Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
//===- llvm/lib/Target/ARM/ARMCallLowering.cpp - Call lowering ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file implements the lowering of LLVM calls to machine code calls for
/// GlobalISel.
//
//===----------------------------------------------------------------------===//

#include "ARMCallLowering.h"
#include "ARMBaseInstrInfo.h"
#include "ARMISelLowering.h"
#include "ARMSubtarget.h"
#include "Utils/ARMBaseInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/MachineValueType.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <utility>

using namespace llvm;

ARMCallLowering::ARMCallLowering(const ARMTargetLowering &TLI)
    : CallLowering(&TLI) {}

static bool isSupportedType(const DataLayout &DL, const ARMTargetLowering &TLI,
                            Type *T) {
  if (T->isArrayTy())
    return isSupportedType(DL, TLI, T->getArrayElementType());

  if (T->isStructTy()) {
    // For now we only allow homogeneous structs that we can manipulate with
    // G_MERGE_VALUES and G_UNMERGE_VALUES
    auto StructT = cast<StructType>(T);
    for (unsigned i = 1, e = StructT->getNumElements(); i != e; ++i)
      if (StructT->getElementType(i) != StructT->getElementType(0))
        return false;
    return isSupportedType(DL, TLI, StructT->getElementType(0));
  }

  EVT VT = TLI.getValueType(DL, T, true);
  if (!VT.isSimple() || VT.isVector() ||
      !(VT.isInteger() || VT.isFloatingPoint()))
    return false;

  unsigned VTSize = VT.getSimpleVT().getSizeInBits();

  if (VTSize == 64)
    // FIXME: Support i64 too
    return VT.isFloatingPoint();

  return VTSize == 1 || VTSize == 8 || VTSize == 16 || VTSize == 32;
}

namespace {

/// Helper class for values going out through an ABI boundary (used for handling
/// function return values and call parameters).
struct OutgoingValueHandler : public CallLowering::ValueHandler {
  OutgoingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                       MachineInstrBuilder &MIB, CCAssignFn *AssignFn)
      : ValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}

  bool isIncomingArgumentHandler() const override { return false; }

  Register getStackAddress(uint64_t Size, int64_t Offset,
                           MachinePointerInfo &MPO) override {
    assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) &&
           "Unsupported size");

    LLT p0 = LLT::pointer(0, 32);
    LLT s32 = LLT::scalar(32);
    auto SPReg = MIRBuilder.buildCopy(p0, Register(ARM::SP));

    auto OffsetReg = MIRBuilder.buildConstant(s32, Offset);

    auto AddrReg = MIRBuilder.buildPtrAdd(p0, SPReg, OffsetReg);

    MPO = MachinePointerInfo::getStack(MIRBuilder.getMF(), Offset);
    return AddrReg.getReg(0);
  }

  void assignValueToReg(Register ValVReg, Register PhysReg,
                        CCValAssign &VA) override {
    assert(VA.isRegLoc() && "Value shouldn't be assigned to reg");
    assert(VA.getLocReg() == PhysReg && "Assigning to the wrong reg?");

    assert(VA.getValVT().getSizeInBits() <= 64 && "Unsupported value size");
    assert(VA.getLocVT().getSizeInBits() <= 64 && "Unsupported location size");

    Register ExtReg = extendRegister(ValVReg, VA);
    MIRBuilder.buildCopy(PhysReg, ExtReg);
    MIB.addUse(PhysReg, RegState::Implicit);
  }

  void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
                            MachinePointerInfo &MPO, CCValAssign &VA) override {
    assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) &&
           "Unsupported size");

    Register ExtReg = extendRegister(ValVReg, VA);
    auto MMO = MIRBuilder.getMF().getMachineMemOperand(
        MPO, MachineMemOperand::MOStore, VA.getLocVT().getStoreSize(),
        Align(1));
    MIRBuilder.buildStore(ExtReg, Addr, *MMO);
  }

  unsigned assignCustomValue(const CallLowering::ArgInfo &Arg,
                             ArrayRef<CCValAssign> VAs) override {
    assert(Arg.Regs.size() == 1 && "Can't handle multple regs yet");

    CCValAssign VA = VAs[0];
    assert(VA.needsCustom() && "Value doesn't need custom handling");

