Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
//===--- HexagonPseudo.td -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// The pat frags in the definitions below need to have a named register,
// otherwise i32 will be assumed regardless of the register class. The
// name of the register does not matter.
def I1  : PatLeaf<(i1 PredRegs:$R)>;
def I32 : PatLeaf<(i32 IntRegs:$R)>;
def I64 : PatLeaf<(i64 DoubleRegs:$R)>;
def F32 : PatLeaf<(f32 IntRegs:$R)>;
def F64 : PatLeaf<(f64 DoubleRegs:$R)>;

let PrintMethod = "printGlobalOperand" in {
  def globaladdress : Operand<i32>;
  def globaladdressExt : Operand<i32>;
}

let isPseudo = 1 in {
let isCodeGenOnly = 0 in
def A2_iconst : Pseudo<(outs IntRegs:$Rd32),
    (ins s27_2Imm:$Ii), "${Rd32} = iconst(#${Ii})">;

def DUPLEX_Pseudo : InstHexagon<(outs),
    (ins s32_0Imm:$offset), "DUPLEX", [], "", DUPLEX, TypePSEUDO>;
}

let isExtendable = 1, opExtendable = 1, opExtentBits = 6,
    isAsmParserOnly = 1 in
def TFRI64_V2_ext : InstHexagon<(outs DoubleRegs:$dst),
    (ins s32_0Imm:$src1, s8_0Imm:$src2),
    "$dst = combine(#$src1,#$src2)", [], "",
    A2_combineii.Itinerary, TypeALU32_2op>, OpcodeHexagon;

// HI/LO Instructions
let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0,
    hasNewValue = 1, opNewValue = 0 in
class REG_IMMED<string RegHalf, bit Rs, bits<3> MajOp, bit MinOp,
                InstHexagon rootInst>
  : InstHexagon<(outs IntRegs:$dst),
                (ins u16_0Imm:$imm_value),
                "$dst"#RegHalf#" = #$imm_value", [], "",
                rootInst.Itinerary, rootInst.Type>, OpcodeHexagon {
    bits<5> dst;
    bits<32> imm_value;

    let Inst{27} = Rs;
    let Inst{26-24} = MajOp;
    let Inst{21} = MinOp;
    let Inst{20-16} = dst;
    let Inst{23-22} = imm_value{15-14};
    let Inst{13-0} = imm_value{13-0};
}

let isAsmParserOnly = 1 in {
  def LO : REG_IMMED<".l", 0b0, 0b001, 0b1, A2_tfril>;
  def HI : REG_IMMED<".h", 0b0, 0b010, 0b1, A2_tfrih>;
}

let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in {
  def CONST32 : CONSTLDInst<(outs IntRegs:$Rd), (ins i32imm:$v),
                "$Rd = CONST32(#$v)", []>;
  def CONST64 : CONSTLDInst<(outs DoubleRegs:$Rd), (ins i64imm:$v),
                "$Rd = CONST64(#$v)", []>;
}

let hasSideEffects = 0, isReMaterializable = 1, isPseudo = 1,
    isCodeGenOnly = 1 in
def PS_true : InstHexagon<(outs PredRegs:$dst), (ins), "",
              [(set I1:$dst, 1)], "", C2_orn.Itinerary, TypeCR>;

let hasSideEffects = 0, isReMaterializable = 1, isPseudo = 1,
    isCodeGenOnly = 1 in
def PS_false : InstHexagon<(outs PredRegs:$dst), (ins), "",
               [(set I1:$dst, 0)], "", C2_andn.Itinerary, TypeCR>;

let Defs = [R29, R30], Uses = [R31, R30, R29], isPseudo = 1 in
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
                              ".error \"should not emit\" ", []>;

let Defs = [R29, R30, R31], Uses = [R29], isPseudo = 1 in
def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
                             ".error \"should not emit\" ", []>;


let isBranch = 1, isTerminator = 1, hasSideEffects = 0,
    Defs = [PC, LC0], Uses = [SA0, LC0] in {
def ENDLOOP0 : Endloop<(outs), (ins b30_2Imm:$offset),
                       ":endloop0",
                       []>;
}

let isBranch = 1, isTerminator = 1, hasSideEffects = 0,
    Defs = [PC, LC1], Uses = [SA1, LC1] in {
def ENDLOOP1 : Endloop<(outs), (ins b30_2Imm:$offset),
                       ":endloop1",
                       []>;
}

