Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
<!--
  $Id: ncurses-intro.html,v 1.54 2020/02/02 23:34:34 tom Exp $
  ****************************************************************************
  * Copyright 2019,2020 Thomas E. Dickey                                     *
  * Copyright 2000-2013,2017 Free Software Foundation, Inc.                  *
  *                                                                          *
  * Permission is hereby granted, free of charge, to any person obtaining a  *
  * copy of this software and associated documentation files (the            *
  * "Software"), to deal in the Software without restriction, including      *
  * without limitation the rights to use, copy, modify, merge, publish,      *
  * distribute, distribute with modifications, sublicense, and/or sell       *
  * copies of the Software, and to permit persons to whom the Software is    *
  * furnished to do so, subject to the following conditions:                 *
  *                                                                          *
  * The above copyright notice and this permission notice shall be included  *
  * in all copies or substantial portions of the Software.                   *
  *                                                                          *
  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS  *
  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF               *
  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.   *
  * IN NO EVENT SHALL THE ABOVE COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,   *
  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR    *
  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR    *
  * THE USE OR OTHER DEALINGS IN THE SOFTWARE.                               *
  *                                                                          *
  * Except as contained in this notice, the name(s) of the above copyright   *
  * holders shall not be used in advertising or otherwise to promote the     *
  * sale, use or other dealings in this Software without prior written       *
  * authorization.                                                           *
  ****************************************************************************
-->
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN">

<html>
<head>
  <meta name="generator" content=
  "HTML Tidy for HTML5 for Linux version 5.2.0">

  <title>Writing Programs with NCURSES</title>
  <link rel="author" href="mailto:bugs-ncurses@gnu.org">
  <meta http-equiv="Content-Type" content=
  "text/html; charset=us-ascii">
</head>

<body>
  <h1>Writing Programs with NCURSES</h1>

  <blockquote>
    by Eric S. Raymond and Zeyd M. Ben-Halim<br>
    updates since release 1.9.9e by Thomas Dickey
  </blockquote>

  <h1>Contents</h1>

  <ul>
    <li>
      <a href="#introduction">Introduction</a>

      <ul>
        <li><a href="#history">A Brief History of Curses</a></li>

        <li><a href="#scope">Scope of This Document</a></li>

        <li><a href="#terminology">Terminology</a></li>
      </ul>
    </li>

    <li>
      <a href="#curses">The Curses Library</a>

      <ul>
        <li>
          <a href="#overview">An Overview of Curses</a>

          <ul>
            <li><a href="#compiling">Compiling Programs using
            Curses</a></li>

            <li><a href="#updating">Updating the Screen</a></li>

            <li><a href="#stdscr">Standard Windows and Function
            Naming Conventions</a></li>

            <li><a href="#variables">Variables</a></li>
          </ul>
        </li>

        <li>
          <a href="#using">Using the Library</a>

          <ul>
            <li><a href="#starting">Starting up</a></li>

            <li><a href="#output">Output</a></li>

            <li><a href="#input">Input</a></li>

            <li><a href="#formschars">Using Forms Characters</a></li>

            <li><a href="#attributes">Character Attributes and
            Color</a></li>

            <li><a href="#mouse">Mouse Interfacing</a></li>

            <li><a href="#finishing">Finishing Up</a></li>
          </ul>
        </li>

        <li>
          <a href="#functions">Function Descriptions</a>

          <ul>
            <li><a href="#init">Initialization and Wrapup</a></li>

            <li><a href="#flush">Causing Output to the Terminal</a></li>

            <li><a href="#lowlevel">Low-Level Capability Access</a></li>

            <li><a href="#debugging">Debugging</a></li>
          </ul>
        </li>

        <li>
          <a href="#hints">Hints, Tips, and Tricks</a>

          <ul>
            <li><a href="#caution">Some Notes of Caution</a></li>

            <li><a href="#leaving">Temporarily Leaving ncurses
            Mode</a></li>

            <li><a href="#xterm">Using <code>ncurses</code> under
            <code>xterm</code></a></li>

            <li><a href="#screens">Handling Multiple Terminal
            Screens</a></li>

            <li><a href="#testing">Testing for Terminal
            Capabilities</a></li>

            <li><a href="#tuning">Tuning for Speed</a></li>

            <li><a href="#special">Special Features of
            <code>ncurses</code></a></li>
          </ul>
        </li>

        <li>
          <a href="#compat">Compatibility with Older Versions</a>

          <ul>
            <li><a href="#refbug">Refresh of Overlapping
            Windows</a></li>

            <li><a href="#backbug">Background Erase</a></li>
          </ul>
        </li>

        <li><a href="#xsifuncs">XSI Curses Conformance</a></li>
      </ul>
    </li>

    <li>
      <a href="#panels">The Panels Library</a>

      <ul>
        <li><a href="#pcompile">Compiling With the Panels
        Library</a></li>

        <li><a href="#poverview">Overview of Panels</a></li>

        <li><a href="#pstdscr">Panels, Input, and the Standard
        Screen</a></li>

        <li><a href="#hiding">Hiding Panels</a></li>

        <li><a href="#pmisc">Miscellaneous Other Facilities</a></li>
      </ul>
    </li>

    <li>
      <a href="#menu">The Menu Library</a>

      <ul>
        <li><a href="#mcompile">Compiling with the menu Library</a></li>

        <li><a href="#moverview">Overview of Menus</a></li>

        <li><a href="#mselect">Selecting items</a></li>

        <li><a href="#mdisplay">Menu Display</a></li>

        <li><a href="#mwindows">Menu Windows</a></li>

        <li><a href="#minput">Processing Menu Input</a></li>

        <li><a href="#mmisc">Miscellaneous Other Features</a></li>
      </ul>
    </li>

    <li>
      <a href="#form">The Forms Library</a>

      <ul>
        <li><a href="#fcompile">Compiling with the forms
        Library</a></li>

        <li><a href="#foverview">Overview of Forms</a></li>

        <li><a href="#fcreate">Creating and Freeing Fields and
        Forms</a></li>

        <li>
          <a href="#fattributes">Fetching and Changing Field
          Attributes</a>

          <ul>
            <li><a href="#fsizes">Fetching Size and Location
            Data</a></li>

            <li><a href="#flocation">Changing the Field
            Location</a></li>

            <li><a href="#fjust">The Justification Attribute</a></li>

            <li><a href="#fdispatts">Field Display Attributes</a></li>

            <li><a href="#foptions">Field Option Bits</a></li>

            <li><a href="#fstatus">Field Status</a></li>

            <li><a href="#fuser">Field User Pointer</a></li>
          </ul>
        </li>

        <li><a href="#fdynamic">Variable-Sized Fields</a></li>

        <li>
          <a href="#fvalidation">Field Validation</a>

          <ul>
            <li><a href="#ftype_alpha">TYPE_ALPHA</a></li>

            <li><a href="#ftype_alnum">TYPE_ALNUM</a></li>

            <li><a href="#ftype_enum">TYPE_ENUM</a></li>

            <li><a href="#ftype_integer">TYPE_INTEGER</a></li>

            <li><a href="#ftype_numeric">TYPE_NUMERIC</a></li>

            <li><a href="#ftype_regexp">TYPE_REGEXP</a></li>
          </ul>
        </li>

        <li><a href="#fbuffer">Direct Field Buffer Manipulation</a></li>

        <li><a href="#formattrs">Attributes of Forms</a></li>

        <li><a href="#fdisplay">Control of Form Display</a></li>

        <li>
          <a href="#fdriver">Input Processing in the Forms
          Driver</a>

          <ul>
            <li><a href="#fpage">Page Navigation Requests</a></li>

            <li><a href="#ffield">Inter-Field Navigation
            Requests</a></li>

            <li><a href="#fifield">Intra-Field Navigation
            Requests</a></li>

            <li><a href="#fscroll">Scrolling Requests</a></li>

            <li><a href="#fedit">Field Editing Requests</a></li>

            <li><a href="#forder">Order Requests</a></li>

            <li><a href="#fappcmds">Application Commands</a></li>
          </ul>
        </li>

        <li><a href="#fhooks">Field Change Hooks</a></li>

        <li><a href="#ffocus">Field Change Commands</a></li>

        <li><a href="#frmoptions">Form Options</a></li>

        <li>
          <a href="#fcustom">Custom Validation Types</a>

          <ul>
            <li><a href="#flinktypes">Union Types</a></li>

            <li><a href="#fnewtypes">New Field Types</a></li>

            <li><a href="#fcheckargs">Validation Function
            Arguments</a></li>

            <li><a href="#fcustorder">Order Functions For Custom
            Types</a></li>

            <li><a href="#fcustprobs">Avoiding Problems</a></li>
          </ul>
        </li>
      </ul>
    </li>
  </ul>

  <hr>

  <h1><a name="introduction" id="introduction">Introduction</a></h1>

  <p>This document is an introduction to programming with
  <code>curses</code>. It is not an exhaustive reference for the
  curses Application Programming Interface (API); that role is
  filled by the <code>curses</code> manual pages. Rather, it is
  intended to help C programmers ease into using the package.</p>

  <p>This document is aimed at C applications programmers not yet
  specifically familiar with ncurses. If you are already an
  experienced <code>curses</code> programmer, you should
  nevertheless read the sections on <a href="#mouse">Mouse
  Interfacing</a>, <a href="#debugging">Debugging</a>, <a href=
  "#compat">Compatibility with Older Versions</a>, and <a href=
  "#hints">Hints, Tips, and Tricks</a>. These will bring you up to
  speed on the special features and quirks of the
  <code>ncurses</code> implementation. If you are not so
  experienced, keep reading.</p>

  <p>The <code>curses</code> package is a subroutine library for
  terminal-independent screen-painting and input-event handling
  which presents a high level screen model to the programmer,
  hiding differences between terminal types and doing automatic
  optimization of output to change one screen full of text into
  another. <code>Curses</code> uses terminfo, which is a database
  format that can describe the capabilities of thousands of
  different terminals.</p>

  <p>The <code>curses</code> API may seem something of an archaism
  on UNIX desktops increasingly dominated by X, Motif, and Tcl/Tk.
  Nevertheless, UNIX still supports tty lines and X supports
  <em>xterm(1)</em>; the <code>curses</code> API has the advantage
  of (a) back-portability to character-cell terminals, and (b)
  simplicity. For an application that does not require bit-mapped
  graphics and multiple fonts, an interface implementation using
  <code>curses</code> will typically be a great deal simpler and
  less expensive than one using an X toolkit.</p>

  <h2><a name="history" id="history">A Brief History of Curses</a></h2>

  <p>Historically, the first ancestor of <code>curses</code> was
  the routines written to provide screen-handling for the
  <code>vi</code> editor; these used the <code>termcap</code>
  database facility (both released in 3BSD) for describing terminal
  capabilities. These routines were abstracted into a documented
  library and first released with the early BSD UNIX versions. All
  of this work was done by students at the University of California
  (Berkeley campus). The curses library was first published in
  4.0BSD, a year after 3BSD (i.e., late 1980).</p>

  <p>After graduation, one of those students went to work at
  AT&amp;T Bell Labs, and made an improved <code>termcap</code>
  library called <code>terminfo</code> (i.e.,
  &ldquo;libterm&rdquo;), and adapted the curses library to use
  this. That was subsequently released in System V Release 2 (early
  1984). Thereafter, other developers added to the curses and
  terminfo libraries. For instance, a student at Cornell University
  wrote an improved terminfo library as well as a tool
  (<code>tic</code>) to compile the terminal descriptions. As a
  general rule, AT&amp;T did not identify the developers in the
  source-code or documentation; the <code>tic</code> and
  <code>infocmp</code> programs are the exceptions.</p>

  <p>System V Release 3 (System III UNIX) from Bell Labs featured a
  rewritten and much-improved <code>curses</code> library, along
  with the <code>tic</code> program (late 1986).</p>

  <p>To recap, terminfo is based on Berkeley's termcap database,
  but contains a number of improvements and extensions.
  Parameterized capabilities strings were introduced, making it
  possible to describe multiple video attributes, and colors and to
  handle far more unusual terminals than possible with termcap. In
  the later AT&amp;T System V releases, <code>curses</code> evolved
  to use more facilities and offer more capabilities, going far
  beyond BSD curses in power and flexibility.</p>

  <h2><a name="scope" id="scope">Scope of This Document</a></h2>

  <p>This document describes <code>ncurses</code>, a free
  implementation of the System V <code>curses</code> API with some
  clearly marked extensions. It includes the following System V
  curses features:</p>

  <ul>
    <li>Support for multiple screen highlights (BSD curses could
    only handle one &ldquo;standout&rdquo; highlight, usually
    reverse-video).</li>

    <li>Support for line- and box-drawing using forms
    characters.</li>

    <li>Recognition of function keys on input.</li>

    <li>Color support.</li>

    <li>Support for pads (windows of larger than screen size on
    which the screen or a subwindow defines a viewport).</li>
  </ul>

  <p>Also, this package makes use of the insert and delete line and
  character features of terminals so equipped, and determines how
  to optimally use these features with no help from the programmer.
  It allows arbitrary combinations of video attributes to be
  displayed, even on terminals that leave &ldquo;magic
  cookies&rdquo; on the screen to mark changes in attributes.</p>

  <p>The <code>ncurses</code> package can also capture and use
  event reports from a mouse in some environments (notably, xterm
  under the X window system). This document includes tips for using
  the mouse.</p>

