI, StackSlot);

  LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI);
  LIS.RemoveMachineInstrFromMaps(*MI);
  MI->eraseFromParent();

  if (IsLoad) {
    ++NumReloadsRemoved;
    --NumReloads;
  } else {
    ++NumSpillsRemoved;
    --NumSpills;
  }

  return true;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD
// Dump the range of instructions from B to E with their slot indexes.
static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
                                               MachineBasicBlock::iterator E,
                                               LiveIntervals const &LIS,
                                               const char *const header,
                                               Register VReg = Register()) {
  char NextLine = '\n';
  char SlotIndent = '\t';

  if (std::next(B) == E) {
    NextLine = ' ';
    SlotIndent = ' ';
  }

  dbgs() << '\t' << header << ": " << NextLine;

  for (MachineBasicBlock::iterator I = B; I != E; ++I) {
    SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();

    // If a register was passed in and this instruction has it as a
    // destination that is marked as an early clobber, print the
    // early-clobber slot index.
    if (VReg) {
      MachineOperand *MO = I->findRegisterDefOperand(VReg);
      if (MO && MO->isEarlyClobber())
        Idx = Idx.getRegSlot(true);
    }

    dbgs() << SlotIndent << Idx << '\t' << *I;
  }
}
#endif

/// foldMemoryOperand - Try folding stack slot references in Ops into their
/// instructions.
///
/// @param Ops    Operand indices from AnalyzeVirtRegInBundle().
/// @param LoadMI Load instruction to use instead of stack slot when non-null.
/// @return       True on success.
bool InlineSpiller::
foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
                  MachineInstr *LoadMI) {
  if (Ops.empty())
    return false;
  // Don't attempt folding in bundles.
  MachineInstr *MI = Ops.front().first;
  if (Ops.back().first != MI || MI->isBundled())
    return false;

  bool WasCopy = MI->isCopy();
  Register ImpReg;

  // Spill subregs if the target allows it.
  // We always want to spill subregs for stackmap/patchpoint pseudos.
  bool SpillSubRegs = TII.isSubregFoldable() ||
                      MI->getOpcode() == TargetOpcode::STATEPOINT ||
                      MI->getOpcode() == TargetOpcode::PATCHPOINT ||
                      MI->getOpcode() == TargetOpcode::STACKMAP;

  // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
  // operands.
  SmallVector<unsigned, 8> FoldOps;
  for (const auto &OpPair : Ops) {
    unsigned Idx = OpPair.second;
    assert(MI == OpPair.first && "Instruction conflict during operand folding");
    MachineOperand &MO = MI->getOperand(Idx);
    if (MO.isImplicit()) {
      ImpReg = MO.getReg();
      continue;
    }

    if (!SpillSubRegs && MO.getSubReg())
      return false;
    // We cannot fold a load instruction into a def.
    if (LoadMI && MO.isDef())
      return false;
    // Tied use operands should not be passed to foldMemoryOperand.
    if (!MI->isRegTiedToDefOperand(Idx))
      FoldOps.push_back(Idx);
  }

  // If we only have implicit uses, we won't be able to fold that.
  // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
  if (FoldOps.empty())
    return false;

  MachineInstrSpan MIS(MI, MI->getParent());

  MachineInstr *FoldMI =
      LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
             : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM);
  if (!FoldMI)
    return false;

  // Remove LIS for any dead defs in the original MI not in FoldMI.
  for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
    if (!MO->isReg())
      continue;
    Register Reg = MO->getReg();
    if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) {
      continue;
    }
    // Skip non-Defs, including undef uses and internal reads.
    if (MO->isUse())
      continue;
    PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI);
    if (RI.FullyDefined)
      continue;
    // FoldMI does not define this physreg. Remove the LI segment.
    assert(MO->isDead() && "Cannot fold physreg def");
    SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
    LIS.removePhysRegDefAt(Reg, Idx);
  }

  int FI;
  if (TII.isStoreToStackSlot(*MI, FI) &&
      HSpiller.rmFromMergeableSpills(*MI, FI))
    --NumSpills;
  LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
  // Update the call site info.
  if (MI->isCandidateForCallSiteEntry())
    MI->getMF()->moveCallSiteInfo(MI, FoldMI);
  MI->eraseFromParent();