let isBranch = 1, isTerminator = 1, hasSideEffects = 0,
    Defs = [PC, LC0, LC1], Uses = [SA0, SA1, LC0, LC1] in {
def ENDLOOP01 : Endloop<(outs), (ins b30_2Imm:$offset),
                        ":endloop01",
                        []>;
}

let isExtendable = 1, isExtentSigned = 1, opExtentBits = 9, opExtentAlign = 2,
    opExtendable = 0, hasSideEffects = 0 in
class LOOP_iBase<string mnemonic, InstHexagon rootInst>
         : InstHexagon <(outs), (ins b30_2Imm:$offset, u10_0Imm:$src2),
           mnemonic#"($offset,#$src2)",
           [], "", rootInst.Itinerary, rootInst.Type>, OpcodeHexagon {
    bits<9> offset;
    bits<10> src2;

    let IClass = 0b0110;

    let Inst{27-22} = 0b100100;
    let Inst{21} = !if (!eq(mnemonic, "loop0"), 0b0, 0b1);
    let Inst{20-16} = src2{9-5};
    let Inst{12-8} = offset{8-4};
    let Inst{7-5} = src2{4-2};
    let Inst{4-3} = offset{3-2};
    let Inst{1-0} = src2{1-0};
}

let isExtendable = 1, isExtentSigned = 1, opExtentBits = 9, opExtentAlign = 2,
    opExtendable = 0, hasSideEffects = 0 in
class LOOP_rBase<string mnemonic, InstHexagon rootInst>
         : InstHexagon<(outs), (ins b30_2Imm:$offset, IntRegs:$src2),
           mnemonic#"($offset,$src2)",
           [], "", rootInst.Itinerary, rootInst.Type>, OpcodeHexagon {
    bits<9> offset;
    bits<5> src2;

    let IClass = 0b0110;

    let Inst{27-22} = 0b000000;
    let Inst{21} = !if (!eq(mnemonic, "loop0"), 0b0, 0b1);
    let Inst{20-16} = src2;
    let Inst{12-8} = offset{8-4};
    let Inst{4-3} = offset{3-2};
  }

let Defs = [SA0, LC0, USR], isCodeGenOnly = 1, isExtended = 1,
    opExtendable = 0 in {
  def J2_loop0iext : LOOP_iBase<"loop0", J2_loop0i>;
  def J2_loop1iext : LOOP_iBase<"loop1", J2_loop1i>;
}

// Interestingly only loop0's appear to set usr.lpcfg
let Defs = [SA1, LC1], isCodeGenOnly = 1, isExtended = 1, opExtendable = 0 in {
  def J2_loop0rext : LOOP_rBase<"loop0", J2_loop0r>;
  def J2_loop1rext : LOOP_rBase<"loop1", J2_loop1r>;
}

let isCall = 1, hasSideEffects = 1, isPredicable = 0,
    isExtended = 0, isExtendable = 1, opExtendable = 0,
    isExtentSigned = 1, opExtentBits = 24, opExtentAlign = 2 in
class T_Call<string ExtStr>
  : InstHexagon<(outs), (ins a30_2Imm:$dst),
      "call " # ExtStr # "$dst", [], "", J2_call.Itinerary, TypeJ>,
    OpcodeHexagon {
  let BaseOpcode = "call";
  bits<24> dst;

  let IClass = 0b0101;
  let Inst{27-25} = 0b101;
  let Inst{24-16,13-1} = dst{23-2};
  let Inst{0} = 0b0;
}

let isCodeGenOnly = 1, isCall = 1, hasSideEffects = 1, Defs = [R16],
    isPredicable = 0 in
def CALLProfile :  T_Call<"">;

let isCodeGenOnly = 1, isCall = 1, hasSideEffects = 1,
    Defs = [PC, R31, R6, R7, P0] in
def PS_call_stk : T_Call<"">;