  <p>The <code>ncurses</code> package was originated by Pavel
  Curtis. The original maintainer of this package is <a href=
  "mailto:zmbenhal@netcom.com">Zeyd Ben-Halim</a>
  &lt;zmbenhal@netcom.com&gt;. <a href=
  "mailto:esr@snark.thyrsus.com">Eric S. Raymond</a>
  &lt;esr@snark.thyrsus.com&gt; wrote many of the new features in
  versions after 1.8.1 and wrote most of this introduction.
  J&uuml;rgen Pfeifer wrote all of the menu and forms code as well
  as the <a href="http://www.adahome.com">Ada95</a> binding.
  Ongoing work is being done by <a href=
  "mailto:dickey@invisible-island.net">Thomas Dickey</a>
  (maintainer). Contact the current maintainers at <a href=
  "mailto:bug-ncurses@gnu.org">bug-ncurses@gnu.org</a>.</p>

  <p>This document also describes the <a href="#panels">panels</a>
  extension library, similarly modeled on the SVr4 panels facility.
  This library allows you to associate backing store with each of a
  stack or deck of overlapping windows, and provides operations for
  moving windows around in the stack that change their visibility
  in the natural way (handling window overlaps).</p>

  <p>Finally, this document describes in detail the <a href=
  "#menu">menus</a> and <a href="#form">forms</a> extension
  libraries, also cloned from System V, which support easy
  construction and sequences of menus and fill-in forms.</p>

  <h2><a name="terminology" id="terminology">Terminology</a></h2>

  <p>In this document, the following terminology is used with
  reasonable consistency:</p>

  <dl>
    <dt>window</dt>

    <dd>A data structure describing a sub-rectangle of the screen
    (possibly the entire screen). You can write to a window as
    though it were a miniature screen, scrolling independently of
    other windows on the physical screen.</dd>

    <dt>screens</dt>

    <dd>A subset of windows which are as large as the terminal
    screen, i.e., they start at the upper left hand corner and
    encompass the lower right hand corner. One of these,
    <code>stdscr</code>, is automatically provided for the
    programmer.</dd>

    <dt>terminal screen</dt>

    <dd>The package's idea of what the terminal display currently
    looks like, i.e., what the user sees now. This is a special
    screen.</dd>
  </dl>

  <h1><a name="curses" id="curses">The Curses Library</a></h1>

  <h2><a name="overview" id="overview">An Overview of Curses</a></h2>

  <h3><a name="compiling" id="compiling">Compiling Programs using
  Curses</a></h3>

  <p>In order to use the library, it is necessary to have certain
  types and variables defined. Therefore, the programmer must have
  a line:</p>

  <pre>
          #include &lt;curses.h&gt;
</pre>

  <p>at the top of the program source. The screen package uses the
  Standard I/O library, so <code>&lt;curses.h&gt;</code> includes
  <code>&lt;stdio.h&gt;</code>. <code>&lt;curses.h&gt;</code> also
  includes <code>&lt;termios.h&gt;</code>,
  <code>&lt;termio.h&gt;</code>, or <code>&lt;sgtty.h&gt;</code>
  depending on your system. It is redundant (but harmless) for the
  programmer to do these includes, too. In linking with
  <code>curses</code> you need to have <code>-lncurses</code> in
  your LDFLAGS or on the command line. There is no need for any
  other libraries.</p>

  <h3><a name="updating" id="updating">Updating the Screen</a></h3>

  <p>In order to update the screen optimally, it is necessary for
  the routines to know what the screen currently looks like and
  what the programmer wants it to look like next. For this purpose,
  a data type (structure) named WINDOW is defined which describes a
  window image to the routines, including its starting position on
  the screen (the (y, x) coordinates of the upper left hand corner)
  and its size. One of these (called <code>curscr</code>, for
  current screen) is a screen image of what the terminal currently
  looks like. Another screen (called <code>stdscr</code>, for
  standard screen) is provided by default to make changes on.</p>

  <p>A window is a purely internal representation. It is used to
  build and store a potential image of a portion of the terminal.
  It does not bear any necessary relation to what is really on the
  terminal screen; it is more like a scratchpad or write
  buffer.</p>

  <p>To make the section of physical screen corresponding to a
  window reflect the contents of the window structure, the routine
  <code>refresh()</code> (or <code>wrefresh()</code> if the window
  is not <code>stdscr</code>) is called.</p>

  <p>A given physical screen section may be within the scope of any
  number of overlapping windows. Also, changes can be made to
  windows in any order, without regard to motion efficiency. Then,
  at will, the programmer can effectively say &ldquo;make it look
  like this,&rdquo; and let the package implementation determine
  the most efficient way to repaint the screen.</p>

  <h3><a name="stdscr" id="stdscr">Standard Windows and Function
  Naming Conventions</a></h3>

  <p>As hinted above, the routines can use several windows, but two
  are automatically given: <code>curscr</code>, which knows what
  the terminal looks like, and <code>stdscr</code>, which is what
  the programmer wants the terminal to look like next. The user
  should never actually access <code>curscr</code> directly.
  Changes should be made to through the API, and then the routine
  <code>refresh()</code> (or <code>wrefresh()</code>) called.</p>

  <p>Many functions are defined to use <code>stdscr</code> as a
  default screen. For example, to add a character to
  <code>stdscr</code>, one calls <code>addch()</code> with the
  desired character as argument. To write to a different window.
  use the routine <code>waddch()</code> (for
  <strong>w</strong>indow-specific addch()) is provided. This
  convention of prepending function names with a &ldquo;w&rdquo;
  when they are to be applied to specific windows is consistent.
  The only routines which do not follow it are those for which a
  window must always be specified.</p>

  <p>In order to move the current (y, x) coordinates from one point
  to another, the routines <code>move()</code> and
  <code>wmove()</code> are provided. However, it is often desirable
  to first move and then perform some I/O operation. In order to
  avoid clumsiness, most I/O routines can be preceded by the prefix
  &ldquo;mv&rdquo; and the desired (y, x) coordinates prepended to
  the arguments to the function. For example, the calls</p>

  <pre>
          move(y, x);
          addch(ch);
</pre>

  <p>can be replaced by</p>

  <pre>
          mvaddch(y, x, ch);
</pre>

  <p>and</p>

  <pre>
          wmove(win, y, x);
          waddch(win, ch);
</pre>

  <p>can be replaced by</p>

  <pre>
          mvwaddch(win, y, x, ch);
</pre>

  <p>Note that the window description pointer (win) comes before
  the added (y, x) coordinates. If a function requires a window
  pointer, it is always the first parameter passed.</p>

  <h3><a name="variables" id="variables">Variables</a></h3>

  <p>The <code>curses</code> library sets some variables describing
  the terminal capabilities.</p>

  <pre>
      type   name      description
      ------------------------------------------------------------------
      int    LINES     number of lines on the terminal
      int    COLS      number of columns on the terminal
</pre>

  <p>The <code>curses.h</code> also introduces some
  <code>#define</code> constants and types of general
  usefulness:</p>

  <dl>
    <dt><code>bool</code>
    </dt>

    <dd>boolean type, actually a &ldquo;char&rdquo; (e.g.,
    <code>bool doneit;</code>)</dd>

    <dt><code>TRUE</code>
    </dt>

    <dd>boolean &ldquo;true&rdquo; flag (1).</dd>

    <dt><code>FALSE</code>
    </dt>

    <dd>boolean &ldquo;false&rdquo; flag (0).</dd>

    <dt><code>ERR</code>
    </dt>

    <dd>error flag returned by routines on a failure (-1).</dd>

    <dt><code>OK</code>
    </dt>

    <dd>error flag returned by routines when things go right.</dd>
  </dl>

  <h2><a name="using" id="using">Using the Library</a></h2>

  <p>Now we describe how to actually use the screen package. In it,
  we assume all updating, reading, etc. is applied to
  <code>stdscr</code>. These instructions will work on any window,
  providing you change the function names and parameters as
  mentioned above.</p>

  <p>Here is a sample program to motivate the discussion:</p>

  <pre>
#include &lt;stdlib.h&gt;
#include &lt;curses.h&gt;
#include &lt;signal.h&gt;

static void finish(int sig);

int
main(int argc, char *argv[])
{
    int num = 0;

    /* initialize your non-curses data structures here */

    (void) signal(SIGINT, finish);      /* arrange interrupts to terminate */

    (void) initscr();      /* initialize the curses library */
    keypad(stdscr, TRUE);  /* enable keyboard mapping */
    (void) nonl();         /* tell curses not to do NL-&gt;CR/NL on output */
    (void) cbreak();       /* take input chars one at a time, no wait for \n */
    (void) echo();         /* echo input - in color */

    if (has_colors())
    {
        start_color();

        /*
         * Simple color assignment, often all we need.  Color pair 0 cannot
         * be redefined.  This example uses the same value for the color
         * pair as for the foreground color, though of course that is not
         * necessary:
         */
        init_pair(1, COLOR_RED,     COLOR_BLACK);
        init_pair(2, COLOR_GREEN,   COLOR_BLACK);
        init_pair(3, COLOR_YELLOW,  COLOR_BLACK);
        init_pair(4, COLOR_BLUE,    COLOR_BLACK);
        init_pair(5, COLOR_CYAN,    COLOR_BLACK);
        init_pair(6, COLOR_MAGENTA, COLOR_BLACK);
        init_pair(7, COLOR_WHITE,   COLOR_BLACK);
    }

    for (;;)
    {
        int c = getch();     /* refresh, accept single keystroke of input */
        attrset(COLOR_PAIR(num % 8));
        num++;

        /* process the command keystroke */
    }

    finish(0);               /* we are done */
}

static void finish(int sig)
{
    endwin();

    /* do your non-curses wrapup here */

    exit(0);
}
</pre>

  <h3><a name="starting" id="starting">Starting up</a></h3>

  <p>In order to use the screen package, the routines must know
  about terminal characteristics, and the space for
  <code>curscr</code> and <code>stdscr</code> must be allocated.
  These function <code>initscr()</code> does both these things.
  Since it must allocate space for the windows, it can overflow
  memory when attempting to do so. On the rare occasions this
  happens, <code>initscr()</code> will terminate the program with
  an error message. <code>initscr()</code> must always be called
  before any of the routines which affect windows are used. If it
  is not, the program will core dump as soon as either
  <code>curscr</code> or <code>stdscr</code> are referenced.
  However, it is usually best to wait to call it until after you
  are sure you will need it, like after checking for startup
  errors. Terminal status changing routines like <code>nl()</code>
  and <code>cbreak()</code> should be called after
  <code>initscr()</code>.</p>

  <p>Once the screen windows have been allocated, you can set them
  up for your program. If you want to, say, allow a screen to
  scroll, use <code>scrollok()</code>. If you want the cursor to be
  left in place after the last change, use <code>leaveok()</code>.
  If this is not done, <code>refresh()</code> will move the cursor
  to the window's current (y, x) coordinates after updating it.</p>

  <p>You can create new windows of your own using the functions
  <code>newwin()</code>, <code>derwin()</code>, and
  <code>subwin()</code>. The routine <code>delwin()</code> will
  allow you to get rid of old windows. All the options described
  above can be applied to any window.</p>

  <h3><a name="output" id="output">Output</a></h3>

  <p>Now that we have set things up, we will want to actually
  update the terminal. The basic functions used to change what will
  go on a window are <code>addch()</code> and <code>move()</code>.
  <code>addch()</code> adds a character at the current (y, x)
  coordinates. <code>move()</code> changes the current (y, x)
  coordinates to whatever you want them to be. It returns
  <code>ERR</code> if you try to move off the window. As mentioned
  above, you can combine the two into <code>mvaddch()</code> to do
  both things at once.</p>

  <p>The other output functions, such as <code>addstr()</code> and
  <code>printw()</code>, all call <code>addch()</code> to add
  characters to the window.</p>

  <p>After you have put on the window what you want there, when you
  want the portion of the terminal covered by the window to be made
  to look like it, you must call <code>refresh()</code>. In order
  to optimize finding changes, <code>refresh()</code> assumes that
  any part of the window not changed since the last
  <code>refresh()</code> of that window has not been changed on the
  terminal, i.e., that you have not refreshed a portion of the
  terminal with an overlapping window. If this is not the case, the
  routine <code>touchwin()</code> is provided to make it look like
  the entire window has been changed, thus making
  <code>refresh()</code> check the whole subsection of the terminal
  for changes.</p>

  <p>If you call <code>wrefresh()</code> with <code>curscr</code>
  as its argument, it will make the screen look like
  <code>curscr</code> thinks it looks like. This is useful for
  implementing a command which would redraw the screen in case it
  get messed up.</p>

  <h3><a name="input" id="input">Input</a></h3>

  <p>The complementary function to <code>addch()</code> is
  <code>getch()</code> which, if echo is set, will call
  <code>addch()</code> to echo the character. Since the screen
  package needs to know what is on the terminal at all times, if
  characters are to be echoed, the tty must be in raw or cbreak
  mode. Since initially the terminal has echoing enabled and is in
  ordinary &ldquo;cooked&rdquo; mode, one or the other has to
  changed before calling <code>getch()</code>; otherwise, the
  program's output will be unpredictable.</p>

  <p>When you need to accept line-oriented input in a window, the
  functions <code>wgetstr()</code> and friends are available. There
  is even a <code>wscanw()</code> function that can do
  <code>scanf()</code>(3)-style multi-field parsing on window
  input. These pseudo-line-oriented functions turn on echoing while
  they execute.</p>