  // Insert any new instructions other than FoldMI into the LIS maps.
  assert(!MIS.empty() && "Unexpected empty span of instructions!");
  for (MachineInstr &MI : MIS)
    if (&MI != FoldMI)
      LIS.InsertMachineInstrInMaps(MI);

  // TII.foldMemoryOperand may have left some implicit operands on the
  // instruction.  Strip them.
  if (ImpReg)
    for (unsigned i = FoldMI->getNumOperands(); i; --i) {
      MachineOperand &MO = FoldMI->getOperand(i - 1);
      if (!MO.isReg() || !MO.isImplicit())
        break;
      if (MO.getReg() == ImpReg)
        FoldMI->RemoveOperand(i - 1);
    }

  LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
                                                "folded"));

  if (!WasCopy)
    ++NumFolded;
  else if (Ops.front().second == 0) {
    ++NumSpills;
    HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
  } else
    ++NumReloads;
  return true;
}

void InlineSpiller::insertReload(Register NewVReg,
                                 SlotIndex Idx,
                                 MachineBasicBlock::iterator MI) {
  MachineBasicBlock &MBB = *MI->getParent();

  MachineInstrSpan MIS(MI, &MBB);
  TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
                           MRI.getRegClass(NewVReg), &TRI);

  LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);

  LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
                                                NewVReg));
  ++NumReloads;
}

/// Check if \p Def fully defines a VReg with an undefined value.
/// If that's the case, that means the value of VReg is actually
/// not relevant.
static bool isRealSpill(const MachineInstr &Def) {
  if (!Def.isImplicitDef())
    return true;
  assert(Def.getNumOperands() == 1 &&
         "Implicit def with more than one definition");
  // We can say that the VReg defined by Def is undef, only if it is
  // fully defined by Def. Otherwise, some of the lanes may not be
  // undef and the value of the VReg matters.
  return Def.getOperand(0).getSubReg();
}

/// insertSpill - Insert a spill of NewVReg after MI.
void InlineSpiller::insertSpill(Register NewVReg, bool isKill,
                                 MachineBasicBlock::iterator MI) {
  // Spill are not terminators, so inserting spills after terminators will
  // violate invariants in MachineVerifier.
  assert(!MI->isTerminator() && "Inserting a spill after a terminator");
  MachineBasicBlock &MBB = *MI->getParent();

  MachineInstrSpan MIS(MI, &MBB);
  MachineBasicBlock::iterator SpillBefore = std::next(MI);
  bool IsRealSpill = isRealSpill(*MI);
  if (IsRealSpill)
    TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot,
                            MRI.getRegClass(NewVReg), &TRI);
  else
    // Don't spill undef value.
    // Anything works for undef, in particular keeping the memory
    // uninitialized is a viable option and it saves code size and
    // run time.
    BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
        .addReg(NewVReg, getKillRegState(isKill));

  MachineBasicBlock::iterator Spill = std::next(MI);
  LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end());

  LLVM_DEBUG(
      dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill"));
  ++NumSpills;
  if (IsRealSpill)
    HSpiller.addToMergeableSpills(*Spill, StackSlot, Original);
}

/// spillAroundUses - insert spill code around each use of Reg.
void InlineSpiller::spillAroundUses(Register Reg) {
  LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n');
  LiveInterval &OldLI = LIS.getInterval(Reg);

  // Iterate over instructions using Reg.
  for (MachineRegisterInfo::reg_bundle_iterator
       RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
       RegI != E; ) {
    MachineInstr *MI = &*(RegI++);