    // Custom lowering for other types, such as f16, is currently not supported
    if (VA.getValVT() != MVT::f64)
      return 0;

    CCValAssign NextVA = VAs[1];
    assert(NextVA.needsCustom() && "Value doesn't need custom handling");
    assert(NextVA.getValVT() == MVT::f64 && "Unsupported type");

    assert(VA.getValNo() == NextVA.getValNo() &&
           "Values belong to different arguments");

    assert(VA.isRegLoc() && "Value should be in reg");
    assert(NextVA.isRegLoc() && "Value should be in reg");

    Register NewRegs[] = {MRI.createGenericVirtualRegister(LLT::scalar(32)),
                          MRI.createGenericVirtualRegister(LLT::scalar(32))};
    MIRBuilder.buildUnmerge(NewRegs, Arg.Regs[0]);

    bool IsLittle = MIRBuilder.getMF().getSubtarget<ARMSubtarget>().isLittle();
    if (!IsLittle)
      std::swap(NewRegs[0], NewRegs[1]);

    assignValueToReg(NewRegs[0], VA.getLocReg(), VA);
    assignValueToReg(NewRegs[1], NextVA.getLocReg(), NextVA);

    return 1;
  }

  bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
                 CCValAssign::LocInfo LocInfo,
                 const CallLowering::ArgInfo &Info, ISD::ArgFlagsTy Flags,
                 CCState &State) override {
    if (AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State))
      return true;

    StackSize =
        std::max(StackSize, static_cast<uint64_t>(State.getNextStackOffset()));
    return false;
  }

  MachineInstrBuilder &MIB;
  uint64_t StackSize = 0;
};

} // end anonymous namespace

void ARMCallLowering::splitToValueTypes(const ArgInfo &OrigArg,
                                        SmallVectorImpl<ArgInfo> &SplitArgs,
                                        MachineFunction &MF) const {
  const ARMTargetLowering &TLI = *getTLI<ARMTargetLowering>();
  LLVMContext &Ctx = OrigArg.Ty->getContext();
  const DataLayout &DL = MF.getDataLayout();
  const Function &F = MF.getFunction();

  SmallVector<EVT, 4> SplitVTs;
  ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, nullptr, nullptr, 0);
  assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");

  if (SplitVTs.size() == 1) {
    // Even if there is no splitting to do, we still want to replace the
    // original type (e.g. pointer type -> integer).
    auto Flags = OrigArg.Flags[0];
    Flags.setOrigAlign(DL.getABITypeAlign(OrigArg.Ty));
    SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
                           Flags, OrigArg.IsFixed);
    return;
  }

  // Create one ArgInfo for each virtual register.
  for (unsigned i = 0, e = SplitVTs.size(); i != e; ++i) {
    EVT SplitVT = SplitVTs[i];
    Type *SplitTy = SplitVT.getTypeForEVT(Ctx);
    auto Flags = OrigArg.Flags[0];

    Flags.setOrigAlign(DL.getABITypeAlign(SplitTy));

    bool NeedsConsecutiveRegisters =
        TLI.functionArgumentNeedsConsecutiveRegisters(
            SplitTy, F.getCallingConv(), F.isVarArg());
    if (NeedsConsecutiveRegisters) {
      Flags.setInConsecutiveRegs();
      if (i == e - 1)
        Flags.setInConsecutiveRegsLast();
    }

    // FIXME: We also want to split SplitTy further.
    Register PartReg = OrigArg.Regs[i];
    SplitArgs.emplace_back(PartReg, SplitTy, Flags, OrigArg.IsFixed);
  }
}

/// Lower the return value for the already existing \p Ret. This assumes that
/// \p MIRBuilder's insertion point is correct.
bool ARMCallLowering::lowerReturnVal(MachineIRBuilder &MIRBuilder,
                                     const Value *Val, ArrayRef<Register> VRegs,
                                     MachineInstrBuilder &Ret) const {
  if (!Val)
    // Nothing to do here.
    return true;

  auto &MF = MIRBuilder.getMF();
  const auto &F = MF.getFunction();

  auto DL = MF.getDataLayout();
  auto &TLI = *getTLI<ARMTargetLowering>();
  if (!isSupportedType(DL, TLI, Val->getType()))
    return false;

  ArgInfo OrigRetInfo(VRegs, Val->getType());
  setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F);