  <p>The example code above uses the call <code>keypad(stdscr,
  TRUE)</code> to enable support for function-key mapping. With
  this feature, the <code>getch()</code> code watches the input
  stream for character sequences that correspond to arrow and
  function keys. These sequences are returned as pseudo-character
  values. The <code>#define</code> values returned are listed in
  the <code>curses.h</code> The mapping from sequences to
  <code>#define</code> values is determined by <code>key_</code>
  capabilities in the terminal's terminfo entry.</p>

  <h3><a name="formschars" id="formschars">Using Forms
  Characters</a></h3>

  <p>The <code>addch()</code> function (and some others, including
  <code>box()</code> and <code>border()</code>) can accept some
  pseudo-character arguments which are specially defined by
  <code>ncurses</code>. These are <code>#define</code> values set
  up in the <code>curses.h</code> header; see there for a complete
  list (look for the prefix <code>ACS_</code>).</p>

  <p>The most useful of the ACS defines are the forms-drawing
  characters. You can use these to draw boxes and simple graphs on
  the screen. If the terminal does not have such characters,
  <code>curses.h</code> will map them to a recognizable (though
  ugly) set of ASCII defaults.</p>

  <h3><a name="attributes" id="attributes">Character Attributes and
  Color</a></h3>

  <p>The <code>ncurses</code> package supports screen highlights
  including standout, reverse-video, underline, and blink. It also
  supports color, which is treated as another kind of
  highlight.</p>

  <p>Highlights are encoded, internally, as high bits of the
  pseudo-character type (<code>chtype</code>) that
  <code>curses.h</code> uses to represent the contents of a screen
  cell. See the <code>curses.h</code> header file for a complete
  list of highlight mask values (look for the prefix
  <code>A_</code>).</p>

  <p>There are two ways to make highlights. One is to logical-or
  the value of the highlights you want into the character argument
  of an <code>addch()</code> call, or any other output call that
  takes a <code>chtype</code> argument.</p>

  <p>The other is to set the current-highlight value. This is
  <em>logical-OR</em>ed with any highlight you specify the first
  way. You do this with the functions <code>attron()</code>,
  <code>attroff()</code>, and <code>attrset()</code>; see the
  manual pages for details. Color is a special kind of highlight.
  The package actually thinks in terms of color pairs, combinations
  of foreground and background colors. The sample code above sets
  up eight color pairs, all of the guaranteed-available colors on
  black. Note that each color pair is, in effect, given the name of
  its foreground color. Any other range of eight non-conflicting
  values could have been used as the first arguments of the
  <code>init_pair()</code> values.</p>

  <p>Once you have done an <code>init_pair()</code> that creates
  color-pair N, you can use <code>COLOR_PAIR(N)</code> as a
  highlight that invokes that particular color combination. Note
  that <code>COLOR_PAIR(N)</code>, for constant N, is itself a
  compile-time constant and can be used in initializers.</p>

  <h3><a name="mouse" id="mouse">Mouse Interfacing</a></h3>

  <p>The <code>ncurses</code> library also provides a mouse
  interface.</p>

  <blockquote>
    <strong>NOTE:</strong> this facility is specific to
    <code>ncurses</code>, it is not part of either the XSI Curses
    standard, nor of System V Release 4, nor BSD curses. System V
    Release 4 curses contains code with similar interface
    definitions, however it is not documented. Other than by
    disassembling the library, we have no way to determine exactly
    how that mouse code works. Thus, we recommend that you wrap
    mouse-related code in an #ifdef using the feature macro
    NCURSES_MOUSE_VERSION so it will not be compiled and linked on
    non-ncurses systems.
  </blockquote>

  <p>Presently, mouse event reporting works in the following
  environments:</p>

  <ul>
    <li>xterm and similar programs such as rxvt.</li>

    <li>Linux console, when configured with <code>gpm</code>(1),
    Alessandro Rubini's mouse server.</li>

    <li>FreeBSD sysmouse (console)</li>

    <li>OS/2 EMX</li>
  </ul>

  <p>The mouse interface is very simple. To activate it, you use
  the function <code>mousemask()</code>, passing it as first
  argument a bit-mask that specifies what kinds of events you want
  your program to be able to see. It will return the bit-mask of
  events that actually become visible, which may differ from the
  argument if the mouse device is not capable of reporting some of
  the event types you specify.</p>

  <p>Once the mouse is active, your application's command loop
  should watch for a return value of <code>KEY_MOUSE</code> from
  <code>wgetch()</code>. When you see this, a mouse event report
  has been queued. To pick it off the queue, use the function
  <code>getmouse()</code> (you must do this before the next
  <code>wgetch()</code>, otherwise another mouse event might come
  in and make the first one inaccessible).</p>

  <p>Each call to <code>getmouse()</code> fills a structure (the
  address of which you will pass it) with mouse event data. The
  event data includes zero-origin, screen-relative character-cell
  coordinates of the mouse pointer. It also includes an event mask.
  Bits in this mask will be set, corresponding to the event type
  being reported.</p>

  <p>The mouse structure contains two additional fields which may
  be significant in the future as ncurses interfaces to new kinds
  of pointing device. In addition to x and y coordinates, there is
  a slot for a z coordinate; this might be useful with
  touch-screens that can return a pressure or duration parameter.
  There is also a device ID field, which could be used to
  distinguish between multiple pointing devices.</p>

  <p>The class of visible events may be changed at any time via
  <code>mousemask()</code>. Events that can be reported include
  presses, releases, single-, double- and triple-clicks (you can
  set the maximum button-down time for clicks). If you do not make
  clicks visible, they will be reported as press-release pairs. In
  some environments, the event mask may include bits reporting the
  state of shift, alt, and ctrl keys on the keyboard during the
  event.</p>

  <p>A function to check whether a mouse event fell within a given
  window is also supplied. You can use this to see whether a given
  window should consider a mouse event relevant to it.</p>

  <p>Because mouse event reporting will not be available in all
  environments, it would be unwise to build <code>ncurses</code>
  applications that <em>require</em> the use of a mouse. Rather,
  you should use the mouse as a shortcut for point-and-shoot
  commands your application would normally accept from the
  keyboard. Two of the test games in the <code>ncurses</code>
  distribution (<code>bs</code> and <code>knight</code>) contain
  code that illustrates how this can be done.</p>

  <p>See the manual page <code>curs_mouse(3X)</code> for full
  details of the mouse-interface functions.</p>

  <h3><a name="finishing" id="finishing">Finishing Up</a></h3>

  <p>In order to clean up after the <code>ncurses</code> routines,
  the routine <code>endwin()</code> is provided. It restores tty
  modes to what they were when <code>initscr()</code> was first
  called, and moves the cursor down to the lower-left corner. Thus,
  anytime after the call to initscr, <code>endwin()</code> should
  be called before exiting.</p>

  <h2><a name="functions" id="functions">Function Descriptions</a></h2>

  <p>We describe the detailed behavior of some important curses
  functions here, as a supplement to the manual page
  descriptions.</p>

  <h3><a name="init" id="init">Initialization and Wrapup</a></h3>

  <dl>
    <dt><code>initscr()</code>
    </dt>

    <dd>The first function called should almost always be
    <code>initscr()</code>. This will determine the terminal type
    and initialize curses data structures. <code>initscr()</code>
    also arranges that the first call to <code>refresh()</code>
    will clear the screen. If an error occurs a message is written
    to standard error and the program exits. Otherwise it returns a
    pointer to stdscr. A few functions may be called before initscr
    (<code>slk_init()</code>, <code>filter()</code>,
    <code>ripoffline()</code>, <code>use_env()</code>, and, if you
    are using multiple terminals, <code>newterm()</code>.)</dd>

    <dt><code>endwin()</code>
    </dt>

    <dd>Your program should always call <code>endwin()</code>
    before exiting or shelling out of the program. This function
    will restore tty modes, move the cursor to the lower left
    corner of the screen, reset the terminal into the proper
    non-visual mode. Calling <code>refresh()</code> or
    <code>doupdate()</code> after a temporary escape from the
    program will restore the ncurses screen from before the
    escape.</dd>

    <dt><code>newterm(type, ofp, ifp)</code>
    </dt>

    <dd>A program which outputs to more than one terminal should
    use <code>newterm()</code> instead of <code>initscr()</code>.
    <code>newterm()</code> should be called once for each terminal.
    It returns a variable of type <code>SCREEN *</code> which
    should be saved as a reference to that terminal. (NOTE: a
    SCREEN variable is not a <em>screen</em> in the sense we are
    describing in this introduction, but a collection of parameters
    used to assist in optimizing the display.) The arguments are
    the type of the terminal (a string) and <code>FILE</code>
    pointers for the output and input of the terminal. If type is
    NULL then the environment variable <code>$TERM</code> is used.
    <code>endwin()</code> should called once at wrapup time for
    each terminal opened using this function.</dd>

    <dt><code>set_term(new)</code>
    </dt>

    <dd>This function is used to switch to a different terminal
    previously opened by <code>newterm()</code>. The screen
    reference for the new terminal is passed as the parameter. The
    previous terminal is returned by the function. All other calls
    affect only the current terminal.</dd>

    <dt><code>delscreen(sp)</code>
    </dt>

    <dd>The inverse of <code>newterm()</code>; deallocates the data
    structures associated with a given <code>SCREEN</code>
    reference.</dd>
  </dl>

  <h3><a name="flush" id="flush">Causing Output to the Terminal</a></h3>

  <dl>
    <dt><code>refresh()</code> and <code>wrefresh(win)</code></dt>

    <dd>These functions must be called to actually get any output
    on the terminal, as other routines merely manipulate data
    structures. <code>wrefresh()</code> copies the named window to
    the physical terminal screen, taking into account what is
    already there in order to do optimizations.
    <code>refresh()</code> does a refresh of <code>stdscr</code>.
    Unless <code>leaveok()</code> has been enabled, the physical
    cursor of the terminal is left at the location of the window's
    cursor.</dd>

    <dt><code>doupdate()</code> and
    <code>wnoutrefresh(win)</code></dt>

    <dd>These two functions allow multiple updates with more
    efficiency than wrefresh. To use them, it is important to
    understand how curses works. In addition to all the window
    structures, curses keeps two data structures representing the
    terminal screen: a physical screen, describing what is actually
    on the screen, and a virtual screen, describing what the
    programmer wants to have on the screen. wrefresh works by first
    copying the named window to the virtual screen
    (<code>wnoutrefresh()</code>), and then calling the routine to
    update the screen (<code>doupdate()</code>). If the programmer
    wishes to output several windows at once, a series of calls to
    <code>wrefresh</code> will result in alternating calls to
    <code>wnoutrefresh()</code> and <code>doupdate()</code>,
    causing several bursts of output to the screen. By calling
    <code>wnoutrefresh()</code> for each window, it is then
    possible to call <code>doupdate()</code> once, resulting in
    only one burst of output, with fewer total characters
    transmitted (this also avoids a visually annoying flicker at
    each update).</dd>
  </dl>

  <h3><a name="lowlevel" id="lowlevel">Low-Level Capability
  Access</a></h3>

  <dl>
    <dt><code>setupterm(term, filenum, errret)</code>
    </dt>

    <dd>
      This routine is called to initialize a terminal's
      description, without setting up the curses screen structures
      or changing the tty-driver mode bits. <code>term</code> is
      the character string representing the name of the terminal
      being used. <code>filenum</code> is the UNIX file descriptor
      of the terminal to be used for output. <code>errret</code> is
      a pointer to an integer, in which a success or failure
      indication is returned. The values returned can be 1 (all is
      well), 0 (no such terminal), or -1 (some problem locating the
      terminfo database).