    // Debug values are not allowed to affect codegen.
    if (MI->isDebugValue()) {
      // Modify DBG_VALUE now that the value is in a spill slot.
      MachineBasicBlock *MBB = MI->getParent();
      LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI);
      buildDbgValueForSpill(*MBB, MI, *MI, StackSlot);
      MBB->erase(MI);
      continue;
    }

    assert(!MI->isDebugInstr() && "Did not expect to find a use in debug "
           "instruction that isn't a DBG_VALUE");

    // Ignore copies to/from snippets. We'll delete them.
    if (SnippetCopies.count(MI))
      continue;

    // Stack slot accesses may coalesce away.
    if (coalesceStackAccess(MI, Reg))
      continue;

    // Analyze instruction.
    SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
    VirtRegInfo RI = AnalyzeVirtRegInBundle(*MI, Reg, &Ops);

    // Find the slot index where this instruction reads and writes OldLI.
    // This is usually the def slot, except for tied early clobbers.
    SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
    if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
      if (SlotIndex::isSameInstr(Idx, VNI->def))
        Idx = VNI->def;

    // Check for a sibling copy.
    Register SibReg = isFullCopyOf(*MI, Reg);
    if (SibReg && isSibling(SibReg)) {
      // This may actually be a copy between snippets.
      if (isRegToSpill(SibReg)) {
        LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI);
        SnippetCopies.insert(MI);
        continue;
      }
      if (RI.Writes) {
        if (hoistSpillInsideBB(OldLI, *MI)) {
          // This COPY is now dead, the value is already in the stack slot.
          MI->getOperand(0).setIsDead();
          DeadDefs.push_back(MI);
          continue;
        }
      } else {
        // This is a reload for a sib-reg copy. Drop spills downstream.
        LiveInterval &SibLI = LIS.getInterval(SibReg);
        eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
        // The COPY will fold to a reload below.
      }
    }

    // Attempt to fold memory ops.
    if (foldMemoryOperand(Ops))
      continue;

    // Create a new virtual register for spill/fill.
    // FIXME: Infer regclass from instruction alone.
    Register NewVReg = Edit->createFrom(Reg);

    if (RI.Reads)
      insertReload(NewVReg, Idx, MI);

    // Rewrite instruction operands.
    bool hasLiveDef = false;
    for (const auto &OpPair : Ops) {
      MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
      MO.setReg(NewVReg);
      if (MO.isUse()) {
        if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
          MO.setIsKill();
      } else {
        if (!MO.isDead())
          hasLiveDef = true;
      }
    }
    LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');

    // FIXME: Use a second vreg if instruction has no tied ops.
    if (RI.Writes)
      if (hasLiveDef)
        insertSpill(NewVReg, true, MI);
  }
}

/// spillAll - Spill all registers remaining after rematerialization.
void InlineSpiller::spillAll() {
  // Update LiveStacks now that we are committed to spilling.
  if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
    StackSlot = VRM.assignVirt2StackSlot(Original);
    StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
    StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
  } else
    StackInt = &LSS.getInterval(StackSlot);

  if (Original != Edit->getReg())
    VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);

  assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
  for (Register Reg : RegsToSpill)
    StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
                                     StackInt->getValNumInfo(0));
  LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');

  // Spill around uses of all RegsToSpill.
  for (Register Reg : RegsToSpill)
    spillAroundUses(Reg);

  // Hoisted spills may cause dead code.
  if (!DeadDefs.empty()) {
    LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
    Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
  }

  // Finally delete the SnippetCopies.
  for (Register Reg : RegsToSpill) {
    for (MachineRegisterInfo::reg_instr_iterator
         RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end();
         RI != E; ) {
      MachineInstr &MI = *(RI++);
      assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
      // FIXME: Do this with a LiveRangeEdit callback.
      LIS.RemoveMachineInstrFromMaps(MI);
      MI.eraseFromParent();
    }
  }