  SmallVector<ArgInfo, 4> SplitRetInfos;
  splitToValueTypes(OrigRetInfo, SplitRetInfos, MF);

  CCAssignFn *AssignFn =
      TLI.CCAssignFnForReturn(F.getCallingConv(), F.isVarArg());

  OutgoingValueHandler RetHandler(MIRBuilder, MF.getRegInfo(), Ret, AssignFn);
  return handleAssignments(MIRBuilder, SplitRetInfos, RetHandler);
}

bool ARMCallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
                                  const Value *Val,
                                  ArrayRef<Register> VRegs) const {
  assert(!Val == VRegs.empty() && "Return value without a vreg");

  auto const &ST = MIRBuilder.getMF().getSubtarget<ARMSubtarget>();
  unsigned Opcode = ST.getReturnOpcode();
  auto Ret = MIRBuilder.buildInstrNoInsert(Opcode).add(predOps(ARMCC::AL));

  if (!lowerReturnVal(MIRBuilder, Val, VRegs, Ret))
    return false;

  MIRBuilder.insertInstr(Ret);
  return true;
}

namespace {

/// Helper class for values coming in through an ABI boundary (used for handling
/// formal arguments and call return values).
struct IncomingValueHandler : public CallLowering::ValueHandler {
  IncomingValueHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                       CCAssignFn AssignFn)
      : ValueHandler(MIRBuilder, MRI, AssignFn) {}

  bool isIncomingArgumentHandler() const override { return true; }

  Register getStackAddress(uint64_t Size, int64_t Offset,
                           MachinePointerInfo &MPO) override {
    assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) &&
           "Unsupported size");

    auto &MFI = MIRBuilder.getMF().getFrameInfo();

    int FI = MFI.CreateFixedObject(Size, Offset, true);
    MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);

    return MIRBuilder.buildFrameIndex(LLT::pointer(MPO.getAddrSpace(), 32), FI)
        .getReg(0);
  }

  void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
                            MachinePointerInfo &MPO, CCValAssign &VA) override {
    assert((Size == 1 || Size == 2 || Size == 4 || Size == 8) &&
           "Unsupported size");

    if (VA.getLocInfo() == CCValAssign::SExt ||
        VA.getLocInfo() == CCValAssign::ZExt) {
      // If the value is zero- or sign-extended, its size becomes 4 bytes, so
      // that's what we should load.
      Size = 4;
      assert(MRI.getType(ValVReg).isScalar() && "Only scalars supported atm");

      auto LoadVReg = buildLoad(LLT::scalar(32), Addr, Size, MPO);
      MIRBuilder.buildTrunc(ValVReg, LoadVReg);
    } else {
      // If the value is not extended, a simple load will suffice.
      buildLoad(ValVReg, Addr, Size, MPO);
    }
  }

  MachineInstrBuilder buildLoad(const DstOp &Res, Register Addr, uint64_t Size,
                                MachinePointerInfo &MPO) {
    MachineFunction &MF = MIRBuilder.getMF();

    auto MMO = MF.getMachineMemOperand(MPO, MachineMemOperand::MOLoad, Size,
                                       inferAlignFromPtrInfo(MF, MPO));
    return MIRBuilder.buildLoad(Res, Addr, *MMO);
  }

  void assignValueToReg(Register ValVReg, Register PhysReg,
                        CCValAssign &VA) override {
    assert(VA.isRegLoc() && "Value shouldn't be assigned to reg");
    assert(VA.getLocReg() == PhysReg && "Assigning to the wrong reg?");

    auto ValSize = VA.getValVT().getSizeInBits();
    auto LocSize = VA.getLocVT().getSizeInBits();

    assert(ValSize <= 64 && "Unsupported value size");
    assert(LocSize <= 64 && "Unsupported location size");

    markPhysRegUsed(PhysReg);
    if (ValSize == LocSize) {
      MIRBuilder.buildCopy(ValVReg, PhysReg);
    } else {
      assert(ValSize < LocSize && "Extensions not supported");