      <p>The value of <code>term</code> can be given as NULL, which
      will cause the value of <code>TERM</code> in the environment
      to be used. The <code>errret</code> pointer can also be given
      as NULL, meaning no error code is wanted. If
      <code>errret</code> is defaulted, and something goes wrong,
      <code>setupterm()</code> will print an appropriate error
      message and exit, rather than returning. Thus, a simple
      program can call setupterm(0, 1, 0) and not worry about
      initialization errors.</p>

      <p>After the call to <code>setupterm()</code>, the global
      variable <code>cur_term</code> is set to point to the current
      structure of terminal capabilities. By calling
      <code>setupterm()</code> for each terminal, and saving and
      restoring <code>cur_term</code>, it is possible for a program
      to use two or more terminals at once.
      <code>Setupterm()</code> also stores the names section of the
      terminal description in the global character array
      <code>ttytype[]</code>. Subsequent calls to
      <code>setupterm()</code> will overwrite this array, so you
      will have to save it yourself if need be.</p>
    </dd>
  </dl>

  <h3><a name="debugging" id="debugging">Debugging</a></h3>

  <blockquote>
    <strong>NOTE:</strong> These functions are not part of the
    standard curses API!
  </blockquote>

  <dl>
    <dt><code>trace()</code>
    </dt>

    <dd>This function can be used to explicitly set a trace level.
    If the trace level is nonzero, execution of your program will
    generate a file called &ldquo;trace&rdquo; in the current
    working directory containing a report on the library's actions.
    Higher trace levels enable more detailed (and verbose)
    reporting -- see comments attached to <code>TRACE_</code>
    defines in the <code>curses.h</code> file for details. (It is
    also possible to set a trace level by assigning a trace level
    value to the environment variable
    <code>NCURSES_TRACE</code>).</dd>

    <dt><code>_tracef()</code>
    </dt>

    <dd>This function can be used to output your own debugging
    information. It is only available only if you link with
    -lncurses_g. It can be used the same way as
    <code>printf()</code>, only it outputs a newline after the end
    of arguments. The output goes to a file called
    <code>trace</code> in the current directory.</dd>
  </dl>

  <p>Trace logs can be difficult to interpret due to the sheer
  volume of data dumped in them. There is a script called
  <strong>tracemunch</strong> included with the
  <code>ncurses</code> distribution that can alleviate this problem
  somewhat; it compacts long sequences of similar operations into
  more succinct single-line pseudo-operations. These pseudo-ops can
  be distinguished by the fact that they are named in capital
  letters.</p>

  <h2><a name="hints" id="hints">Hints, Tips, and Tricks</a></h2>

  <p>The <code>ncurses</code> manual pages are a complete reference
  for this library. In the remainder of this document, we discuss
  various useful methods that may not be obvious from the manual
  page descriptions.</p>

  <h3><a name="caution" id="caution">Some Notes of Caution</a></h3>

  <p>If you find yourself thinking you need to use
  <code>noraw()</code> or <code>nocbreak()</code>, think again and
  move carefully. It is probably better design to use
  <code>getstr()</code> or one of its relatives to simulate cooked
  mode. The <code>noraw()</code> and <code>nocbreak()</code>
  functions try to restore cooked mode, but they may end up
  clobbering some control bits set before you started your
  application. Also, they have always been poorly documented, and
  are likely to hurt your application's usability with other curses
  libraries.</p>

  <p>Bear in mind that <code>refresh()</code> is a synonym for
  <code>wrefresh(stdscr)</code>. Do not try to mix use of
  <code>stdscr</code> with use of windows declared by
  <code>newwin()</code>; a <code>refresh()</code> call will blow
  them off the screen. The right way to handle this is to use
  <code>subwin()</code>, or not touch <code>stdscr</code> at all
  and tile your screen with declared windows which you then
  <code>wnoutrefresh()</code> somewhere in your program event loop,
  with a single <code>doupdate()</code> call to trigger actual
  repainting.</p>

  <p>You are much less likely to run into problems if you design
  your screen layouts to use tiled rather than overlapping windows.
  Historically, curses support for overlapping windows has been
  weak, fragile, and poorly documented. The <code>ncurses</code>
  library is not yet an exception to this rule.</p>

  <p>There is a panels library included in the <code>ncurses</code>
  distribution that does a pretty good job of strengthening the
  overlapping-windows facilities.</p>

  <p>Try to avoid using the global variables LINES and COLS. Use
  <code>getmaxyx()</code> on the <code>stdscr</code> context
  instead. Reason: your code may be ported to run in an environment
  with window resizes, in which case several screens could be open
  with different sizes.</p>

  <h3><a name="leaving" id="leaving">Temporarily Leaving NCURSES
  Mode</a></h3>

  <p>Sometimes you will want to write a program that spends most of
  its time in screen mode, but occasionally returns to ordinary
  &ldquo;cooked&rdquo; mode. A common reason for this is to support
  shell-out. This behavior is simple to arrange in
  <code>ncurses</code>.</p>

  <p>To leave <code>ncurses</code> mode, call <code>endwin()</code>
  as you would if you were intending to terminate the program. This
  will take the screen back to cooked mode; you can do your
  shell-out. When you want to return to <code>ncurses</code> mode,
  simply call <code>refresh()</code> or <code>doupdate()</code>.
  This will repaint the screen.</p>

  <p>There is a boolean function, <code>isendwin()</code>, which
  code can use to test whether <code>ncurses</code> screen mode is
  active. It returns <code>TRUE</code> in the interval between an
  <code>endwin()</code> call and the following
  <code>refresh()</code>, <code>FALSE</code> otherwise.</p>

  <p>Here is some sample code for shellout:</p>

  <pre>
    addstr("Shelling out...");
    def_prog_mode();           /* save current tty modes */
    endwin();                  /* restore original tty modes */
    system("sh");              /* run shell */
    addstr("returned.\n");     /* prepare return message */
    refresh();                 /* restore save modes, repaint screen */
</pre>

  <h3><a name="xterm" id="xterm">Using NCURSES under XTERM</a></h3>

  <p>A resize operation in X sends <code>SIGWINCH</code> to the
  application running under xterm. The easiest way to handle
  <code>SIGWINCH</code> is to do an <code>endwin</code>, followed
  by an <code>refresh</code> and a screen repaint you code
  yourself. The <code>refresh</code> will pick up the new screen
  size from the xterm's environment.</p>

  <p>That is the standard way, of course (it even works with some
  vendor's curses implementations). Its drawback is that it clears
  the screen to reinitialize the display, and does not resize
  subwindows which must be shrunk. <code>Ncurses</code> provides an
  extension which works better, the <code>resizeterm</code>
  function. That function ensures that all windows are limited to
  the new screen dimensions, and pads <code>stdscr</code> with
  blanks if the screen is larger.</p>

  <p>The <code>ncurses</code> library provides a SIGWINCH signal
  handler, which pushes a <code>KEY_RESIZE</code> via the wgetch()
  calls. When <code>ncurses</code> returns that code, it calls
  <code>resizeterm</code> to update the size of the standard
  screen's window, repainting that (filling with blanks or
  truncating as needed). It also resizes other windows, but its
  effect may be less satisfactory because it cannot know how you
  want the screen re-painted. You will usually have to write
  special-purpose code to handle <code>KEY_RESIZE</code>
  yourself.</p>

  <h3><a name="screens" id="screens">Handling Multiple Terminal
  Screens</a></h3>

  <p>The <code>initscr()</code> function actually calls a function
  named <code>newterm()</code> to do most of its work. If you are
  writing a program that opens multiple terminals, use
  <code>newterm()</code> directly.</p>

  <p>For each call, you will have to specify a terminal type and a
  pair of file pointers; each call will return a screen reference,
  and <code>stdscr</code> will be set to the last one allocated.
  You will switch between screens with the <code>set_term</code>
  call. Note that you will also have to call
  <code>def_shell_mode</code> and <code>def_prog_mode</code> on
  each tty yourself.</p>

  <h3><a name="testing" id="testing">Testing for Terminal
  Capabilities</a></h3>

  <p>Sometimes you may want to write programs that test for the
  presence of various capabilities before deciding whether to go
  into <code>ncurses</code> mode. An easy way to do this is to call
  <code>setupterm()</code>, then use the functions
  <code>tigetflag()</code>, <code>tigetnum()</code>, and
  <code>tigetstr()</code> to do your testing.</p>

  <p>A particularly useful case of this often comes up when you
  want to test whether a given terminal type should be treated as
  &ldquo;smart&rdquo; (cursor-addressable) or &ldquo;stupid&rdquo;.
  The right way to test this is to see if the return value of
  <code>tigetstr("cup")</code> is non-NULL. Alternatively, you can
  include the <code>term.h</code> file and test the value of the
  macro <code>cursor_address</code>.</p>

  <h3><a name="tuning" id="tuning">Tuning for Speed</a></h3>

  <p>Use the <code>addchstr()</code> family of functions for fast
  screen-painting of text when you know the text does not contain
  any control characters. Try to make attribute changes infrequent
  on your screens. Do not use the <code>immedok()</code>
  option!</p>

  <h3><a name="special" id="special">Special Features of
  NCURSES</a></h3>

  <p>The <code>wresize()</code> function allows you to resize a
  window in place. The associated <code>resizeterm()</code>
  function simplifies the construction of <a href=
  "#xterm">SIGWINCH</a> handlers, for resizing all windows.</p>

  <p>The <code>define_key()</code> function allows you to define at
  runtime function-key control sequences which are not in the
  terminal description. The <code>keyok()</code> function allows
  you to temporarily enable or disable interpretation of any
  function-key control sequence.</p>

  <p>The <code>use_default_colors()</code> function allows you to
  construct applications which can use the terminal's default
  foreground and background colors as an additional "default"
  color. Several terminal emulators support this feature, which is
  based on ISO 6429.</p>

  <p>Ncurses supports up 16 colors, unlike SVr4 curses which
  defines only 8. While most terminals which provide color allow
  only 8 colors, about a quarter (including XFree86 xterm) support
  16 colors.</p>

  <h2><a name="compat" id="compat">Compatibility with Older
  Versions</a></h2>

  <p>Despite our best efforts, there are some differences between
  <code>ncurses</code> and the (undocumented!) behavior of older
  curses implementations. These arise from ambiguities or omissions
  in the documentation of the API.</p>

  <h3><a name="refbug" id="refbug">Refresh of Overlapping
  Windows</a></h3>

  <p>If you define two windows A and B that overlap, and then
  alternately scribble on and refresh them, the changes made to the
  overlapping region under historic <code>curses</code> versions
  were often not documented precisely.</p>

  <p>To understand why this is a problem, remember that screen
  updates are calculated between two representations of the
  <em>entire</em> display. The documentation says that when you
  refresh a window, it is first copied to the virtual screen, and
  then changes are calculated to update the physical screen (and
  applied to the terminal). But "copied to" is not very specific,
  and subtle differences in how copying works can produce different
  behaviors in the case where two overlapping windows are each
  being refreshed at unpredictable intervals.</p>

  <p>What happens to the overlapping region depends on what
  <code>wnoutrefresh()</code> does with its argument -- what
  portions of the argument window it copies to the virtual screen.
  Some implementations do "change copy", copying down only
  locations in the window that have changed (or been marked changed
  with <code>wtouchln()</code> and friends). Some implementations
  do "entire copy", copying <em>all</em> window locations to the
  virtual screen whether or not they have changed.</p>

  <p>The <code>ncurses</code> library itself has not always been
  consistent on this score. Due to a bug, versions 1.8.7 to 1.9.8a
  did entire copy. Versions 1.8.6 and older, and versions 1.9.9 and
  newer, do change copy.</p>

  <p>For most commercial curses implementations, it is not
  documented and not known for sure (at least not to the
  <code>ncurses</code> maintainers) whether they do change copy or
  entire copy. We know that System V release 3 curses has logic in
  it that looks like an attempt to do change copy, but the
  surrounding logic and data representations are sufficiently
  complex, and our knowledge sufficiently indirect, that it is hard
  to know whether this is reliable. It is not clear what the SVr4
  documentation and XSI standard intend. The XSI Curses standard
  barely mentions wnoutrefresh(); the SVr4 documents seem to be
  describing entire-copy, but it is possible with some effort and
  straining to read them the other way.</p>

  <p>It might therefore be unwise to rely on either behavior in
  programs that might have to be linked with other curses
  implementations. Instead, you can do an explicit
  <code>touchwin()</code> before the <code>wnoutrefresh()</code>
  call to guarantee an entire-contents copy anywhere.</p>

  <p>The really clean way to handle this is to use the panels
  library. If, when you want a screen update, you do
  <code>update_panels()</code>, it will do all the necessary
  <code>wnoutrefresh()</code> calls for whatever panel stacking
  order you have defined. Then you can do one
  <code>doupdate()</code> and there will be a <em>single</em> burst
  of physical I/O that will do all your updates.</p>

  <h3><a name="backbug" id="backbug">Background Erase</a></h3>

  <p>If you have been using a very old versions of
  <code>ncurses</code> (1.8.7 or older) you may be surprised by the
  behavior of the erase functions. In older versions, erased areas
  of a window were filled with a blank modified by the window's
  current attribute (as set by <strong>wattrset()</strong>,
  <strong>wattron()</strong>, <strong>wattroff()</strong> and
  friends).</p>

  <p>In newer versions, this is not so. Instead, the attribute of
  erased blanks is normal unless and until it is modified by the
  functions <code>bkgdset()</code> or <code>wbkgdset()</code>.</p>

  <p>This change in behavior conforms <code>ncurses</code> to
  System V Release 4 and the XSI Curses standard.</p>

  <h2><a name="xsifuncs" id="xsifuncs">XSI Curses Conformance</a></h2>

  <p>The <code>ncurses</code> library is intended to be base-level
  conformant with the XSI Curses standard from X/Open. Many
  extended-level features (in fact, almost all features not
  directly concerned with wide characters and internationalization)
  are also supported.</p>

  <p>One effect of XSI conformance is the change in behavior
  described under <a href="#backbug">"Background Erase --
  Compatibility with Old Versions"</a>.</p>

  <p>Also, <code>ncurses</code> meets the XSI requirement that
  every macro entry point have a corresponding function which may
  be linked (and will be prototype-checked) if the macro definition
  is disabled with <code>#undef</code>.</p>

  <h1><a name="panels" id="panels">The Panels Library</a></h1>

  <p>The <code>ncurses</code> library by itself provides good
  support for screen displays in which the windows are tiled
  (non-overlapping). In the more general case that windows may
  overlap, you have to use a series of <code>wnoutrefresh()</code>
  calls followed by a <code>doupdate()</code>, and be careful about
  the order you do the window refreshes in. It has to be
  bottom-upwards, otherwise parts of windows that should be
  obscured will show through.</p>

  <p>When your interface design is such that windows may dive
  deeper into the visibility stack or pop to the top at runtime,
  the resulting book-keeping can be tedious and difficult to get
  right. Hence the panels library.</p>