// Call, no return.
let isCall = 1, hasSideEffects = 1, cofMax1 = 1, isCodeGenOnly = 1 in
def PS_callr_nr: InstHexagon<(outs), (ins IntRegs:$Rs),
    "callr $Rs", [], "", J2_callr.Itinerary, TypeJ>, OpcodeHexagon {
    bits<5> Rs;
    bits<2> Pu;
    let isPredicatedFalse = 1;

    let IClass = 0b0101;
    let Inst{27-21} = 0b0000101;
    let Inst{20-16} = Rs;
  }

let isCall = 1, hasSideEffects = 1,
    isExtended = 0, isExtendable = 1, opExtendable = 0, isCodeGenOnly = 1,
    BaseOpcode = "PS_call_nr", isExtentSigned = 1, opExtentAlign = 2 in
class Call_nr<bits<5> nbits, bit isPred, bit isFalse, dag iops,
              InstrItinClass itin>
  : Pseudo<(outs), iops, "">, PredRel {
    bits<2> Pu;
    bits<17> dst;
    let opExtentBits = nbits;
    let isPredicable = 0;  // !if(isPred, 0, 1);
    let isPredicated = 0;  // isPred;
    let isPredicatedFalse = isFalse;
    let Itinerary = itin;
}

def PS_call_nr : Call_nr<24, 0, 0, (ins s32_0Imm:$Ii), J2_call.Itinerary>;
//def PS_call_nrt: Call_nr<17, 1, 0, (ins PredRegs:$Pu, s32_0Imm:$dst),
//                         J2_callt.Itinerary>;
//def PS_call_nrf: Call_nr<17, 1, 1, (ins PredRegs:$Pu, s32_0Imm:$dst),
//                         J2_callf.Itinerary>;

let isBranch = 1, isIndirectBranch = 1, isBarrier = 1, Defs = [PC],
    isPredicable = 1, hasSideEffects = 0, InputType = "reg",
    cofMax1 = 1 in
class T_JMPr <InstHexagon rootInst>
  :  InstHexagon<(outs), (ins IntRegs:$dst), "jumpr $dst", [],
                 "", rootInst.Itinerary, rootInst.Type>, OpcodeHexagon {
    bits<5> dst;

    let IClass = 0b0101;
    let Inst{27-21} = 0b0010100;
    let Inst{20-16} = dst;
}

// A return through builtin_eh_return.
let isReturn = 1, isTerminator = 1, isBarrier = 1, hasSideEffects = 0,
    isCodeGenOnly = 1, Defs = [PC], Uses = [R28], isPredicable = 0 in
def EH_RETURN_JMPR : T_JMPr<J2_jumpr>;

// Indirect tail-call.
let isPseudo = 1, isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0,
    isTerminator = 1, isCodeGenOnly = 1 in
def PS_tailcall_r : T_JMPr<J2_jumpr>;

//
// Direct tail-calls.
let isPseudo = 1, isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0,
    isTerminator = 1, isCodeGenOnly = 1 in
def PS_tailcall_i : Pseudo<(outs), (ins a30_2Imm:$dst), "", []>;

let isCodeGenOnly = 1, isPseudo = 1, Uses = [R30], hasSideEffects = 0 in
def PS_aligna : Pseudo<(outs IntRegs:$Rd), (ins u32_0Imm:$A), "", []>;

// Generate frameindex addresses. The main reason for the offset operand is
// that every instruction that is allowed to have frame index as an operand
// will then have that operand followed by an immediate operand (the offset).
// This simplifies the frame-index elimination code.
//
let isMoveImm = 1, isAsCheapAsAMove = 1, isReMaterializable = 1,
    isPseudo = 1, isCodeGenOnly = 1, hasSideEffects = 0, isExtendable = 1,
    isExtentSigned = 1, opExtentBits = 16, opExtentAlign = 0 in {
  let opExtendable = 2 in
  def PS_fi  : Pseudo<(outs IntRegs:$Rd),
                      (ins IntRegs:$fi, s32_0Imm:$off), "">;
  let opExtendable = 3 in
  def PS_fia : Pseudo<(outs IntRegs:$Rd),
                      (ins IntRegs:$Rs, IntRegs:$fi, s32_0Imm:$off), "">;
}

