Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
//===- MinidumpYAML.cpp - Minidump YAMLIO implementation ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/ObjectYAML/MinidumpYAML.h"
#include "llvm/Support/Allocator.h"

using namespace llvm;
using namespace llvm::MinidumpYAML;
using namespace llvm::minidump;

/// Perform an optional yaml-mapping of an endian-aware type EndianType. The
/// only purpose of this function is to avoid casting the Default value to the
/// endian type;
template <typename EndianType>
static inline void mapOptional(yaml::IO &IO, const char *Key, EndianType &Val,
                               typename EndianType::value_type Default) {
  IO.mapOptional(Key, Val, EndianType(Default));
}

/// Yaml-map an endian-aware type EndianType as some other type MapType.
template <typename MapType, typename EndianType>
static inline void mapRequiredAs(yaml::IO &IO, const char *Key,
                                 EndianType &Val) {
  MapType Mapped = static_cast<typename EndianType::value_type>(Val);
  IO.mapRequired(Key, Mapped);
  Val = static_cast<typename EndianType::value_type>(Mapped);
}

/// Perform an optional yaml-mapping of an endian-aware type EndianType as some
/// other type MapType.
template <typename MapType, typename EndianType>
static inline void mapOptionalAs(yaml::IO &IO, const char *Key, EndianType &Val,
                                 MapType Default) {
  MapType Mapped = static_cast<typename EndianType::value_type>(Val);
  IO.mapOptional(Key, Mapped, Default);
  Val = static_cast<typename EndianType::value_type>(Mapped);
}

namespace {
/// Return the appropriate yaml Hex type for a given endian-aware type.
template <typename EndianType> struct HexType;
template <> struct HexType<support::ulittle16_t> { using type = yaml::Hex16; };
template <> struct HexType<support::ulittle32_t> { using type = yaml::Hex32; };
template <> struct HexType<support::ulittle64_t> { using type = yaml::Hex64; };
} // namespace

/// Yaml-map an endian-aware type as an appropriately-sized hex value.
template <typename EndianType>
static inline void mapRequiredHex(yaml::IO &IO, const char *Key,
                                  EndianType &Val) {
  mapRequiredAs<typename HexType<EndianType>::type>(IO, Key, Val);
}

/// Perform an optional yaml-mapping of an endian-aware type as an
/// appropriately-sized hex value.
template <typename EndianType>
static inline void mapOptionalHex(yaml::IO &IO, const char *Key,
                                  EndianType &Val,
                                  typename EndianType::value_type Default) {
  mapOptionalAs<typename HexType<EndianType>::type>(IO, Key, Val, Default);
}

Stream::~Stream() = default;

Stream::StreamKind Stream::getKind(StreamType Type) {
  switch (Type) {
  case StreamType::Exception:
    return StreamKind::Exception;
  case StreamType::MemoryInfoList:
    return StreamKind::MemoryInfoList;
  case StreamType::MemoryList:
    return StreamKind::MemoryList;
  case StreamType::ModuleList:
    return StreamKind::ModuleList;
  case StreamType::SystemInfo:
    return StreamKind::SystemInfo;
  case StreamType::LinuxCPUInfo:
  case StreamType::LinuxProcStatus:
  case StreamType::LinuxLSBRelease:
  case StreamType::LinuxCMDLine:
  case StreamType::LinuxMaps:
  case StreamType::LinuxProcStat:
  case StreamType::LinuxProcUptime:
    return StreamKind::TextContent;
  case StreamType::ThreadList:
    return StreamKind::ThreadList;
  default:
    return StreamKind::RawContent;
  }
}

std::unique_ptr<Stream> Stream::create(StreamType Type) {
  StreamKind Kind = getKind(Type);
  switch (Kind) {
  case StreamKind::Exception:
    return std::make_unique<ExceptionStream>();
  case StreamKind::MemoryInfoList:
    return std::make_unique<MemoryInfoListStream>();
  case StreamKind::MemoryList:
    return std::make_unique<MemoryListStream>();
  case StreamKind::ModuleList:
    return std::make_unique<ModuleListStream>();
  case StreamKind::RawContent:
    return std::make_unique<RawContentStream>(Type);
  case StreamKind::SystemInfo:
    return std::make_unique<SystemInfoStream>();
  case StreamKind::TextContent:
    return std::make_unique<TextContentStream>(Type);
  case StreamKind::ThreadList:
    return std::make_unique<ThreadListStream>();
  }
  llvm_unreachable("Unhandled stream kind!");
}