  <p>The <code>panel</code> library first appeared in AT&amp;T
  System V. The version documented here is the <code>panel</code>
  code distributed with <code>ncurses</code>.</p>

  <h2><a name="pcompile" id="pcompile">Compiling With the Panels
  Library</a></h2>

  <p>Your panels-using modules must import the panels library
  declarations with</p>

  <pre>
          #include &lt;panel.h&gt;
</pre>

  <p>and must be linked explicitly with the panels library using an
  <code>-lpanel</code> argument. Note that they must also link the
  <code>ncurses</code> library with <code>-lncurses</code>. Many
  linkers are two-pass and will accept either order, but it is
  still good practice to put <code>-lpanel</code> first and
  <code>-lncurses</code> second.</p>

  <h2><a name="poverview" id="poverview">Overview of Panels</a></h2>

  <p>A panel object is a window that is implicitly treated as part
  of a <dfn>deck</dfn> including all other panel objects. The deck
  has an implicit bottom-to-top visibility order. The panels
  library includes an update function (analogous to
  <code>refresh()</code>) that displays all panels in the deck in
  the proper order to resolve overlaps. The standard window,
  <code>stdscr</code>, is considered below all panels.</p>

  <p>Details on the panels functions are available in the man
  pages. We will just hit the highlights here.</p>

  <p>You create a panel from a window by calling
  <code>new_panel()</code> on a window pointer. It then becomes the
  top of the deck. The panel's window is available as the value of
  <code>panel_window()</code> called with the panel pointer as
  argument.</p>

  <p>You can delete a panel (removing it from the deck) with
  <code>del_panel</code>. This will not deallocate the associated
  window; you have to do that yourself. You can replace a panel's
  window with a different window by calling
  <code>replace_window</code>. The new window may be of different
  size; the panel code will re-compute all overlaps. This operation
  does not change the panel's position in the deck.</p>

  <p>To move a panel's window, use <code>move_panel()</code>. The
  <code>mvwin()</code> function on the panel's window is not
  sufficient because it does not update the panels library's
  representation of where the windows are. This operation leaves
  the panel's depth, contents, and size unchanged.</p>

  <p>Two functions (<code>top_panel()</code>,
  <code>bottom_panel()</code>) are provided for rearranging the
  deck. The first pops its argument window to the top of the deck;
  the second sends it to the bottom. Either operation leaves the
  panel's screen location, contents, and size unchanged.</p>

  <p>The function <code>update_panels()</code> does all the
  <code>wnoutrefresh()</code> calls needed to prepare for
  <code>doupdate()</code> (which you must call yourself,
  afterwards).</p>

  <p>Typically, you will want to call <code>update_panels()</code>
  and <code>doupdate()</code> just before accepting command input,
  once in each cycle of interaction with the user. If you call
  <code>update_panels()</code> after each and every panel write,
  you will generate a lot of unnecessary refresh activity and
  screen flicker.</p>

  <h2><a name="pstdscr" id="pstdscr">Panels, Input, and the
  Standard Screen</a></h2>

  <p>You should not mix <code>wnoutrefresh()</code> or
  <code>wrefresh()</code> operations with panels code; this will
  work only if the argument window is either in the top panel or
  unobscured by any other panels.</p>

  <p>The <code>stsdcr</code> window is a special case. It is
  considered below all panels. Because changes to panels may
  obscure parts of <code>stdscr</code>, though, you should call
  <code>update_panels()</code> before <code>doupdate()</code> even
  when you only change <code>stdscr</code>.</p>

  <p>Note that <code>wgetch</code> automatically calls
  <code>wrefresh</code>. Therefore, before requesting input from a
  panel window, you need to be sure that the panel is totally
  unobscured.</p>

  <p>There is presently no way to display changes to one obscured
  panel without repainting all panels.</p>

  <h2><a name="hiding" id="hiding">Hiding Panels</a></h2>

  <p>It is possible to remove a panel from the deck temporarily;
  use <code>hide_panel</code> for this. Use
  <code>show_panel()</code> to render it visible again. The
  predicate function <code>panel_hidden</code> tests whether or not
  a panel is hidden.</p>

  <p>The <code>panel_update</code> code ignores hidden panels. You
  cannot do <code>top_panel()</code> or <code>bottom_panel</code>
  on a hidden panel(). Other panels operations are applicable.</p>

  <h2><a name="pmisc" id="pmisc">Miscellaneous Other Facilities</a></h2>

  <p>It is possible to navigate the deck using the functions
  <code>panel_above()</code> and <code>panel_below</code>. Handed a
  panel pointer, they return the panel above or below that panel.
  Handed <code>NULL</code>, they return the bottom-most or top-most
  panel.</p>

  <p>Every panel has an associated user pointer, not used by the
  panel code, to which you can attach application data. See the man
  page documentation of <code>set_panel_userptr()</code> and
  <code>panel_userptr</code> for details.</p>

  <h1><a name="menu" id="menu">The Menu Library</a></h1>

  <p>A menu is a screen display that assists the user to choose
  some subset of a given set of items. The <code>menu</code>
  library is a curses extension that supports easy programming of
  menu hierarchies with a uniform but flexible interface.</p>

  <p>The <code>menu</code> library first appeared in AT&amp;T
  System V. The version documented here is the <code>menu</code>
  code distributed with <code>ncurses</code>.</p>

  <h2><a name="mcompile" id="mcompile">Compiling With the menu
  Library</a></h2>

  <p>Your menu-using modules must import the menu library
  declarations with</p>

  <pre>
          #include &lt;menu.h&gt;
</pre>

  <p>and must be linked explicitly with the menus library using an
  <code>-lmenu</code> argument. Note that they must also link the
  <code>ncurses</code> library with <code>-lncurses</code>. Many
  linkers are two-pass and will accept either order, but it is
  still good practice to put <code>-lmenu</code> first and
  <code>-lncurses</code> second.</p>

  <h2><a name="moverview" id="moverview">Overview of Menus</a></h2>

  <p>The menus created by this library consist of collections of
  <dfn>items</dfn> including a name string part and a description
  string part. To make menus, you create groups of these items and
  connect them with menu frame objects.</p>

  <p>The menu can then by <dfn>posted</dfn>, that is written to an
  associated window. Actually, each menu has two associated
  windows; a containing window in which the programmer can scribble
  titles or borders, and a subwindow in which the menu items proper
  are displayed. If this subwindow is too small to display all the
  items, it will be a scrollable viewport on the collection of
  items.</p>

  <p>A menu may also be <dfn>unposted</dfn> (that is, undisplayed),
  and finally freed to make the storage associated with it and its
  items available for re-use.</p>

  <p>The general flow of control of a menu program looks like
  this:</p>

  <ol>
    <li>Initialize <code>curses</code>.</li>

    <li>Create the menu items, using <code>new_item()</code>.</li>

    <li>Create the menu using <code>new_menu()</code>.</li>

    <li>Post the menu using <code>post_menu()</code>.</li>

    <li>Refresh the screen.</li>

    <li>Process user requests via an input loop.</li>

    <li>Unpost the menu using <code>unpost_menu()</code>.</li>

    <li>Free the menu, using <code>free_menu()</code>.</li>

    <li>Free the items using <code>free_item()</code>.</li>

    <li>Terminate <code>curses</code>.</li>
  </ol>

  <h2><a name="mselect" id="mselect">Selecting items</a></h2>

  <p>Menus may be multi-valued or (the default) single-valued (see
  the manual page <code>menu_opts(3x)</code> to see how to change
  the default). Both types always have a <dfn>current
  item</dfn>.</p>

  <p>From a single-valued menu you can read the selected value
  simply by looking at the current item. From a multi-valued menu,
  you get the selected set by looping through the items applying
  the <code>item_value()</code> predicate function. Your
  menu-processing code can use the function
  <code>set_item_value()</code> to flag the items in the select
  set.</p>

  <p>Menu items can be made unselectable using
  <code>set_item_opts()</code> or <code>item_opts_off()</code> with
  the <code>O_SELECTABLE</code> argument. This is the only option
  so far defined for menus, but it is good practice to code as
  though other option bits might be on.</p>

  <h2><a name="mdisplay" id="mdisplay">Menu Display</a></h2>

  <p>The menu library calculates a minimum display size for your
  window, based on the following variables:</p>

  <ul>
    <li>The number and maximum length of the menu items</li>

    <li>Whether the O_ROWMAJOR option is enabled</li>

    <li>Whether display of descriptions is enabled</li>

    <li>Whatever menu format may have been set by the
    programmer</li>

    <li>The length of the menu mark string used for highlighting
    selected items</li>
  </ul>

  <p>The function <code>set_menu_format()</code> allows you to set
  the maximum size of the viewport or <dfn>menu page</dfn> that
  will be used to display menu items. You can retrieve any format
  associated with a menu with <code>menu_format()</code>. The
  default format is rows=16, columns=1.</p>

  <p>The actual menu page may be smaller than the format size. This
  depends on the item number and size and whether O_ROWMAJOR is on.
  This option (on by default) causes menu items to be displayed in
  a &ldquo;raster-scan&rdquo; pattern, so that if more than one
  item will fit horizontally the first couple of items are
  side-by-side in the top row. The alternative is column-major
  display, which tries to put the first several items in the first
  column.</p>

  <p>As mentioned above, a menu format not large enough to allow
  all items to fit on-screen will result in a menu display that is
  vertically scrollable.</p>

  <p>You can scroll it with requests to the menu driver, which will
  be described in the section on <a href="#minput">menu input
  handling</a>.</p>

  <p>Each menu has a <dfn>mark string</dfn> used to visually tag
  selected items; see the <code>menu_mark(3x)</code> manual page
  for details. The mark string length also influences the menu page
  size.</p>

  <p>The function <code>scale_menu()</code> returns the minimum
  display size that the menu code computes from all these factors.
  There are other menu display attributes including a select
  attribute, an attribute for selectable items, an attribute for
  unselectable items, and a pad character used to separate item
  name text from description text. These have reasonable defaults
  which the library allows you to change (see the
  <code>menu_attribs(3x)</code> manual page.</p>

  <h2><a name="mwindows" id="mwindows">Menu Windows</a></h2>

  <p>Each menu has, as mentioned previously, a pair of associated
  windows. Both these windows are painted when the menu is posted
  and erased when the menu is unposted.</p>

  <p>The outer or frame window is not otherwise touched by the menu
  routines. It exists so the programmer can associate a title, a
  border, or perhaps help text with the menu and have it properly
  refreshed or erased at post/unpost time. The inner window or
  <dfn>subwindow</dfn> is where the current menu page is
  displayed.</p>

  <p>By default, both windows are <code>stdscr</code>. You can set
  them with the functions in <code>menu_win(3x)</code>.</p>

  <p>When you call <code>post_menu()</code>, you write the menu to
  its subwindow. When you call <code>unpost_menu()</code>, you
  erase the subwindow, However, neither of these actually modifies
  the screen. To do that, call <code>wrefresh()</code> or some
  equivalent.</p>

  <h2><a name="minput" id="minput">Processing Menu Input</a></h2>

  <p>The main loop of your menu-processing code should call
  <code>menu_driver()</code> repeatedly. The first argument of this
  routine is a menu pointer; the second is a menu command code. You
  should write an input-fetching routine that maps input characters
  to menu command codes, and pass its output to
  <code>menu_driver()</code>. The menu command codes are fully
  documented in <code>menu_driver(3x)</code>.</p>

  <p>The simplest group of command codes is
  <code>REQ_NEXT_ITEM</code>, <code>REQ_PREV_ITEM</code>,
  <code>REQ_FIRST_ITEM</code>, <code>REQ_LAST_ITEM</code>,
  <code>REQ_UP_ITEM</code>, <code>REQ_DOWN_ITEM</code>,
  <code>REQ_LEFT_ITEM</code>, <code>REQ_RIGHT_ITEM</code>. These
  change the currently selected item. These requests may cause
  scrolling of the menu page if it only partially displayed.</p>

  <p>There are explicit requests for scrolling which also change
  the current item (because the select location does not change,
  but the item there does). These are <code>REQ_SCR_DLINE</code>,
  <code>REQ_SCR_ULINE</code>, <code>REQ_SCR_DPAGE</code>, and
  <code>REQ_SCR_UPAGE</code>.</p>

  <p>The <code>REQ_TOGGLE_ITEM</code> selects or deselects the
  current item. It is for use in multi-valued menus; if you use it
  with <code>O_ONEVALUE</code> on, you will get an error return
  (<code>E_REQUEST_DENIED</code>).</p>

  <p>Each menu has an associated pattern buffer. The
  <code>menu_driver()</code> logic tries to accumulate printable
  ASCII characters passed in in that buffer; when it matches a
  prefix of an item name, that item (or the next matching item) is
  selected. If appending a character yields no new match, that
  character is deleted from the pattern buffer, and
  <code>menu_driver()</code> returns <code>E_NO_MATCH</code>.</p>

  <p>Some requests change the pattern buffer directly:
  <code>REQ_CLEAR_PATTERN</code>, <code>REQ_BACK_PATTERN</code>,
  <code>REQ_NEXT_MATCH</code>, <code>REQ_PREV_MATCH</code>. The
  latter two are useful when pattern buffer input matches more than
  one item in a multi-valued menu.</p>

  <p>Each successful scroll or item navigation request clears the
  pattern buffer. It is also possible to set the pattern buffer
  explicitly with <code>set_menu_pattern()</code>.</p>