class CondStr<string CReg, bit True, bit New> {
  string S = "if (" # !if(True,"","!") # CReg # !if(New,".new","") # ") ";
}
class JumpOpcStr<string Mnemonic, bit New, bit Taken> {
  string S = Mnemonic # !if(Taken, ":t", ":nt");
}
let isBranch = 1, isIndirectBranch = 1, Defs = [PC], isPredicated = 1,
    hasSideEffects = 0, InputType = "reg", cofMax1 = 1 in
class T_JMPr_c <bit PredNot, bit isPredNew, bit isTak, InstHexagon rootInst>
  :  InstHexagon<(outs), (ins PredRegs:$src, IntRegs:$dst),
                 CondStr<"$src", !if(PredNot,0,1), isPredNew>.S #
                 JumpOpcStr<"jumpr", isPredNew, isTak>.S # " $dst",
                 [], "", rootInst.Itinerary, rootInst.Type>, OpcodeHexagon {

    let isTaken = isTak;
    let isPredicatedFalse = PredNot;
    let isPredicatedNew = isPredNew;
    bits<2> src;
    bits<5> dst;

    let IClass = 0b0101;

    let Inst{27-22} = 0b001101;
    let Inst{21} = PredNot;
    let Inst{20-16} = dst;
    let Inst{12} = isTak;
    let Inst{11} = isPredNew;
    let Inst{9-8} = src;
}

let isTerminator = 1, hasSideEffects = 0, isReturn = 1, isCodeGenOnly = 1,
    isBarrier = 1, BaseOpcode = "JMPret" in {
  def PS_jmpret : T_JMPr<J2_jumpr>, PredNewRel;
  def PS_jmprett : T_JMPr_c<0, 0, 0, J2_jumprt>, PredNewRel;
  def PS_jmpretf : T_JMPr_c<1, 0, 0, J2_jumprf>, PredNewRel;
  def PS_jmprettnew : T_JMPr_c<0, 1, 0, J2_jumprtnew>, PredNewRel;
  def PS_jmpretfnew : T_JMPr_c<1, 1, 0, J2_jumprfnew>, PredNewRel;
  def PS_jmprettnewpt : T_JMPr_c<0, 1, 1, J2_jumprtnewpt>, PredNewRel;
  def PS_jmpretfnewpt : T_JMPr_c<1, 1, 1, J2_jumprfnewpt>, PredNewRel;
}

//defm V6_vtran2x2_map : HexagonMapping<(outs HvxVR:$Vy32, HvxVR:$Vx32), (ins HvxVR:$Vx32in, IntRegs:$Rt32), "vtrans2x2(${Vy32},${Vx32},${Rt32})", (V6_vshuff HvxVR:$Vy32, HvxVR:$Vx32, HvxVR:$Vx32in, IntRegs:$Rt32)>;

// The reason for the custom inserter is to record all ALLOCA instructions
// in MachineFunctionInfo.
let Defs = [R29], hasSideEffects = 1 in
def PS_alloca: Pseudo <(outs IntRegs:$Rd),
                       (ins IntRegs:$Rs, u32_0Imm:$A), "", []>;

// Load predicate.
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 13,
    isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
def LDriw_pred : LDInst<(outs PredRegs:$dst),
                        (ins IntRegs:$addr, s32_0Imm:$off),
                        ".error \"should not emit\"", []>;

// Load modifier.
let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 13,
    isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
def LDriw_ctr : LDInst<(outs CtrRegs:$dst),
                        (ins IntRegs:$addr, s32_0Imm:$off),
                        ".error \"should not emit\"", []>;


let isCodeGenOnly = 1, isPseudo = 1 in
def PS_pselect: InstHexagon<(outs DoubleRegs:$Rd),
      (ins PredRegs:$Pu, DoubleRegs:$Rs, DoubleRegs:$Rt),
      ".error \"should not emit\" ", [], "", A2_tfrpt.Itinerary, TypeALU32_2op>;

let isBranch = 1, isBarrier = 1, Defs = [PC], hasSideEffects = 0,
    isPredicable = 1,
    isExtendable = 1, opExtendable = 0, isExtentSigned = 1,
    opExtentBits = 24, opExtentAlign = 2, InputType = "imm" in
class T_JMP: InstHexagon<(outs), (ins b30_2Imm:$dst),
      "jump $dst",
      [], "", J2_jump.Itinerary, TypeJ>, OpcodeHexagon {
    bits<24> dst;
    let IClass = 0b0101;

    let Inst{27-25} = 0b100;
    let Inst{24-16} = dst{23-15};
    let Inst{13-1} = dst{14-2};
}