void yaml::ScalarBitSetTraits<MemoryProtection>::bitset(
    IO &IO, MemoryProtection &Protect) {
#define HANDLE_MDMP_PROTECT(CODE, NAME, NATIVENAME)                            \
  IO.bitSetCase(Protect, #NATIVENAME, MemoryProtection::NAME);
#include "llvm/BinaryFormat/MinidumpConstants.def"
}

void yaml::ScalarBitSetTraits<MemoryState>::bitset(IO &IO, MemoryState &State) {
#define HANDLE_MDMP_MEMSTATE(CODE, NAME, NATIVENAME)                           \
  IO.bitSetCase(State, #NATIVENAME, MemoryState::NAME);
#include "llvm/BinaryFormat/MinidumpConstants.def"
}

void yaml::ScalarBitSetTraits<MemoryType>::bitset(IO &IO, MemoryType &Type) {
#define HANDLE_MDMP_MEMTYPE(CODE, NAME, NATIVENAME)                            \
  IO.bitSetCase(Type, #NATIVENAME, MemoryType::NAME);
#include "llvm/BinaryFormat/MinidumpConstants.def"
}

void yaml::ScalarEnumerationTraits<ProcessorArchitecture>::enumeration(
    IO &IO, ProcessorArchitecture &Arch) {
#define HANDLE_MDMP_ARCH(CODE, NAME)                                           \
  IO.enumCase(Arch, #NAME, ProcessorArchitecture::NAME);
#include "llvm/BinaryFormat/MinidumpConstants.def"
  IO.enumFallback<Hex16>(Arch);
}

void yaml::ScalarEnumerationTraits<OSPlatform>::enumeration(IO &IO,
                                                            OSPlatform &Plat) {
#define HANDLE_MDMP_PLATFORM(CODE, NAME)                                       \
  IO.enumCase(Plat, #NAME, OSPlatform::NAME);
#include "llvm/BinaryFormat/MinidumpConstants.def"
  IO.enumFallback<Hex32>(Plat);
}

void yaml::ScalarEnumerationTraits<StreamType>::enumeration(IO &IO,
                                                            StreamType &Type) {
#define HANDLE_MDMP_STREAM_TYPE(CODE, NAME)                                    \
  IO.enumCase(Type, #NAME, StreamType::NAME);
#include "llvm/BinaryFormat/MinidumpConstants.def"
  IO.enumFallback<Hex32>(Type);
}

void yaml::MappingTraits<CPUInfo::ArmInfo>::mapping(IO &IO,
                                                    CPUInfo::ArmInfo &Info) {
  mapRequiredHex(IO, "CPUID", Info.CPUID);
  mapOptionalHex(IO, "ELF hwcaps", Info.ElfHWCaps, 0);
}

namespace {
template <std::size_t N> struct FixedSizeHex {
  FixedSizeHex(uint8_t (&Storage)[N]) : Storage(Storage) {}

  uint8_t (&Storage)[N];
};
} // namespace

namespace llvm {
namespace yaml {
template <std::size_t N> struct ScalarTraits<FixedSizeHex<N>> {
  static void output(const FixedSizeHex<N> &Fixed, void *, raw_ostream &OS) {
    OS << toHex(makeArrayRef(Fixed.Storage));
  }

  static StringRef input(StringRef Scalar, void *, FixedSizeHex<N> &Fixed) {
    if (!all_of(Scalar, isHexDigit))
      return "Invalid hex digit in input";
    if (Scalar.size() < 2 * N)
      return "String too short";
    if (Scalar.size() > 2 * N)
      return "String too long";
    copy(fromHex(Scalar), Fixed.Storage);
    return "";
  }

  static QuotingType mustQuote(StringRef S) { return QuotingType::None; }
};
} // namespace yaml
} // namespace llvm
void yaml::MappingTraits<CPUInfo::OtherInfo>::mapping(
    IO &IO, CPUInfo::OtherInfo &Info) {
  FixedSizeHex<sizeof(Info.ProcessorFeatures)> Features(Info.ProcessorFeatures);
  IO.mapRequired("Features", Features);
}

namespace {
/// A type which only accepts strings of a fixed size for yaml conversion.
template <std::size_t N> struct FixedSizeString {
  FixedSizeString(char (&Storage)[N]) : Storage(Storage) {}