  <p>Finally, menu driver requests above the constant
  <code>MAX_COMMAND</code> are considered application-specific
  commands. The <code>menu_driver()</code> code ignores them and
  returns <code>E_UNKNOWN_COMMAND</code>.</p>

  <h2><a name="mmisc" id="mmisc">Miscellaneous Other Features</a></h2>

  <p>Various menu options can affect the processing and visual
  appearance and input processing of menus. See <code>menu_opts(3x)
  for details.</code></p>

  <p>It is possible to change the current item from application
  code; this is useful if you want to write your own navigation
  requests. It is also possible to explicitly set the top row of
  the menu display. See <code>mitem_current(3x)</code>. If your
  application needs to change the menu subwindow cursor for any
  reason, <code>pos_menu_cursor()</code> will restore it to the
  correct location for continuing menu driver processing.</p>

  <p>It is possible to set hooks to be called at menu
  initialization and wrapup time, and whenever the selected item
  changes. See <code>menu_hook(3x)</code>.</p>

  <p>Each item, and each menu, has an associated user pointer on
  which you can hang application data. See
  <code>mitem_userptr(3x)</code> and
  <code>menu_userptr(3x)</code>.</p>

  <h1><a name="form" id="form">The Forms Library</a></h1>

  <p>The <code>form</code> library is a curses extension that
  supports easy programming of on-screen forms for data entry and
  program control.</p>

  <p>The <code>form</code> library first appeared in AT&amp;T
  System V. The version documented here is the <code>form</code>
  code distributed with <code>ncurses</code>.</p>

  <h2><a name="fcompile" id="fcompile">Compiling With the form
  Library</a></h2>

  <p>Your form-using modules must import the form library
  declarations with</p>

  <pre>
          #include &lt;form.h&gt;
</pre>

  <p>and must be linked explicitly with the forms library using an
  <code>-lform</code> argument. Note that they must also link the
  <code>ncurses</code> library with <code>-lncurses</code>. Many
  linkers are two-pass and will accept either order, but it is
  still good practice to put <code>-lform</code> first and
  <code>-lncurses</code> second.</p>

  <h2><a name="foverview" id="foverview">Overview of Forms</a></h2>

  <p>A form is a collection of fields; each field may be either a
  label (explanatory text) or a data-entry location. Long forms may
  be segmented into pages; each entry to a new page clears the
  screen.</p>

  <p>To make forms, you create groups of fields and connect them
  with form frame objects; the form library makes this relatively
  simple.</p>

  <p>Once defined, a form can be <dfn>posted</dfn>, that is written
  to an associated window. Actually, each form has two associated
  windows; a containing window in which the programmer can scribble
  titles or borders, and a subwindow in which the form fields
  proper are displayed.</p>

  <p>As the form user fills out the posted form, navigation and
  editing keys support movement between fields, editing keys
  support modifying field, and plain text adds to or changes data
  in a current field. The form library allows you (the forms
  designer) to bind each navigation and editing key to any
  keystroke accepted by <code>curses</code> Fields may have
  validation conditions on them, so that they check input data for
  type and value. The form library supplies a rich set of
  pre-defined field types, and makes it relatively easy to define
  new ones.</p>

  <p>Once its transaction is completed (or aborted), a form may be
  <dfn>unposted</dfn> (that is, undisplayed), and finally freed to
  make the storage associated with it and its items available for
  re-use.</p>

  <p>The general flow of control of a form program looks like
  this:</p>

  <ol>
    <li>Initialize <code>curses</code>.</li>

    <li>Create the form fields, using
    <code>new_field()</code>.</li>

    <li>Create the form using <code>new_form()</code>.</li>

    <li>Post the form using <code>post_form()</code>.</li>

    <li>Refresh the screen.</li>

    <li>Process user requests via an input loop.</li>

    <li>Unpost the form using <code>unpost_form()</code>.</li>

    <li>Free the form, using <code>free_form()</code>.</li>

    <li>Free the fields using <code>free_field()</code>.</li>

    <li>Terminate <code>curses</code>.</li>
  </ol>

  <p>Note that this looks much like a menu program; the form
  library handles tasks which are in many ways similar, and its
  interface was obviously designed to resemble that of the <a href=
  "#menu">menu library</a> wherever possible.</p>

  <p>In forms programs, however, the &ldquo;process user
  requests&rdquo; is somewhat more complicated than for menus.
  Besides menu-like navigation operations, the menu driver loop has
  to support field editing and data validation.</p>

  <h2><a name="fcreate" id="fcreate">Creating and Freeing Fields
  and Forms</a></h2>

  <p>The basic function for creating fields is
  <code>new_field()</code>:</p>

  <pre>
FIELD *new_field(int height, int width,   /* new field size */
                 int top, int left,       /* upper left corner */
                 int offscreen,           /* number of offscreen rows */
                 int nbuf);               /* number of working buffers */
</pre>

  <p>Menu items always occupy a single row, but forms fields may
  have multiple rows. So <code>new_field()</code> requires you to
  specify a width and height (the first two arguments, which mist
  both be greater than zero).</p>

  <p>You must also specify the location of the field's upper left
  corner on the screen (the third and fourth arguments, which must
  be zero or greater). Note that these coordinates are relative to
  the form subwindow, which will coincide with <code>stdscr</code>
  by default but need not be <code>stdscr</code> if you have done
  an explicit <code>set_form_win()</code> call.</p>

  <p>The fifth argument allows you to specify a number of
  off-screen rows. If this is zero, the entire field will always be
  displayed. If it is nonzero, the form will be scrollable, with
  only one screen-full (initially the top part) displayed at any
  given time. If you make a field dynamic and grow it so it will no
  longer fit on the screen, the form will become scrollable even if
  the <code>offscreen</code> argument was initially zero.</p>

  <p>The forms library allocates one working buffer per field; the
  size of each buffer is <code>((height + offscreen)*width +
  1</code>, one character for each position in the field plus a NUL
  terminator. The sixth argument is the number of additional data
  buffers to allocate for the field; your application can use them
  for its own purposes.</p>

  <pre>
FIELD *dup_field(FIELD *field,            /* field to copy */
                 int top, int left);      /* location of new copy */
</pre>

  <p>The function <code>dup_field()</code> duplicates an existing
  field at a new location. Size and buffering information are
  copied; some attribute flags and status bits are not (see the
  <code>form_field_new(3X)</code> for details).</p>

  <pre>
FIELD *link_field(FIELD *field,           /* field to copy */
                  int top, int left);     /* location of new copy */
</pre>

  <p>The function <code>link_field()</code> also duplicates an
  existing field at a new location. The difference from
  <code>dup_field()</code> is that it arranges for the new field's
  buffer to be shared with the old one.</p>

  <p>Besides the obvious use in making a field editable from two
  different form pages, linked fields give you a way to hack in
  dynamic labels. If you declare several fields linked to an
  original, and then make them inactive, changes from the original
  will still be propagated to the linked fields.</p>

  <p>As with duplicated fields, linked fields have attribute bits
  separate from the original.</p>

  <p>As you might guess, all these field-allocations return
  <code>NULL</code> if the field allocation is not possible due to
  an out-of-memory error or out-of-bounds arguments.</p>

  <p>To connect fields to a form, use</p>

  <pre>
FORM *new_form(FIELD **fields);
</pre>

  <p>This function expects to see a NULL-terminated array of field
  pointers. Said fields are connected to a newly-allocated form
  object; its address is returned (or else NULL if the allocation
  fails).</p>

  <p>Note that <code>new_field()</code> does <em>not</em> copy the
  pointer array into private storage; if you modify the contents of
  the pointer array during forms processing, all manner of bizarre
  things might happen. Also note that any given field may only be
  connected to one form.</p>

  <p>The functions <code>free_field()</code> and
  <code>free_form</code> are available to free field and form
  objects. It is an error to attempt to free a field connected to a
  form, but not vice-versa; thus, you will generally free your form
  objects first.</p>

  <h2><a name="fattributes" id="fattributes">Fetching and Changing
  Field Attributes</a></h2>

  <p>Each form field has a number of location and size attributes
  associated with it. There are other field attributes used to
  control display and editing of the field. Some (for example, the
  <code>O_STATIC</code> bit) involve sufficient complications to be
  covered in sections of their own later on. We cover the functions
  used to get and set several basic attributes here.</p>

  <p>When a field is created, the attributes not specified by the
  <code>new_field</code> function are copied from an invisible
  system default field. In attribute-setting and -fetching
  functions, the argument NULL is taken to mean this field. Changes
  to it persist as defaults until your forms application
  terminates.</p>

  <h3><a name="fsizes" id="fsizes">Fetching Size and Location
  Data</a></h3>

  <p>You can retrieve field sizes and locations through:</p>

  <pre>
int field_info(FIELD *field,              /* field from which to fetch */
               int *height, *int width,   /* field size */
               int *top, int *left,       /* upper left corner */
               int *offscreen,            /* number of offscreen rows */
               int *nbuf);                /* number of working buffers */
</pre>

  <p>This function is a sort of inverse of
  <code>new_field()</code>; instead of setting size and location
  attributes of a new field, it fetches them from an existing
  one.</p>

  <h3><a name="flocation" id="flocation">Changing the Field
  Location</a></h3>

  <p>It is possible to move a field's location on the screen:</p>

  <pre>
int move_field(FIELD *field,              /* field to alter */
               int top, int left);        /* new upper-left corner */
</pre>

  <p>You can, of course. query the current location through
  <code>field_info()</code>.</p>

  <h3><a name="fjust" id="fjust">The Justification Attribute</a></h3>

  <p>One-line fields may be unjustified, justified right, justified
  left, or centered. Here is how you manipulate this attribute:</p>

  <pre>
int set_field_just(FIELD *field,          /* field to alter */
                   int justmode);         /* mode to set */

int field_just(FIELD *field);             /* fetch mode of field */
</pre>

  <p>The mode values accepted and returned by this functions are
  preprocessor macros <code>NO_JUSTIFICATION</code>,
  <code>JUSTIFY_RIGHT</code>, <code>JUSTIFY_LEFT</code>, or
  <code>JUSTIFY_CENTER</code>.</p>

  <h3><a name="fdispatts" id="fdispatts">Field Display
  Attributes</a></h3>

  <p>For each field, you can set a foreground attribute for entered
  characters, a background attribute for the entire field, and a
  pad character for the unfilled portion of the field. You can also
  control pagination of the form.</p>

  <p>This group of four field attributes controls the visual
  appearance of the field on the screen, without affecting in any
  way the data in the field buffer.</p>

  <pre>
int set_field_fore(FIELD *field,          /* field to alter */
                   chtype attr);          /* attribute to set */

chtype field_fore(FIELD *field);          /* field to query */

int set_field_back(FIELD *field,          /* field to alter */
                   chtype attr);          /* attribute to set */

chtype field_back(FIELD *field);          /* field to query */

int set_field_pad(FIELD *field,           /* field to alter */
                 int pad);                /* pad character to set */

chtype field_pad(FIELD *field);

int set_new_page(FIELD *field,            /* field to alter */
                 int flag);               /* TRUE to force new page */

chtype new_page(FIELD *field);            /* field to query */
</pre>

  <p>The attributes set and returned by the first four functions
  are normal <code>curses(3x)</code> display attribute values
  (<code>A_STANDOUT</code>, <code>A_BOLD</code>,
  <code>A_REVERSE</code> etc). The page bit of a field controls
  whether it is displayed at the start of a new form screen.</p>

  <h3><a name="foptions" id="foptions">Field Option Bits</a></h3>

  <p>There is also a large collection of field option bits you can
  set to control various aspects of forms processing. You can
  manipulate them with these functions:</p>

  <pre>
int set_field_opts(FIELD *field,          /* field to alter */
                   int attr);             /* attribute to set */

int field_opts_on(FIELD *field,           /* field to alter */
                  int attr);              /* attributes to turn on */

int field_opts_off(FIELD *field,          /* field to alter */
                   int attr);             /* attributes to turn off */

int field_opts(FIELD *field);             /* field to query */
</pre>

  <p>By default, all options are on. Here are the available option
  bits:</p>

  <dl>
    <dt>O_VISIBLE</dt>

    <dd>Controls whether the field is visible on the screen. Can be
    used during form processing to hide or pop up fields depending
    on the value of parent fields.</dd>

    <dt>O_ACTIVE</dt>

    <dd>Controls whether the field is active during forms
    processing (i.e. visited by form navigation keys). Can be used
    to make labels or derived fields with buffer values alterable
    by the forms application, not the user.</dd>

    <dt>O_PUBLIC</dt>

    <dd>Controls whether data is displayed during field entry. If
    this option is turned off on a field, the library will accept
    and edit data in that field, but it will not be displayed and
    the visible field cursor will not move. You can turn off the
    O_PUBLIC bit to define password fields.</dd>

    <dt>O_EDIT</dt>

    <dd>Controls whether the field's data can be modified. When
    this option is off, all editing requests except
    <code>REQ_PREV_CHOICE</code> and <code>REQ_NEXT_CHOICE</code>
    will fail. Such read-only fields may be useful for help
    messages.</dd>

    <dt>O_WRAP</dt>

    <dd>Controls word-wrapping in multi-line fields. Normally, when
    any character of a (blank-separated) word reaches the end of
    the current line, the entire word is wrapped to the next line
    (assuming there is one). When this option is off, the word will
    be split across the line break.</dd>