  // Delete all spilled registers.
  for (Register Reg : RegsToSpill)
    Edit->eraseVirtReg(Reg);
}

void InlineSpiller::spill(LiveRangeEdit &edit) {
  ++NumSpilledRanges;
  Edit = &edit;
  assert(!Register::isStackSlot(edit.getReg()) &&
         "Trying to spill a stack slot.");
  // Share a stack slot among all descendants of Original.
  Original = VRM.getOriginal(edit.getReg());
  StackSlot = VRM.getStackSlot(Original);
  StackInt = nullptr;

  LLVM_DEBUG(dbgs() << "Inline spilling "
                    << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
                    << ':' << edit.getParent() << "\nFrom original "
                    << printReg(Original) << '\n');
  assert(edit.getParent().isSpillable() &&
         "Attempting to spill already spilled value.");
  assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");

  collectRegsToSpill();
  reMaterializeAll();

  // Remat may handle everything.
  if (!RegsToSpill.empty())
    spillAll();

  Edit->calculateRegClassAndHint(MF, Loops, MBFI);
}

/// Optimizations after all the reg selections and spills are done.
void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }

/// When a spill is inserted, add the spill to MergeableSpills map.
void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
                                            unsigned Original) {
  BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
  LiveInterval &OrigLI = LIS.getInterval(Original);
  // save a copy of LiveInterval in StackSlotToOrigLI because the original
  // LiveInterval may be cleared after all its references are spilled.
  if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) {
    auto LI = std::make_unique<LiveInterval>(OrigLI.reg, OrigLI.weight);
    LI->assign(OrigLI, Allocator);
    StackSlotToOrigLI[StackSlot] = std::move(LI);
  }
  SlotIndex Idx = LIS.getInstructionIndex(Spill);
  VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot());
  std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
  MergeableSpills[MIdx].insert(&Spill);
}

/// When a spill is removed, remove the spill from MergeableSpills map.
/// Return true if the spill is removed successfully.
bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
                                             int StackSlot) {
  auto It = StackSlotToOrigLI.find(StackSlot);
  if (It == StackSlotToOrigLI.end())
    return false;
  SlotIndex Idx = LIS.getInstructionIndex(Spill);
  VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
  std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
  return MergeableSpills[MIdx].erase(&Spill);
}

/// Check BB to see if it is a possible target BB to place a hoisted spill,
/// i.e., there should be a living sibling of OrigReg at the insert point.
bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
                                     MachineBasicBlock &BB, Register &LiveReg) {
  SlotIndex Idx;
  Register OrigReg = OrigLI.reg;
  MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB);
  if (MI != BB.end())
    Idx = LIS.getInstructionIndex(*MI);
  else
    Idx = LIS.getMBBEndIdx(&BB).getPrevSlot();
  SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg];
  assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI");

  for (const Register &SibReg : Siblings) {
    LiveInterval &LI = LIS.getInterval(SibReg);
    VNInfo *VNI = LI.getVNInfoAt(Idx);
    if (VNI) {
      LiveReg = SibReg;
      return true;
    }
  }
  return false;
}

/// Remove redundant spills in the same BB. Save those redundant spills in
/// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
void HoistSpillHelper::rmRedundantSpills(
    SmallPtrSet<MachineInstr *, 16> &Spills,
    SmallVectorImpl<MachineInstr *> &SpillsToRm,
    DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
  // For each spill saw, check SpillBBToSpill[] and see if its BB already has
  // another spill inside. If a BB contains more than one spill, only keep the
  // earlier spill with smaller SlotIndex.
  for (const auto CurrentSpill : Spills) {
    MachineBasicBlock *Block = CurrentSpill->getParent();
    MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
    MachineInstr *PrevSpill = SpillBBToSpill[Node];
    if (PrevSpill) {
      SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
      SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
      MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
      MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
      SpillsToRm.push_back(SpillToRm);
      SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
    } else {
      SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
    }
  }
  for (const auto SpillToRm : SpillsToRm)
    Spills.erase(SpillToRm);
}