  char (&Storage)[N];
};
} // namespace

namespace llvm {
namespace yaml {
template <std::size_t N> struct ScalarTraits<FixedSizeString<N>> {
  static void output(const FixedSizeString<N> &Fixed, void *, raw_ostream &OS) {
    OS << StringRef(Fixed.Storage, N);
  }

  static StringRef input(StringRef Scalar, void *, FixedSizeString<N> &Fixed) {
    if (Scalar.size() < N)
      return "String too short";
    if (Scalar.size() > N)
      return "String too long";
    copy(Scalar, Fixed.Storage);
    return "";
  }

  static QuotingType mustQuote(StringRef S) { return needsQuotes(S); }
};
} // namespace yaml
} // namespace llvm

void yaml::MappingTraits<CPUInfo::X86Info>::mapping(IO &IO,
                                                    CPUInfo::X86Info &Info) {
  FixedSizeString<sizeof(Info.VendorID)> VendorID(Info.VendorID);
  IO.mapRequired("Vendor ID", VendorID);

  mapRequiredHex(IO, "Version Info", Info.VersionInfo);
  mapRequiredHex(IO, "Feature Info", Info.FeatureInfo);
  mapOptionalHex(IO, "AMD Extended Features", Info.AMDExtendedFeatures, 0);
}

void yaml::MappingTraits<MemoryInfo>::mapping(IO &IO, MemoryInfo &Info) {
  mapRequiredHex(IO, "Base Address", Info.BaseAddress);
  mapOptionalHex(IO, "Allocation Base", Info.AllocationBase, Info.BaseAddress);
  mapRequiredAs<MemoryProtection>(IO, "Allocation Protect",
                                  Info.AllocationProtect);
  mapOptionalHex(IO, "Reserved0", Info.Reserved0, 0);
  mapRequiredHex(IO, "Region Size", Info.RegionSize);
  mapRequiredAs<MemoryState>(IO, "State", Info.State);
  mapOptionalAs<MemoryProtection>(IO, "Protect", Info.Protect,
                                  Info.AllocationProtect);
  mapRequiredAs<MemoryType>(IO, "Type", Info.Type);
  mapOptionalHex(IO, "Reserved1", Info.Reserved1, 0);
}

void yaml::MappingTraits<VSFixedFileInfo>::mapping(IO &IO,
                                                   VSFixedFileInfo &Info) {
  mapOptionalHex(IO, "Signature", Info.Signature, 0);
  mapOptionalHex(IO, "Struct Version", Info.StructVersion, 0);
  mapOptionalHex(IO, "File Version High", Info.FileVersionHigh, 0);
  mapOptionalHex(IO, "File Version Low", Info.FileVersionLow, 0);
  mapOptionalHex(IO, "Product Version High", Info.ProductVersionHigh, 0);
  mapOptionalHex(IO, "Product Version Low", Info.ProductVersionLow, 0);
  mapOptionalHex(IO, "File Flags Mask", Info.FileFlagsMask, 0);
  mapOptionalHex(IO, "File Flags", Info.FileFlags, 0);
  mapOptionalHex(IO, "File OS", Info.FileOS, 0);
  mapOptionalHex(IO, "File Type", Info.FileType, 0);
  mapOptionalHex(IO, "File Subtype", Info.FileSubtype, 0);
  mapOptionalHex(IO, "File Date High", Info.FileDateHigh, 0);
  mapOptionalHex(IO, "File Date Low", Info.FileDateLow, 0);
}

void yaml::MappingTraits<ModuleListStream::entry_type>::mapping(
    IO &IO, ModuleListStream::entry_type &M) {
  mapRequiredHex(IO, "Base of Image", M.Entry.BaseOfImage);
  mapRequiredHex(IO, "Size of Image", M.Entry.SizeOfImage);
  mapOptionalHex(IO, "Checksum", M.Entry.Checksum, 0);
  mapOptional(IO, "Time Date Stamp", M.Entry.TimeDateStamp, 0);
  IO.mapRequired("Module Name", M.Name);
  IO.mapOptional("Version Info", M.Entry.VersionInfo, VSFixedFileInfo());
  IO.mapRequired("CodeView Record", M.CvRecord);
  IO.mapOptional("Misc Record", M.MiscRecord, yaml::BinaryRef());
  mapOptionalHex(IO, "Reserved0", M.Entry.Reserved0, 0);
  mapOptionalHex(IO, "Reserved1", M.Entry.Reserved1, 0);
}