    <dt>O_BLANK</dt>

    <dd>Controls field blanking. When this option is on, entering a
    character at the first field position erases the entire field
    (except for the just-entered character).</dd>

    <dt>O_AUTOSKIP</dt>

    <dd>Controls automatic skip to next field when this one fills.
    Normally, when the forms user tries to type more data into a
    field than will fit, the editing location jumps to next field.
    When this option is off, the user's cursor will hang at the end
    of the field. This option is ignored in dynamic fields that
    have not reached their size limit.</dd>

    <dt>O_NULLOK</dt>

    <dd>Controls whether <a href="#fvalidation">validation</a> is
    applied to blank fields. Normally, it is not; the user can
    leave a field blank without invoking the usual validation check
    on exit. If this option is off on a field, exit from it will
    invoke a validation check.</dd>

    <dt>O_PASSOK</dt>

    <dd>Controls whether validation occurs on every exit, or only
    after the field is modified. Normally the latter is true.
    Setting O_PASSOK may be useful if your field's validation
    function may change during forms processing.</dd>

    <dt>O_STATIC</dt>

    <dd>Controls whether the field is fixed to its initial
    dimensions. If you turn this off, the field becomes <a href=
    "#fdynamic">dynamic</a> and will stretch to fit entered
    data.</dd>
  </dl>

  <p>A field's options cannot be changed while the field is
  currently selected. However, options may be changed on posted
  fields that are not current.</p>

  <p>The option values are bit-masks and can be composed with
  logical-or in the obvious way.</p>

  <h2><a name="fstatus" id="fstatus">Field Status</a></h2>

  <p>Every field has a status flag, which is set to FALSE when the
  field is created and TRUE when the value in field buffer 0
  changes. This flag can be queried and set directly:</p>

  <pre>
int set_field_status(FIELD *field,      /* field to alter */
                   int status);         /* mode to set */

int field_status(FIELD *field);         /* fetch mode of field */
</pre>

  <p>Setting this flag under program control can be useful if you
  use the same form repeatedly, looking for modified fields each
  time.</p>

  <p>Calling <code>field_status()</code> on a field not currently
  selected for input will return a correct value. Calling
  <code>field_status()</code> on a field that is currently selected
  for input may not necessarily give a correct field status value,
  because entered data is not necessarily copied to buffer zero
  before the exit validation check. To guarantee that the returned
  status value reflects reality, call <code>field_status()</code>
  either (1) in the field's exit validation check routine, (2) from
  the field's or form's initialization or termination hooks, or (3)
  just after a <code>REQ_VALIDATION</code> request has been
  processed by the forms driver.</p>

  <h2><a name="fuser" id="fuser">Field User Pointer</a></h2>

  <p>Each field structure contains one character pointer slot that
  is not used by the forms library. It is intended to be used by
  applications to store private per-field data. You can manipulate
  it with:</p>

  <pre>
int set_field_userptr(FIELD *field,       /* field to alter */
                   char *userptr);        /* mode to set */

char *field_userptr(FIELD *field);        /* fetch mode of field */
</pre>(Properly, this user pointer field ought to have <code>(void
*)</code> type. The <code>(char *)</code> type is retained for
System V compatibility.)

  <p>It is valid to set the user pointer of the default field (with
  a <code>set_field_userptr()</code> call passed a NULL field
  pointer.) When a new field is created, the default-field user
  pointer is copied to initialize the new field's user pointer.</p>

  <h2><a name="fdynamic" id="fdynamic">Variable-Sized Fields</a></h2>

  <p>Normally, a field is fixed at the size specified for it at
  creation time. If, however, you turn off its O_STATIC bit, it
  becomes <dfn>dynamic</dfn> and will automatically resize itself
  to accommodate data as it is entered. If the field has extra
  buffers associated with it, they will grow right along with the
  main input buffer.</p>

  <p>A one-line dynamic field will have a fixed height (1) but
  variable width, scrolling horizontally to display data within the
  field area as originally dimensioned and located. A multi-line
  dynamic field will have a fixed width, but variable height
  (number of rows), scrolling vertically to display data within the
  field area as originally dimensioned and located.</p>

  <p>Normally, a dynamic field is allowed to grow without limit.
  But it is possible to set an upper limit on the size of a dynamic
  field. You do it with this function:</p>

  <pre>
int set_max_field(FIELD *field,     /* field to alter (may not be NULL) */
                   int max_size);   /* upper limit on field size */
</pre>

  <p>If the field is one-line, <code>max_size</code> is taken to be
  a column size limit; if it is multi-line, it is taken to be a
  line size limit. To disable any limit, use an argument of zero.
  The growth limit can be changed whether or not the O_STATIC bit
  is on, but has no effect until it is.</p>

  <p>The following properties of a field change when it becomes
  dynamic:</p>

  <ul>
    <li>If there is no growth limit, there is no final position of
    the field; therefore <code>O_AUTOSKIP</code> and
    <code>O_NL_OVERLOAD</code> are ignored.</li>

    <li>Field justification will be ignored (though whatever
    justification is set up will be retained internally and can be
    queried).</li>

    <li>The <code>dup_field()</code> and <code>link_field()</code>
    calls copy dynamic-buffer sizes. If the <code>O_STATIC</code>
    option is set on one of a collection of links, buffer resizing
    will occur only when the field is edited through that
    link.</li>

    <li>The call <code>field_info()</code> will retrieve the
    original static size of the field; use
    <code>dynamic_field_info()</code> to get the actual dynamic
    size.</li>
  </ul>

  <h2><a name="fvalidation" id="fvalidation">Field Validation</a></h2>

  <p>By default, a field will accept any data that will fit in its
  input buffer. However, it is possible to attach a validation type
  to a field. If you do this, any attempt to leave the field while
  it contains data that does not match the validation type will
  fail. Some validation types also have a character-validity check
  for each time a character is entered in the field.</p>

  <p>A field's validation check (if any) is not called when
  <code>set_field_buffer()</code> modifies the input buffer, nor
  when that buffer is changed through a linked field.</p>

  <p>The <code>form</code> library provides a rich set of
  pre-defined validation types, and gives you the capability to
  define custom ones of your own. You can examine and change field
  validation attributes with the following functions:</p>

  <pre>
int set_field_type(FIELD *field,          /* field to alter */
                   FIELDTYPE *ftype,      /* type to associate */
                   ...);                  /* additional arguments*/

FIELDTYPE *field_type(FIELD *field);      /* field to query */
</pre>

  <p>The validation type of a field is considered an attribute of
  the field. As with other field attributes, Also, doing
  <code>set_field_type()</code> with a <code>NULL</code> field
  default will change the system default for validation of
  newly-created fields.</p>

  <p>Here are the pre-defined validation types:</p>

  <h3><a name="ftype_alpha" id="ftype_alpha">TYPE_ALPHA</a></h3>

  <p>This field type accepts alphabetic data; no blanks, no digits,
  no special characters (this is checked at character-entry time).
  It is set up with:</p>

  <pre>
int set_field_type(FIELD *field,          /* field to alter */
                   TYPE_ALPHA,            /* type to associate */
                   int width);            /* maximum width of field */
</pre>

  <p>The <code>width</code> argument sets a minimum width of data.
  Typically you will want to set this to the field width; if it is
  greater than the field width, the validation check will always
  fail. A minimum width of zero makes field completion
  optional.</p>

  <h3><a name="ftype_alnum" id="ftype_alnum">TYPE_ALNUM</a></h3>

  <p>This field type accepts alphabetic data and digits; no blanks,
  no special characters (this is checked at character-entry time).
  It is set up with:</p>

  <pre>
int set_field_type(FIELD *field,          /* field to alter */
                   TYPE_ALNUM,            /* type to associate */
                   int width);            /* maximum width of field */
</pre>

  <p>The <code>width</code> argument sets a minimum width of data.
  As with TYPE_ALPHA, typically you will want to set this to the
  field width; if it is greater than the field width, the
  validation check will always fail. A minimum width of zero makes
  field completion optional.</p>

  <h3><a name="ftype_enum" id="ftype_enum">TYPE_ENUM</a></h3>

  <p>This type allows you to restrict a field's values to be among
  a specified set of string values (for example, the two-letter
  postal codes for U.S. states). It is set up with:</p>

  <pre>
int set_field_type(FIELD *field,          /* field to alter */
                   TYPE_ENUM,             /* type to associate */
                   char **valuelist;      /* list of possible values */
                   int checkcase;         /* case-sensitive? */
                   int checkunique);      /* must specify uniquely? */
</pre>

  <p>The <code>valuelist</code> parameter must point at a
  NULL-terminated list of valid strings. The <code>checkcase</code>
  argument, if true, makes comparison with the string
  case-sensitive.</p>

  <p>When the user exits a TYPE_ENUM field, the validation
  procedure tries to complete the data in the buffer to a valid
  entry. If a complete choice string has been entered, it is of
  course valid. But it is also possible to enter a prefix of a
  valid string and have it completed for you.</p>

  <p>By default, if you enter such a prefix and it matches more
  than one value in the string list, the prefix will be completed
  to the first matching value. But the <code>checkunique</code>
  argument, if true, requires prefix matches to be unique in order
  to be valid.</p>

  <p>The <code>REQ_NEXT_CHOICE</code> and
  <code>REQ_PREV_CHOICE</code> input requests can be particularly
  useful with these fields.</p>

  <h3><a name="ftype_integer" id="ftype_integer">TYPE_INTEGER</a></h3>

  <p>This field type accepts an integer. It is set up as
  follows:</p>

  <pre>
int set_field_type(FIELD *field,          /* field to alter */
                   TYPE_INTEGER,          /* type to associate */
                   int padding,           /* # places to zero-pad to */
                   int vmin, int vmax);   /* valid range */
</pre>

  <p>Valid characters consist of an optional leading minus and
  digits. The range check is performed on exit. If the range
  maximum is less than or equal to the minimum, the range is
  ignored.</p>

  <p>If the value passes its range check, it is padded with as many
  leading zero digits as necessary to meet the padding
  argument.</p>

  <p>A <code>TYPE_INTEGER</code> value buffer can conveniently be
  interpreted with the C library function <code>atoi(3)</code>.</p>

  <h3><a name="ftype_numeric" id="ftype_numeric">TYPE_NUMERIC</a></h3>

  <p>This field type accepts a decimal number. It is set up as
  follows:</p>

  <pre>
int set_field_type(FIELD *field,              /* field to alter */
                   TYPE_NUMERIC,              /* type to associate */
                   int padding,               /* # places of precision */
                   double vmin, double vmax); /* valid range */
</pre>

  <p>Valid characters consist of an optional leading minus and
  digits. possibly including a decimal point. If your system
  supports locale's, the decimal point character used must be the
  one defined by your locale. The range check is performed on exit.
  If the range maximum is less than or equal to the minimum, the
  range is ignored.</p>

  <p>If the value passes its range check, it is padded with as many
  trailing zero digits as necessary to meet the padding
  argument.</p>

  <p>A <code>TYPE_NUMERIC</code> value buffer can conveniently be
  interpreted with the C library function <code>atof(3)</code>.</p>

  <h3><a name="ftype_regexp" id="ftype_regexp">TYPE_REGEXP</a></h3>

  <p>This field type accepts data matching a regular expression. It
  is set up as follows:</p>

  <pre>
int set_field_type(FIELD *field,          /* field to alter */
                   TYPE_REGEXP,           /* type to associate */
                   char *regexp);         /* expression to match */
</pre>

  <p>The syntax for regular expressions is that of
  <code>regcomp(3)</code>. The check for regular-expression match
  is performed on exit.</p>

  <h2><a name="fbuffer" id="fbuffer">Direct Field Buffer
  Manipulation</a></h2>

  <p>The chief attribute of a field is its buffer contents. When a
  form has been completed, your application usually needs to know
  the state of each field buffer. You can find this out with:</p>

  <pre>
char *field_buffer(FIELD *field,          /* field to query */
                   int bufindex);         /* number of buffer to query */
</pre>

  <p>Normally, the state of the zero-numbered buffer for each field
  is set by the user's editing actions on that field. It is
  sometimes useful to be able to set the value of the zero-numbered
  (or some other) buffer from your application:</p>

  <pre>
int set_field_buffer(FIELD *field,        /* field to alter */
                   int bufindex,          /* number of buffer to alter */
                   char *value);          /* string value to set */
</pre>

  <p>If the field is not large enough and cannot be resized to a
  sufficiently large size to contain the specified value, the value
  will be truncated to fit.</p>

  <p>Calling <code>field_buffer()</code> with a null field pointer
  will raise an error. Calling <code>field_buffer()</code> on a
  field not currently selected for input will return a correct
  value. Calling <code>field_buffer()</code> on a field that is
  currently selected for input may not necessarily give a correct
  field buffer value, because entered data is not necessarily
  copied to buffer zero before the exit validation check. To
  guarantee that the returned buffer value reflects on-screen
  reality, call <code>field_buffer()</code> either (1) in the
  field's exit validation check routine, (2) from the field's or
  form's initialization or termination hooks, or (3) just after a
  <code>REQ_VALIDATION</code> request has been processed by the
  forms driver.</p>

  <h2><a name="formattrs" id="formattrs">Attributes of Forms</a></h2>

  <p>As with field attributes, form attributes inherit a default
  from a system default form structure. These defaults can be
  queried or set by of these functions using a form-pointer
  argument of <code>NULL</code>.</p>