      // We cannot create a truncating copy, nor a trunc of a physical register.
      // Therefore, we need to copy the content of the physical register into a
      // virtual one and then truncate that.
      auto PhysRegToVReg = MIRBuilder.buildCopy(LLT::scalar(LocSize), PhysReg);
      MIRBuilder.buildTrunc(ValVReg, PhysRegToVReg);
    }
  }

  unsigned assignCustomValue(const ARMCallLowering::ArgInfo &Arg,
                             ArrayRef<CCValAssign> VAs) override {
    assert(Arg.Regs.size() == 1 && "Can't handle multple regs yet");

    CCValAssign VA = VAs[0];
    assert(VA.needsCustom() && "Value doesn't need custom handling");

    // Custom lowering for other types, such as f16, is currently not supported
    if (VA.getValVT() != MVT::f64)
      return 0;

    CCValAssign NextVA = VAs[1];
    assert(NextVA.needsCustom() && "Value doesn't need custom handling");
    assert(NextVA.getValVT() == MVT::f64 && "Unsupported type");

    assert(VA.getValNo() == NextVA.getValNo() &&
           "Values belong to different arguments");

    assert(VA.isRegLoc() && "Value should be in reg");
    assert(NextVA.isRegLoc() && "Value should be in reg");

    Register NewRegs[] = {MRI.createGenericVirtualRegister(LLT::scalar(32)),
                          MRI.createGenericVirtualRegister(LLT::scalar(32))};

    assignValueToReg(NewRegs[0], VA.getLocReg(), VA);
    assignValueToReg(NewRegs[1], NextVA.getLocReg(), NextVA);

    bool IsLittle = MIRBuilder.getMF().getSubtarget<ARMSubtarget>().isLittle();
    if (!IsLittle)
      std::swap(NewRegs[0], NewRegs[1]);

    MIRBuilder.buildMerge(Arg.Regs[0], NewRegs);

    return 1;
  }

  /// Marking a physical register as used is different between formal
  /// parameters, where it's a basic block live-in, and call returns, where it's
  /// an implicit-def of the call instruction.
  virtual void markPhysRegUsed(unsigned PhysReg) = 0;
};

struct FormalArgHandler : public IncomingValueHandler {
  FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                   CCAssignFn AssignFn)
      : IncomingValueHandler(MIRBuilder, MRI, AssignFn) {}

  void markPhysRegUsed(unsigned PhysReg) override {
    MIRBuilder.getMRI()->addLiveIn(PhysReg);
    MIRBuilder.getMBB().addLiveIn(PhysReg);
  }
};

} // end anonymous namespace

bool ARMCallLowering::lowerFormalArguments(
    MachineIRBuilder &MIRBuilder, const Function &F,
    ArrayRef<ArrayRef<Register>> VRegs) const {
  auto &TLI = *getTLI<ARMTargetLowering>();
  auto Subtarget = TLI.getSubtarget();

  if (Subtarget->isThumb1Only())
    return false;

  // Quick exit if there aren't any args
  if (F.arg_empty())
    return true;

  if (F.isVarArg())
    return false;

  auto &MF = MIRBuilder.getMF();
  auto &MBB = MIRBuilder.getMBB();
  auto DL = MF.getDataLayout();

  for (auto &Arg : F.args()) {
    if (!isSupportedType(DL, TLI, Arg.getType()))
      return false;
    if (Arg.hasPassPointeeByValueAttr())
      return false;
  }

  CCAssignFn *AssignFn =
      TLI.CCAssignFnForCall(F.getCallingConv(), F.isVarArg());

  FormalArgHandler ArgHandler(MIRBuilder, MIRBuilder.getMF().getRegInfo(),
                              AssignFn);

  SmallVector<ArgInfo, 8> SplitArgInfos;
  unsigned Idx = 0;
  for (auto &Arg : F.args()) {
    ArgInfo OrigArgInfo(VRegs[Idx], Arg.getType());

    setArgFlags(OrigArgInfo, Idx + AttributeList::FirstArgIndex, DL, F);
    splitToValueTypes(OrigArgInfo, SplitArgInfos, MF);

    Idx++;
  }

  if (!MBB.empty())
    MIRBuilder.setInstr(*MBB.begin());

  if (!handleAssignments(MIRBuilder, SplitArgInfos, ArgHandler))
    return false;

  // Move back to the end of the basic block.
  MIRBuilder.setMBB(MBB);
  return true;
}

namespace {

struct CallReturnHandler : public IncomingValueHandler {
  CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
                    MachineInstrBuilder MIB, CCAssignFn *AssignFn)
      : IncomingValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}

  void markPhysRegUsed(unsigned PhysReg) override {
    MIB.addDef(PhysReg, RegState::Implicit);
  }