static void streamMapping(yaml::IO &IO, RawContentStream &Stream) {
  IO.mapOptional("Content", Stream.Content);
  IO.mapOptional("Size", Stream.Size, Stream.Content.binary_size());
}

static StringRef streamValidate(RawContentStream &Stream) {
  if (Stream.Size.value < Stream.Content.binary_size())
    return "Stream size must be greater or equal to the content size";
  return "";
}

void yaml::MappingTraits<MemoryListStream::entry_type>::mapping(
    IO &IO, MemoryListStream::entry_type &Range) {
  MappingContextTraits<MemoryDescriptor, yaml::BinaryRef>::mapping(
      IO, Range.Entry, Range.Content);
}

static void streamMapping(yaml::IO &IO, MemoryInfoListStream &Stream) {
  IO.mapRequired("Memory Ranges", Stream.Infos);
}

static void streamMapping(yaml::IO &IO, MemoryListStream &Stream) {
  IO.mapRequired("Memory Ranges", Stream.Entries);
}

static void streamMapping(yaml::IO &IO, ModuleListStream &Stream) {
  IO.mapRequired("Modules", Stream.Entries);
}

static void streamMapping(yaml::IO &IO, SystemInfoStream &Stream) {
  SystemInfo &Info = Stream.Info;
  IO.mapRequired("Processor Arch", Info.ProcessorArch);
  mapOptional(IO, "Processor Level", Info.ProcessorLevel, 0);
  mapOptional(IO, "Processor Revision", Info.ProcessorRevision, 0);
  IO.mapOptional("Number of Processors", Info.NumberOfProcessors, 0);
  IO.mapOptional("Product type", Info.ProductType, 0);
  mapOptional(IO, "Major Version", Info.MajorVersion, 0);
  mapOptional(IO, "Minor Version", Info.MinorVersion, 0);
  mapOptional(IO, "Build Number", Info.BuildNumber, 0);
  IO.mapRequired("Platform ID", Info.PlatformId);
  IO.mapOptional("CSD Version", Stream.CSDVersion, "");
  mapOptionalHex(IO, "Suite Mask", Info.SuiteMask, 0);
  mapOptionalHex(IO, "Reserved", Info.Reserved, 0);
  switch (static_cast<ProcessorArchitecture>(Info.ProcessorArch)) {
  case ProcessorArchitecture::X86:
  case ProcessorArchitecture::AMD64:
    IO.mapOptional("CPU", Info.CPU.X86);
    break;
  case ProcessorArchitecture::ARM:
  case ProcessorArchitecture::ARM64:
  case ProcessorArchitecture::BP_ARM64:
    IO.mapOptional("CPU", Info.CPU.Arm);
    break;
  default:
    IO.mapOptional("CPU", Info.CPU.Other);
    break;
  }
}

static void streamMapping(yaml::IO &IO, TextContentStream &Stream) {
  IO.mapOptional("Text", Stream.Text);
}

void yaml::MappingContextTraits<MemoryDescriptor, yaml::BinaryRef>::mapping(
    IO &IO, MemoryDescriptor &Memory, BinaryRef &Content) {
  mapRequiredHex(IO, "Start of Memory Range", Memory.StartOfMemoryRange);
  IO.mapRequired("Content", Content);
}

void yaml::MappingTraits<ThreadListStream::entry_type>::mapping(
    IO &IO, ThreadListStream::entry_type &T) {
  mapRequiredHex(IO, "Thread Id", T.Entry.ThreadId);
  mapOptionalHex(IO, "Suspend Count", T.Entry.SuspendCount, 0);
  mapOptionalHex(IO, "Priority Class", T.Entry.PriorityClass, 0);
  mapOptionalHex(IO, "Priority", T.Entry.Priority, 0);
  mapOptionalHex(IO, "Environment Block", T.Entry.EnvironmentBlock, 0);
  IO.mapRequired("Context", T.Context);
  IO.mapRequired("Stack", T.Entry.Stack, T.Stack);
}

static void streamMapping(yaml::IO &IO, ThreadListStream &Stream) {
  IO.mapRequired("Threads", Stream.Entries);
}

static void streamMapping(yaml::IO &IO, MinidumpYAML::ExceptionStream &Stream) {
  mapRequiredHex(IO, "Thread ID", Stream.MDExceptionStream.ThreadId);
  IO.mapRequired("Exception Record", Stream.MDExceptionStream.ExceptionRecord);
  IO.mapRequired("Thread Context", Stream.ThreadContext);
}