// Restore registers and dealloc return function call.
let isCall = 1, isBarrier = 1, isReturn = 1, isTerminator = 1,
    Defs = [R29, R30, R31, PC], isPredicable = 0, isAsmParserOnly = 1 in {
  def RESTORE_DEALLOC_RET_JMP_V4 : T_JMP;

  let isExtended = 1, opExtendable = 0 in
  def RESTORE_DEALLOC_RET_JMP_V4_EXT : T_JMP;

  let Defs = [R14, R15, R28, R29, R30, R31, PC] in {
    def RESTORE_DEALLOC_RET_JMP_V4_PIC : T_JMP;

    let isExtended = 1, opExtendable = 0 in
    def RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC : T_JMP;
  }
}

// Restore registers and dealloc frame before a tail call.
let isCall = 1, Defs = [R29, R30, R31, PC], isAsmParserOnly = 1 in {
  def RESTORE_DEALLOC_BEFORE_TAILCALL_V4 : T_Call<"">, PredRel;

  let isExtended = 1, opExtendable = 0 in
  def RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT : T_Call<"">, PredRel;

  let Defs = [R14, R15, R28, R29, R30, R31, PC] in {
    def RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC : T_Call<"">, PredRel;

    let isExtended = 1, opExtendable = 0 in
    def RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC : T_Call<"">, PredRel;
  }
}

// Save registers function call.
let isCall = 1, Uses = [R29, R31], isAsmParserOnly = 1 in {
  def SAVE_REGISTERS_CALL_V4 : T_Call<"">, PredRel;

  let isExtended = 1, opExtendable = 0 in
  def SAVE_REGISTERS_CALL_V4_EXT : T_Call<"">, PredRel;

  let Defs = [P0] in
  def SAVE_REGISTERS_CALL_V4STK : T_Call<"">, PredRel;

  let Defs = [P0], isExtended = 1, opExtendable = 0 in
  def SAVE_REGISTERS_CALL_V4STK_EXT : T_Call<"">, PredRel;

  let Defs = [R14, R15, R28] in
  def SAVE_REGISTERS_CALL_V4_PIC : T_Call<"">, PredRel;

  let Defs = [R14, R15, R28], isExtended = 1, opExtendable = 0 in
  def SAVE_REGISTERS_CALL_V4_EXT_PIC : T_Call<"">, PredRel;

  let Defs = [R14, R15, R28, P0] in
  def SAVE_REGISTERS_CALL_V4STK_PIC : T_Call<"">, PredRel;

  let Defs = [R14, R15, R28, P0], isExtended = 1, opExtendable = 0 in
  def SAVE_REGISTERS_CALL_V4STK_EXT_PIC : T_Call<"">, PredRel;
}

// Vector store pseudos
let Predicates = [HasV60,UseHVX], isPseudo = 1, isCodeGenOnly = 1,
    mayStore = 1, accessSize = HVXVectorAccess, hasSideEffects = 0 in
class STriv_template<RegisterClass RC, InstHexagon rootInst>
  : InstHexagon<(outs), (ins IntRegs:$addr, s32_0Imm:$off, RC:$src),
    "", [], "", rootInst.Itinerary, rootInst.Type>;

def PS_vstorerv_ai: STriv_template<HvxVR, V6_vS32b_ai>,
      Requires<[HasV60,UseHVX]>;
def PS_vstorerv_nt_ai: STriv_template<HvxVR, V6_vS32b_nt_ai>,
      Requires<[HasV60,UseHVX]>;
def PS_vstorerw_ai: STriv_template<HvxWR, V6_vS32b_ai>,
      Requires<[HasV60,UseHVX]>;
def PS_vstorerw_nt_ai: STriv_template<HvxWR, V6_vS32b_nt_ai>,
      Requires<[HasV60,UseHVX]>;

let isPseudo = 1, isCodeGenOnly = 1, mayStore = 1, hasSideEffects = 0 in
def PS_vstorerq_ai: Pseudo<(outs),
      (ins IntRegs:$Rs, s32_0Imm:$Off, HvxQR:$Qt), "", []>,
      Requires<[HasV60,UseHVX]>;