/// Starting from \p Root find a top-down traversal order of the dominator
/// tree to visit all basic blocks containing the elements of \p Spills.
/// Redundant spills will be found and put into \p SpillsToRm at the same
/// time. \p SpillBBToSpill will be populated as part of the process and
/// maps a basic block to the first store occurring in the basic block.
/// \post SpillsToRm.union(Spills\@post) == Spills\@pre
void HoistSpillHelper::getVisitOrders(
    MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
    SmallVectorImpl<MachineDomTreeNode *> &Orders,
    SmallVectorImpl<MachineInstr *> &SpillsToRm,
    DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
    DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
  // The set contains all the possible BB nodes to which we may hoist
  // original spills.
  SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
  // Save the BB nodes on the path from the first BB node containing
  // non-redundant spill to the Root node.
  SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
  // All the spills to be hoisted must originate from a single def instruction
  // to the OrigReg. It means the def instruction should dominate all the spills
  // to be hoisted. We choose the BB where the def instruction is located as
  // the Root.
  MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
  // For every node on the dominator tree with spill, walk up on the dominator
  // tree towards the Root node until it is reached. If there is other node
  // containing spill in the middle of the path, the previous spill saw will
  // be redundant and the node containing it will be removed. All the nodes on
  // the path starting from the first node with non-redundant spill to the Root
  // node will be added to the WorkSet, which will contain all the possible
  // locations where spills may be hoisted to after the loop below is done.
  for (const auto Spill : Spills) {
    MachineBasicBlock *Block = Spill->getParent();
    MachineDomTreeNode *Node = MDT[Block];
    MachineInstr *SpillToRm = nullptr;
    while (Node != RootIDomNode) {
      // If Node dominates Block, and it already contains a spill, the spill in
      // Block will be redundant.
      if (Node != MDT[Block] && SpillBBToSpill[Node]) {
        SpillToRm = SpillBBToSpill[MDT[Block]];
        break;
        /// If we see the Node already in WorkSet, the path from the Node to
        /// the Root node must already be traversed by another spill.
        /// Then no need to repeat.
      } else if (WorkSet.count(Node)) {
        break;
      } else {
        NodesOnPath.insert(Node);
      }
      Node = Node->getIDom();
    }
    if (SpillToRm) {
      SpillsToRm.push_back(SpillToRm);
    } else {
      // Add a BB containing the original spills to SpillsToKeep -- i.e.,
      // set the initial status before hoisting start. The value of BBs
      // containing original spills is set to 0, in order to descriminate
      // with BBs containing hoisted spills which will be inserted to
      // SpillsToKeep later during hoisting.
      SpillsToKeep[MDT[Block]] = 0;
      WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
    }
    NodesOnPath.clear();
  }

  // Sort the nodes in WorkSet in top-down order and save the nodes
  // in Orders. Orders will be used for hoisting in runHoistSpills.
  unsigned idx = 0;
  Orders.push_back(MDT.getBase().getNode(Root));
  do {
    MachineDomTreeNode *Node = Orders[idx++];
    for (MachineDomTreeNode *Child : Node->children()) {
      if (WorkSet.count(Child))
        Orders.push_back(Child);
    }
  } while (idx != Orders.size());
  assert(Orders.size() == WorkSet.size() &&
         "Orders have different size with WorkSet");

#ifndef NDEBUG
  LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
  SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
  for (; RIt != Orders.rend(); RIt++)
    LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
  LLVM_DEBUG(dbgs() << "\n");
#endif
}