  MachineInstrBuilder MIB;
};

// FIXME: This should move to the ARMSubtarget when it supports all the opcodes.
unsigned getCallOpcode(const ARMSubtarget &STI, bool isDirect) {
  if (isDirect)
    return STI.isThumb() ? ARM::tBL : ARM::BL;

  if (STI.isThumb())
    return ARM::tBLXr;

  if (STI.hasV5TOps())
    return ARM::BLX;

  if (STI.hasV4TOps())
    return ARM::BX_CALL;

  return ARM::BMOVPCRX_CALL;
}
} // end anonymous namespace

bool ARMCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info) const {
  MachineFunction &MF = MIRBuilder.getMF();
  const auto &TLI = *getTLI<ARMTargetLowering>();
  const auto &DL = MF.getDataLayout();
  const auto &STI = MF.getSubtarget<ARMSubtarget>();
  const TargetRegisterInfo *TRI = STI.getRegisterInfo();
  MachineRegisterInfo &MRI = MF.getRegInfo();

  if (STI.genLongCalls())
    return false;

  if (STI.isThumb1Only())
    return false;

  auto CallSeqStart = MIRBuilder.buildInstr(ARM::ADJCALLSTACKDOWN);

  // Create the call instruction so we can add the implicit uses of arg
  // registers, but don't insert it yet.
  bool IsDirect = !Info.Callee.isReg();
  auto CallOpcode = getCallOpcode(STI, IsDirect);
  auto MIB = MIRBuilder.buildInstrNoInsert(CallOpcode);

  bool IsThumb = STI.isThumb();
  if (IsThumb)
    MIB.add(predOps(ARMCC::AL));

  MIB.add(Info.Callee);
  if (!IsDirect) {
    auto CalleeReg = Info.Callee.getReg();
    if (CalleeReg && !Register::isPhysicalRegister(CalleeReg)) {
      unsigned CalleeIdx = IsThumb ? 2 : 0;
      MIB->getOperand(CalleeIdx).setReg(constrainOperandRegClass(
          MF, *TRI, MRI, *STI.getInstrInfo(), *STI.getRegBankInfo(),
          *MIB.getInstr(), MIB->getDesc(), Info.Callee, CalleeIdx));
    }
  }

  MIB.addRegMask(TRI->getCallPreservedMask(MF, Info.CallConv));

  bool IsVarArg = false;
  SmallVector<ArgInfo, 8> ArgInfos;
  for (auto Arg : Info.OrigArgs) {
    if (!isSupportedType(DL, TLI, Arg.Ty))
      return false;

    if (!Arg.IsFixed)
      IsVarArg = true;

    if (Arg.Flags[0].isByVal())
      return false;

    splitToValueTypes(Arg, ArgInfos, MF);
  }

  auto ArgAssignFn = TLI.CCAssignFnForCall(Info.CallConv, IsVarArg);
  OutgoingValueHandler ArgHandler(MIRBuilder, MRI, MIB, ArgAssignFn);
  if (!handleAssignments(MIRBuilder, ArgInfos, ArgHandler))
    return false;

  // Now we can add the actual call instruction to the correct basic block.
  MIRBuilder.insertInstr(MIB);

  if (!Info.OrigRet.Ty->isVoidTy()) {
    if (!isSupportedType(DL, TLI, Info.OrigRet.Ty))
      return false;

    ArgInfos.clear();
    splitToValueTypes(Info.OrigRet, ArgInfos, MF);
    auto RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv, IsVarArg);
    CallReturnHandler RetHandler(MIRBuilder, MRI, MIB, RetAssignFn);
    if (!handleAssignments(MIRBuilder, ArgInfos, RetHandler))
      return false;
  }

  // We now know the size of the stack - update the ADJCALLSTACKDOWN
  // accordingly.
  CallSeqStart.addImm(ArgHandler.StackSize).addImm(0).add(predOps(ARMCC::AL));

  MIRBuilder.buildInstr(ARM::ADJCALLSTACKUP)
      .addImm(ArgHandler.StackSize)
      .addImm(0)
      .add(predOps(ARMCC::AL));

  return true;
}