void yaml::MappingTraits<minidump::Exception>::mapping(
    yaml::IO &IO, minidump::Exception &Exception) {
  mapRequiredHex(IO, "Exception Code", Exception.ExceptionCode);
  mapOptionalHex(IO, "Exception Flags", Exception.ExceptionFlags, 0);
  mapOptionalHex(IO, "Exception Record", Exception.ExceptionRecord, 0);
  mapOptionalHex(IO, "Exception Address", Exception.ExceptionAddress, 0);
  mapOptional(IO, "Number of Parameters", Exception.NumberParameters, 0);

  for (size_t Index = 0; Index < Exception.MaxParameters; ++Index) {
    SmallString<16> Name("Parameter ");
    Twine(Index).toVector(Name);
    support::ulittle64_t &Field = Exception.ExceptionInformation[Index];

    if (Index < Exception.NumberParameters)
      mapRequiredHex(IO, Name.c_str(), Field);
    else
      mapOptionalHex(IO, Name.c_str(), Field, 0);
  }
}

void yaml::MappingTraits<std::unique_ptr<Stream>>::mapping(
    yaml::IO &IO, std::unique_ptr<MinidumpYAML::Stream> &S) {
  StreamType Type;
  if (IO.outputting())
    Type = S->Type;
  IO.mapRequired("Type", Type);

  if (!IO.outputting())
    S = MinidumpYAML::Stream::create(Type);
  switch (S->Kind) {
  case MinidumpYAML::Stream::StreamKind::Exception:
    streamMapping(IO, llvm::cast<MinidumpYAML::ExceptionStream>(*S));
    break;
  case MinidumpYAML::Stream::StreamKind::MemoryInfoList:
    streamMapping(IO, llvm::cast<MemoryInfoListStream>(*S));
    break;
  case MinidumpYAML::Stream::StreamKind::MemoryList:
    streamMapping(IO, llvm::cast<MemoryListStream>(*S));
    break;
  case MinidumpYAML::Stream::StreamKind::ModuleList:
    streamMapping(IO, llvm::cast<ModuleListStream>(*S));
    break;
  case MinidumpYAML::Stream::StreamKind::RawContent:
    streamMapping(IO, llvm::cast<RawContentStream>(*S));
    break;
  case MinidumpYAML::Stream::StreamKind::SystemInfo:
    streamMapping(IO, llvm::cast<SystemInfoStream>(*S));
    break;
  case MinidumpYAML::Stream::StreamKind::TextContent:
    streamMapping(IO, llvm::cast<TextContentStream>(*S));
    break;
  case MinidumpYAML::Stream::StreamKind::ThreadList:
    streamMapping(IO, llvm::cast<ThreadListStream>(*S));
    break;
  }
}

StringRef yaml::MappingTraits<std::unique_ptr<Stream>>::validate(
    yaml::IO &IO, std::unique_ptr<MinidumpYAML::Stream> &S) {
  switch (S->Kind) {
  case MinidumpYAML::Stream::StreamKind::RawContent:
    return streamValidate(cast<RawContentStream>(*S));
  case MinidumpYAML::Stream::StreamKind::Exception:
  case MinidumpYAML::Stream::StreamKind::MemoryInfoList:
  case MinidumpYAML::Stream::StreamKind::MemoryList:
  case MinidumpYAML::Stream::StreamKind::ModuleList:
  case MinidumpYAML::Stream::StreamKind::SystemInfo:
  case MinidumpYAML::Stream::StreamKind::TextContent:
  case MinidumpYAML::Stream::StreamKind::ThreadList:
    return "";
  }
  llvm_unreachable("Fully covered switch above!");
}

void yaml::MappingTraits<Object>::mapping(IO &IO, Object &O) {
  IO.mapTag("!minidump", true);
  mapOptionalHex(IO, "Signature", O.Header.Signature, Header::MagicSignature);
  mapOptionalHex(IO, "Version", O.Header.Version, Header::MagicVersion);
  mapOptionalHex(IO, "Flags", O.Header.Flags, 0);
  IO.mapRequired("Streams", O.Streams);
}