// Vector load pseudos
let Predicates = [HasV60, UseHVX], isPseudo = 1, isCodeGenOnly = 1,
    mayLoad = 1, accessSize = HVXVectorAccess, hasSideEffects = 0 in
class LDriv_template<RegisterClass RC, InstHexagon rootInst>
  : InstHexagon<(outs RC:$dst), (ins IntRegs:$addr, s32_0Imm:$off),
    "", [], "", rootInst.Itinerary, rootInst.Type>;

def PS_vloadrv_ai: LDriv_template<HvxVR, V6_vL32b_ai>,
      Requires<[HasV60,UseHVX]>;
def PS_vloadrv_nt_ai: LDriv_template<HvxVR, V6_vL32b_nt_ai>,
      Requires<[HasV60,UseHVX]>;
def PS_vloadrw_ai: LDriv_template<HvxWR, V6_vL32b_ai>,
      Requires<[HasV60,UseHVX]>;
def PS_vloadrw_nt_ai: LDriv_template<HvxWR, V6_vL32b_nt_ai>,
      Requires<[HasV60,UseHVX]>;

let isPseudo = 1, isCodeGenOnly = 1, mayLoad = 1, hasSideEffects = 0 in
def PS_vloadrq_ai: Pseudo<(outs HvxQR:$Qd),
      (ins IntRegs:$Rs, s32_0Imm:$Off), "", []>,
      Requires<[HasV60,UseHVX]>;


let isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
class VSELInst<dag outs, dag ins, InstHexagon rootInst>
  : InstHexagon<outs, ins, "", [], "", rootInst.Itinerary, rootInst.Type>;

def PS_vselect: VSELInst<(outs HvxVR:$dst),
      (ins PredRegs:$src1, HvxVR:$src2, HvxVR:$src3), V6_vcmov>,
      Requires<[HasV60,UseHVX]>;
def PS_wselect: VSELInst<(outs HvxWR:$dst),
      (ins PredRegs:$src1, HvxWR:$src2, HvxWR:$src3), V6_vccombine>,
      Requires<[HasV60,UseHVX]>;

let hasSideEffects = 0, isReMaterializable = 1, isPseudo = 1,
    isCodeGenOnly = 1 in {
  def PS_qtrue:  InstHexagon<(outs HvxQR:$Qd), (ins), "", [], "",
                 V6_veqw.Itinerary, TypeCVI_VA>;
  def PS_qfalse: InstHexagon<(outs HvxQR:$Qd), (ins), "", [], "",
                 V6_vgtw.Itinerary, TypeCVI_VA>;
  def PS_vdd0:   InstHexagon<(outs HvxWR:$Vd), (ins), "", [], "",
                 V6_vsubw_dv.Itinerary, TypeCVI_VA_DV>;
}

// Store predicate.
let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 13,
    isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
def STriw_pred : STInst<(outs),
      (ins IntRegs:$addr, s32_0Imm:$off, PredRegs:$src1),
      ".error \"should not emit\"", []>;
// Store modifier.
let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 13,
    isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
def STriw_ctr : STInst<(outs),
      (ins IntRegs:$addr, s32_0Imm:$off, CtrRegs:$src1),
      ".error \"should not emit\"", []>;

let isExtendable = 1, opExtendable = 1, opExtentBits = 6,
    isAsmParserOnly = 1 in
def TFRI64_V4 : InstHexagon<(outs DoubleRegs:$dst),
    (ins u64_0Imm:$src1),
    "$dst = #$src1", [], "",
    A2_combineii.Itinerary, TypeALU32_2op>, OpcodeHexagon;

// Hexagon doesn't have a vector multiply with C semantics.
// Instead, generate a pseudo instruction that gets expanded into two
// scalar MPYI instructions.
// This is expanded by ExpandPostRAPseudos.
let isPseudo = 1 in
def PS_vmulw : PseudoM<(outs DoubleRegs:$Rd),
      (ins DoubleRegs:$Rs, DoubleRegs:$Rt), "", []>;

let isPseudo = 1 in
def PS_vmulw_acc : PseudoM<(outs DoubleRegs:$Rd),
      (ins DoubleRegs:$Rx, DoubleRegs:$Rs, DoubleRegs:$Rt), "", [],
      "$Rd = $Rx">;