/// Try to hoist spills according to BB hotness. The spills to removed will
/// be saved in \p SpillsToRm. The spills to be inserted will be saved in
/// \p SpillsToIns.
void HoistSpillHelper::runHoistSpills(
    LiveInterval &OrigLI, VNInfo &OrigVNI,
    SmallPtrSet<MachineInstr *, 16> &Spills,
    SmallVectorImpl<MachineInstr *> &SpillsToRm,
    DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
  // Visit order of dominator tree nodes.
  SmallVector<MachineDomTreeNode *, 32> Orders;
  // SpillsToKeep contains all the nodes where spills are to be inserted
  // during hoisting. If the spill to be inserted is an original spill
  // (not a hoisted one), the value of the map entry is 0. If the spill
  // is a hoisted spill, the value of the map entry is the VReg to be used
  // as the source of the spill.
  DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
  // Map from BB to the first spill inside of it.
  DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;

  rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);

  MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
  getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
                 SpillBBToSpill);

  // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
  // nodes set and the cost of all the spills inside those nodes.
  // The nodes set are the locations where spills are to be inserted
  // in the subtree of current node.
  using NodesCostPair =
      std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
  DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;

  // Iterate Orders set in reverse order, which will be a bottom-up order
  // in the dominator tree. Once we visit a dom tree node, we know its
  // children have already been visited and the spill locations in the
  // subtrees of all the children have been determined.
  SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
  for (; RIt != Orders.rend(); RIt++) {
    MachineBasicBlock *Block = (*RIt)->getBlock();

    // If Block contains an original spill, simply continue.
    if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) {
      SpillsInSubTreeMap[*RIt].first.insert(*RIt);
      // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
      SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
      continue;
    }

    // Collect spills in subtree of current node (*RIt) to
    // SpillsInSubTreeMap[*RIt].first.
    for (MachineDomTreeNode *Child : (*RIt)->children()) {
      if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end())
        continue;
      // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
      // should be placed before getting the begin and end iterators of
      // SpillsInSubTreeMap[Child].first, or else the iterators may be
      // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
      // and the map grows and then the original buckets in the map are moved.
      SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
          SpillsInSubTreeMap[*RIt].first;
      BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
      SubTreeCost += SpillsInSubTreeMap[Child].second;
      auto BI = SpillsInSubTreeMap[Child].first.begin();
      auto EI = SpillsInSubTreeMap[Child].first.end();
      SpillsInSubTree.insert(BI, EI);
      SpillsInSubTreeMap.erase(Child);
    }

    SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
          SpillsInSubTreeMap[*RIt].first;
    BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
    // No spills in subtree, simply continue.
    if (SpillsInSubTree.empty())
      continue;

    // Check whether Block is a possible candidate to insert spill.
    Register LiveReg;
    if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
      continue;

    // If there are multiple spills that could be merged, bias a little
    // to hoist the spill.
    BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
                                       ? BranchProbability(9, 10)
                                       : BranchProbability(1, 1);
    if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
      // Hoist: Move spills to current Block.
      for (const auto SpillBB : SpillsInSubTree) {
        // When SpillBB is a BB contains original spill, insert the spill
        // to SpillsToRm.
        if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() &&
            !SpillsToKeep[SpillBB]) {
          MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
          SpillsToRm.push_back(SpillToRm);
        }
        // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
        SpillsToKeep.erase(SpillBB);
      }
      // Current Block is the BB containing the new hoisted spill. Add it to
      // SpillsToKeep. LiveReg is the source of the new spill.
      SpillsToKeep[*RIt] = LiveReg;
      LLVM_DEBUG({
        dbgs() << "spills in BB: ";
        for (const auto Rspill : SpillsInSubTree)
          dbgs() << Rspill->getBlock()->getNumber() << " ";
        dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
               << "\n";
      });
      SpillsInSubTree.clear();
      SpillsInSubTree.insert(*RIt);
      SubTreeCost = MBFI.getBlockFreq(Block);
    }
  }
  // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
  // save them to SpillsToIns.
  for (const auto &Ent : SpillsToKeep) {
    if (Ent.second)
      SpillsToIns[Ent.first->getBlock()] = Ent.second;
  }
}