Expected<std::unique_ptr<Stream>>
Stream::create(const Directory &StreamDesc, const object::MinidumpFile &File) {
  StreamKind Kind = getKind(StreamDesc.Type);
  switch (Kind) {
  case StreamKind::Exception: {
    Expected<const minidump::ExceptionStream &> ExpectedExceptionStream =
        File.getExceptionStream();
    if (!ExpectedExceptionStream)
      return ExpectedExceptionStream.takeError();
    Expected<ArrayRef<uint8_t>> ExpectedThreadContext =
        File.getRawData(ExpectedExceptionStream->ThreadContext);
    if (!ExpectedThreadContext)
      return ExpectedThreadContext.takeError();
    return std::make_unique<ExceptionStream>(*ExpectedExceptionStream,
                                             *ExpectedThreadContext);
  }
  case StreamKind::MemoryInfoList: {
    if (auto ExpectedList = File.getMemoryInfoList())
      return std::make_unique<MemoryInfoListStream>(*ExpectedList);
    else
      return ExpectedList.takeError();
  }
  case StreamKind::MemoryList: {
    auto ExpectedList = File.getMemoryList();
    if (!ExpectedList)
      return ExpectedList.takeError();
    std::vector<MemoryListStream::entry_type> Ranges;
    for (const MemoryDescriptor &MD : *ExpectedList) {
      auto ExpectedContent = File.getRawData(MD.Memory);
      if (!ExpectedContent)
        return ExpectedContent.takeError();
      Ranges.push_back({MD, *ExpectedContent});
    }
    return std::make_unique<MemoryListStream>(std::move(Ranges));
  }
  case StreamKind::ModuleList: {
    auto ExpectedList = File.getModuleList();
    if (!ExpectedList)
      return ExpectedList.takeError();
    std::vector<ModuleListStream::entry_type> Modules;
    for (const Module &M : *ExpectedList) {
      auto ExpectedName = File.getString(M.ModuleNameRVA);
      if (!ExpectedName)
        return ExpectedName.takeError();
      auto ExpectedCv = File.getRawData(M.CvRecord);
      if (!ExpectedCv)
        return ExpectedCv.takeError();
      auto ExpectedMisc = File.getRawData(M.MiscRecord);
      if (!ExpectedMisc)
        return ExpectedMisc.takeError();
      Modules.push_back(
          {M, std::move(*ExpectedName), *ExpectedCv, *ExpectedMisc});
    }
    return std::make_unique<ModuleListStream>(std::move(Modules));
  }
  case StreamKind::RawContent:
    return std::make_unique<RawContentStream>(StreamDesc.Type,
                                               File.getRawStream(StreamDesc));
  case StreamKind::SystemInfo: {
    auto ExpectedInfo = File.getSystemInfo();
    if (!ExpectedInfo)
      return ExpectedInfo.takeError();
    auto ExpectedCSDVersion = File.getString(ExpectedInfo->CSDVersionRVA);
    if (!ExpectedCSDVersion)
      return ExpectedInfo.takeError();
    return std::make_unique<SystemInfoStream>(*ExpectedInfo,
                                               std::move(*ExpectedCSDVersion));
  }
  case StreamKind::TextContent:
    return std::make_unique<TextContentStream>(
        StreamDesc.Type, toStringRef(File.getRawStream(StreamDesc)));
  case StreamKind::ThreadList: {
    auto ExpectedList = File.getThreadList();
    if (!ExpectedList)
      return ExpectedList.takeError();
    std::vector<ThreadListStream::entry_type> Threads;
    for (const Thread &T : *ExpectedList) {
      auto ExpectedStack = File.getRawData(T.Stack.Memory);
      if (!ExpectedStack)
        return ExpectedStack.takeError();
      auto ExpectedContext = File.getRawData(T.Context);
      if (!ExpectedContext)
        return ExpectedContext.takeError();
      Threads.push_back({T, *ExpectedStack, *ExpectedContext});
    }
    return std::make_unique<ThreadListStream>(std::move(Threads));
  }
  }
  llvm_unreachable("Unhandled stream kind!");
}

Expected<Object> Object::create(const object::MinidumpFile &File) {
  std::vector<std::unique_ptr<Stream>> Streams;
  Streams.reserve(File.streams().size());
  for (const Directory &StreamDesc : File.streams()) {
    auto ExpectedStream = Stream::create(StreamDesc, File);
    if (!ExpectedStream)
      return ExpectedStream.takeError();
    Streams.push_back(std::move(*ExpectedStream));
  }
  return Object(File.header(), std::move(Streams));
}