def DuplexIClass0:  InstDuplex < 0 >;
def DuplexIClass1:  InstDuplex < 1 >;
def DuplexIClass2:  InstDuplex < 2 >;
let isExtendable = 1 in {
  def DuplexIClass3:  InstDuplex < 3 >;
  def DuplexIClass4:  InstDuplex < 4 >;
  def DuplexIClass5:  InstDuplex < 5 >;
  def DuplexIClass6:  InstDuplex < 6 >;
  def DuplexIClass7:  InstDuplex < 7 >;
}
def DuplexIClass8:  InstDuplex < 8 >;
def DuplexIClass9:  InstDuplex < 9 >;
def DuplexIClassA:  InstDuplex < 0xA >;
def DuplexIClassB:  InstDuplex < 0xB >;
def DuplexIClassC:  InstDuplex < 0xC >;
def DuplexIClassD:  InstDuplex < 0xD >;
def DuplexIClassE:  InstDuplex < 0xE >;
def DuplexIClassF:  InstDuplex < 0xF >;

// Pseudos for circular buffer instructions. These are needed in order to
// allocate the correct pair of CSx and Mx registers.
multiclass NewCircularLoad<RegisterClass RC, MemAccessSize MS> {

let isCodeGenOnly = 1, isPseudo = 1, Defs = [CS], Uses = [CS],
    addrMode = PostInc, accessSize = MS, hasSideEffects = 0 in {
  // Use timing class of L2_loadrb_pci.
  def NAME#_pci : LDInst<(outs RC:$Rd32, IntRegs:$Rx32),
       (ins IntRegs:$Rx32in, s4_0Imm:$Ii, ModRegs:$Mu2, IntRegs:$Cs),
       ".error \"should not emit\" ", [], "$Rx32 = $Rx32in", tc_5ceb2f9e>;

  // Use timing class of L2_loadrb_pcr.
  def NAME#_pcr : LDInst<(outs RC:$Rd32, IntRegs:$Rx32),
       (ins IntRegs:$Rx32in, ModRegs:$Mu2, IntRegs:$Cs),
       ".error \"should not emit\" ", [], "$Rx32 = $Rx32in", tc_075c8dd8>;
}
}

defm PS_loadrub : NewCircularLoad<IntRegs, ByteAccess>;
defm PS_loadrb : NewCircularLoad<IntRegs, ByteAccess>;
defm PS_loadruh : NewCircularLoad<IntRegs, HalfWordAccess>;
defm PS_loadrh : NewCircularLoad<IntRegs, HalfWordAccess>;
defm PS_loadri : NewCircularLoad<IntRegs, WordAccess>;
defm PS_loadrd : NewCircularLoad<DoubleRegs, DoubleWordAccess>;

multiclass NewCircularStore<RegisterClass RC, MemAccessSize MS> {

let isCodeGenOnly = 1, isPseudo = 1, Defs = [CS], Uses = [CS],
    addrMode = PostInc, accessSize = MS, hasSideEffects = 0 in {
  // Use timing class of S2_storerb_pci.
  def NAME#_pci : STInst<(outs IntRegs:$Rx32),
       (ins IntRegs:$Rx32in, s4_0Imm:$Ii, ModRegs:$Mu2, RC:$Rt32, IntRegs:$Cs),
       ".error \"should not emit\" ", [], "$Rx32 = $Rx32in", tc_b4dc7630>;

  // Use timing class of S2_storerb_pcr.
  def NAME#_pcr : STInst<(outs IntRegs:$Rx32),
       (ins IntRegs:$Rx32in, ModRegs:$Mu2, RC:$Rt32, IntRegs:$Cs),
       ".error \"should not emit\" ", [], "$Rx32 = $Rx32in", tc_a2b365d2>;
}
}

defm PS_storerb : NewCircularStore<IntRegs, ByteAccess>;
defm PS_storerh : NewCircularStore<IntRegs, HalfWordAccess>;
defm PS_storerf : NewCircularStore<IntRegs, HalfWordAccess>;
defm PS_storeri : NewCircularStore<IntRegs, WordAccess>;
defm PS_storerd : NewCircularStore<DoubleRegs, WordAccess>;

// A pseudo that generates a runtime crash. This is used to implement
// __builtin_trap.
let hasSideEffects = 1, isPseudo = 1, isCodeGenOnly = 1, isSolo = 1 in
def PS_crash: InstHexagon<(outs), (ins), "", [], "", PSEUDO, TypePSEUDO>;