/// For spills with equal values, remove redundant spills and hoist those left
/// to less hot spots.
///
/// Spills with equal values will be collected into the same set in
/// MergeableSpills when spill is inserted. These equal spills are originated
/// from the same defining instruction and are dominated by the instruction.
/// Before hoisting all the equal spills, redundant spills inside in the same
/// BB are first marked to be deleted. Then starting from the spills left, walk
/// up on the dominator tree towards the Root node where the define instruction
/// is located, mark the dominated spills to be deleted along the way and
/// collect the BB nodes on the path from non-dominated spills to the define
/// instruction into a WorkSet. The nodes in WorkSet are the candidate places
/// where we are considering to hoist the spills. We iterate the WorkSet in
/// bottom-up order, and for each node, we will decide whether to hoist spills
/// inside its subtree to that node. In this way, we can get benefit locally
/// even if hoisting all the equal spills to one cold place is impossible.
void HoistSpillHelper::hoistAllSpills() {
  SmallVector<Register, 4> NewVRegs;
  LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);

  for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
    Register Reg = Register::index2VirtReg(i);
    Register Original = VRM.getPreSplitReg(Reg);
    if (!MRI.def_empty(Reg))
      Virt2SiblingsMap[Original].insert(Reg);
  }

  // Each entry in MergeableSpills contains a spill set with equal values.
  for (auto &Ent : MergeableSpills) {
    int Slot = Ent.first.first;
    LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
    VNInfo *OrigVNI = Ent.first.second;
    SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
    if (Ent.second.empty())
      continue;

    LLVM_DEBUG({
      dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
             << "Equal spills in BB: ";
      for (const auto spill : EqValSpills)
        dbgs() << spill->getParent()->getNumber() << " ";
      dbgs() << "\n";
    });

    // SpillsToRm is the spill set to be removed from EqValSpills.
    SmallVector<MachineInstr *, 16> SpillsToRm;
    // SpillsToIns is the spill set to be newly inserted after hoisting.
    DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;

    runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);

    LLVM_DEBUG({
      dbgs() << "Finally inserted spills in BB: ";
      for (const auto &Ispill : SpillsToIns)
        dbgs() << Ispill.first->getNumber() << " ";
      dbgs() << "\nFinally removed spills in BB: ";
      for (const auto Rspill : SpillsToRm)
        dbgs() << Rspill->getParent()->getNumber() << " ";
      dbgs() << "\n";
    });

    // Stack live range update.
    LiveInterval &StackIntvl = LSS.getInterval(Slot);
    if (!SpillsToIns.empty() || !SpillsToRm.empty())
      StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
                                     StackIntvl.getValNumInfo(0));

    // Insert hoisted spills.
    for (auto const &Insert : SpillsToIns) {
      MachineBasicBlock *BB = Insert.first;
      Register LiveReg = Insert.second;
      MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB);
      TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot,
                              MRI.getRegClass(LiveReg), &TRI);
      LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI);
      ++NumSpills;
    }

    // Remove redundant spills or change them to dead instructions.
    NumSpills -= SpillsToRm.size();
    for (auto const RMEnt : SpillsToRm) {
      RMEnt->setDesc(TII.get(TargetOpcode::KILL));
      for (unsigned i = RMEnt->getNumOperands(); i; --i) {
        MachineOperand &MO = RMEnt->getOperand(i - 1);
        if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
          RMEnt->RemoveOperand(i - 1);
      }
    }
    Edit.eliminateDeadDefs(SpillsToRm, None, AA);
  }
}

/// For VirtReg clone, the \p New register should have the same physreg or
/// stackslot as the \p old register.
void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
  if (VRM.hasPhys(Old))
    VRM.assignVirt2Phys(New, VRM.getPhys(Old));
  else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
    VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
  else
    llvm_unreachable("VReg should be assigned either physreg or stackslot");
}