  <p>The principal attribute of a form is its field list. You can
  query and change this list with:</p>

  <pre>
int set_form_fields(FORM *form,           /* form to alter */
                    FIELD **fields);      /* fields to connect */

char *form_fields(FORM *form);            /* fetch fields of form */

int field_count(FORM *form);              /* count connect fields */
</pre>

  <p>The second argument of <code>set_form_fields()</code> may be a
  NULL-terminated field pointer array like the one required by
  <code>new_form()</code>. In that case, the old fields of the form
  are disconnected but not freed (and eligible to be connected to
  other forms), then the new fields are connected.</p>

  <p>It may also be null, in which case the old fields are
  disconnected (and not freed) but no new ones are connected.</p>

  <p>The <code>field_count()</code> function simply counts the
  number of fields connected to a given from. It returns -1 if the
  form-pointer argument is NULL.</p>

  <h2><a name="fdisplay" id="fdisplay">Control of Form Display</a></h2>

  <p>In the overview section, you saw that to display a form you
  normally start by defining its size (and fields), posting it, and
  refreshing the screen. There is an hidden step before posting,
  which is the association of the form with a frame window
  (actually, a pair of windows) within which it will be displayed.
  By default, the forms library associates every form with the
  full-screen window <code>stdscr</code>.</p>

  <p>By making this step explicit, you can associate a form with a
  declared frame window on your screen display. This can be useful
  if you want to adapt the form display to different screen sizes,
  dynamically tile forms on the screen, or use a form as part of an
  interface layout managed by <a href="#panels">panels</a>.</p>

  <p>The two windows associated with each form have the same
  functions as their analogues in the <a href="#menu">menu
  library</a>. Both these windows are painted when the form is
  posted and erased when the form is unposted.</p>

  <p>The outer or frame window is not otherwise touched by the form
  routines. It exists so the programmer can associate a title, a
  border, or perhaps help text with the form and have it properly
  refreshed or erased at post/unpost time. The inner window or
  subwindow is where the current form page is actually
  displayed.</p>

  <p>In order to declare your own frame window for a form, you will
  need to know the size of the form's bounding rectangle. You can
  get this information with:</p>

  <pre>
int scale_form(FORM *form,                /* form to query */
               int *rows,                 /* form rows */
               int *cols);                /* form cols */
</pre>

  <p>The form dimensions are passed back in the locations pointed
  to by the arguments. Once you have this information, you can use
  it to declare of windows, then use one of these functions:</p>

  <pre>
int set_form_win(FORM *form,              /* form to alter */
                 WINDOW *win);            /* frame window to connect */

WINDOW *form_win(FORM *form);             /* fetch frame window of form */

int set_form_sub(FORM *form,              /* form to alter */
                 WINDOW *win);            /* form subwindow to connect */

WINDOW *form_sub(FORM *form);             /* fetch form subwindow of form */
</pre>

  <p>Note that curses operations, including <code>refresh()</code>,
  on the form, should be done on the frame window, not the form
  subwindow.</p>

  <p>It is possible to check from your application whether all of a
  scrollable field is actually displayed within the menu subwindow.
  Use these functions:</p>

  <pre>
int data_ahead(FORM *form);               /* form to be queried */

int data_behind(FORM *form);              /* form to be queried */
</pre>

  <p>The function <code>data_ahead()</code> returns TRUE if (a) the
  current field is one-line and has undisplayed data off to the
  right, (b) the current field is multi-line and there is data
  off-screen below it.</p>

  <p>The function <code>data_behind()</code> returns TRUE if the
  first (upper left hand) character position is off-screen (not
  being displayed).</p>

  <p>Finally, there is a function to restore the form window's
  cursor to the value expected by the forms driver:</p>

  <pre>
int pos_form_cursor(FORM *)               /* form to be queried */
</pre>

  <p>If your application changes the form window cursor, call this
  function before handing control back to the forms driver in order
  to re-synchronize it.</p>

  <h2><a name="fdriver" id="fdriver">Input Processing in the Forms
  Driver</a></h2>

  <p>The function <code>form_driver()</code> handles virtualized
  input requests for form navigation, editing, and validation
  requests, just as <code>menu_driver</code> does for menus (see
  the section on <a href="#minput">menu input handling</a>).</p>

  <pre>
int form_driver(FORM *form,               /* form to pass input to */
                int request);             /* form request code */
</pre>

  <p>Your input virtualization function needs to take input and
  then convert it to either an alphanumeric character (which is
  treated as data to be entered in the currently-selected field),
  or a forms processing request.</p>

  <p>The forms driver provides hooks (through input-validation and
  field-termination functions) with which your application code can
  check that the input taken by the driver matched what was
  expected.</p>

  <h3><a name="fpage" id="fpage">Page Navigation Requests</a></h3>

  <p>These requests cause page-level moves through the form,
  triggering display of a new form screen.</p>

  <dl>
    <dt><code>REQ_NEXT_PAGE</code>
    </dt>

    <dd>Move to the next form page.</dd>

    <dt><code>REQ_PREV_PAGE</code>
    </dt>

    <dd>Move to the previous form page.</dd>

    <dt><code>REQ_FIRST_PAGE</code>
    </dt>

    <dd>Move to the first form page.</dd>

    <dt><code>REQ_LAST_PAGE</code>
    </dt>

    <dd>Move to the last form page.</dd>
  </dl>

  <p>These requests treat the list as cyclic; that is,
  <code>REQ_NEXT_PAGE</code> from the last page goes to the first,
  and <code>REQ_PREV_PAGE</code> from the first page goes to the
  last.</p>

  <h3><a name="ffield" id="ffield">Inter-Field Navigation
  Requests</a></h3>

  <p>These requests handle navigation between fields on the same
  page.</p>

  <dl>
    <dt><code>REQ_NEXT_FIELD</code>
    </dt>

    <dd>Move to next field.</dd>

    <dt><code>REQ_PREV_FIELD</code>
    </dt>

    <dd>Move to previous field.</dd>

    <dt><code>REQ_FIRST_FIELD</code>
    </dt>

    <dd>Move to the first field.</dd>

    <dt><code>REQ_LAST_FIELD</code>
    </dt>

    <dd>Move to the last field.</dd>

    <dt><code>REQ_SNEXT_FIELD</code>
    </dt>

    <dd>Move to sorted next field.</dd>

    <dt><code>REQ_SPREV_FIELD</code>
    </dt>

    <dd>Move to sorted previous field.</dd>

    <dt><code>REQ_SFIRST_FIELD</code>
    </dt>

    <dd>Move to the sorted first field.</dd>

    <dt><code>REQ_SLAST_FIELD</code>
    </dt>

    <dd>Move to the sorted last field.</dd>

    <dt><code>REQ_LEFT_FIELD</code>
    </dt>

    <dd>Move left to field.</dd>

    <dt><code>REQ_RIGHT_FIELD</code>
    </dt>

    <dd>Move right to field.</dd>

    <dt><code>REQ_UP_FIELD</code>
    </dt>

    <dd>Move up to field.</dd>

    <dt><code>REQ_DOWN_FIELD</code>
    </dt>

    <dd>Move down to field.</dd>
  </dl>

  <p>These requests treat the list of fields on a page as cyclic;
  that is, <code>REQ_NEXT_FIELD</code> from the last field goes to
  the first, and <code>REQ_PREV_FIELD</code> from the first field
  goes to the last. The order of the fields for these (and the
  <code>REQ_FIRST_FIELD</code> and <code>REQ_LAST_FIELD</code>
  requests) is simply the order of the field pointers in the form
  array (as set up by <code>new_form()</code> or
  <code>set_form_fields()</code></p>

  <p>It is also possible to traverse the fields as if they had been
  sorted in screen-position order, so the sequence goes
  left-to-right and top-to-bottom. To do this, use the second group
  of four sorted-movement requests.</p>

  <p>Finally, it is possible to move between fields using visual
  directions up, down, right, and left. To accomplish this, use the
  third group of four requests. Note, however, that the position of
  a form for purposes of these requests is its upper-left
  corner.</p>

  <p>For example, suppose you have a multi-line field B, and two
  single-line fields A and C on the same line with B, with A to the
  left of B and C to the right of B. A <code>REQ_MOVE_RIGHT</code>
  from A will go to B only if A, B, and C <em>all</em> share the
  same first line; otherwise it will skip over B to C.</p>

  <h3><a name="fifield" id="fifield">Intra-Field Navigation
  Requests</a></h3>

  <p>These requests drive movement of the edit cursor within the
  currently selected field.</p>

  <dl>
    <dt><code>REQ_NEXT_CHAR</code>
    </dt>

    <dd>Move to next character.</dd>

    <dt><code>REQ_PREV_CHAR</code>
    </dt>

    <dd>Move to previous character.</dd>

    <dt><code>REQ_NEXT_LINE</code>
    </dt>

    <dd>Move to next line.</dd>

    <dt><code>REQ_PREV_LINE</code>
    </dt>

    <dd>Move to previous line.</dd>

    <dt><code>REQ_NEXT_WORD</code>
    </dt>

    <dd>Move to next word.</dd>

    <dt><code>REQ_PREV_WORD</code>
    </dt>

    <dd>Move to previous word.</dd>

    <dt><code>REQ_BEG_FIELD</code>
    </dt>

    <dd>Move to beginning of field.</dd>

    <dt><code>REQ_END_FIELD</code>
    </dt>

    <dd>Move to end of field.</dd>

    <dt><code>REQ_BEG_LINE</code>
    </dt>

    <dd>Move to beginning of line.</dd>

    <dt><code>REQ_END_LINE</code>
    </dt>

    <dd>Move to end of line.</dd>

    <dt><code>REQ_LEFT_CHAR</code>
    </dt>

    <dd>Move left in field.</dd>

    <dt><code>REQ_RIGHT_CHAR</code>
    </dt>

    <dd>Move right in field.</dd>

    <dt><code>REQ_UP_CHAR</code>
    </dt>

    <dd>Move up in field.</dd>

    <dt><code>REQ_DOWN_CHAR</code>
    </dt>

    <dd>Move down in field.</dd>
  </dl>

  <p>Each <em>word</em> is separated from the previous and next
  characters by whitespace. The commands to move to beginning and
  end of line or field look for the first or last non-pad character
  in their ranges.</p>

  <h3><a name="fscroll" id="fscroll">Scrolling Requests</a></h3>

  <p>Fields that are dynamic and have grown and fields explicitly
  created with offscreen rows are scrollable. One-line fields
  scroll horizontally; multi-line fields scroll vertically. Most
  scrolling is triggered by editing and intra-field movement (the
  library scrolls the field to keep the cursor visible). It is
  possible to explicitly request scrolling with the following
  requests:</p>

  <dl>
    <dt><code>REQ_SCR_FLINE</code>
    </dt>

    <dd>Scroll vertically forward a line.</dd>

    <dt><code>REQ_SCR_BLINE</code>
    </dt>

    <dd>Scroll vertically backward a line.</dd>

    <dt><code>REQ_SCR_FPAGE</code>
    </dt>

    <dd>Scroll vertically forward a page.</dd>

    <dt><code>REQ_SCR_BPAGE</code>
    </dt>

    <dd>Scroll vertically backward a page.</dd>

    <dt><code>REQ_SCR_FHPAGE</code>
    </dt>

    <dd>Scroll vertically forward half a page.</dd>

    <dt><code>REQ_SCR_BHPAGE</code>
    </dt>

    <dd>Scroll vertically backward half a page.</dd>

    <dt><code>REQ_SCR_FCHAR</code>
    </dt>

    <dd>Scroll horizontally forward a character.</dd>

    <dt><code>REQ_SCR_BCHAR</code>
    </dt>

    <dd>Scroll horizontally backward a character.</dd>

    <dt><code>REQ_SCR_HFLINE</code>
    </dt>

    <dd>Scroll horizontally one field width forward.</dd>

    <dt><code>REQ_SCR_HBLINE</code>
    </dt>

    <dd>Scroll horizontally one field width backward.</dd>

    <dt><code>REQ_SCR_HFHALF</code>
    </dt>

    <dd>Scroll horizontally one half field width forward.</dd>

    <dt><code>REQ_SCR_HBHALF</code>
    </dt>

    <dd>Scroll horizontally one half field width backward.</dd>
  </dl>

  <p>For scrolling purposes, a <em>page</em> of a field is the
  height of its visible part.</p>

  <h3><a name="fedit" id="fedit">Editing Requests</a></h3>

  <p>When you pass the forms driver an ASCII character, it is
  treated as a request to add the character to the field's data
  buffer. Whether this is an insertion or a replacement depends on
  the field's edit mode (insertion is the default.</p>

  <p>The following requests support editing the field and changing
  the edit mode:</p>

  <dl>
    <dt><code>REQ_INS_MODE</code>
    </dt>

    <dd>Set insertion mode.</dd>

    <dt><code>REQ_OVL_MODE</code>
    </dt>

    <dd>Set overlay mode.</dd>

    <dt><code>REQ_NEW_LINE</code>
    </dt>

    <dd>New line request (see below for explanation).</dd>

    <dt><code>REQ_INS_CHAR</code>
    </dt>

    <dd>Insert space at character location.</dd>

    <dt><code>REQ_INS_LINE</code>
    </dt>

    <dd>Insert blank line at character location.</dd>

    <dt><code>REQ_DEL_CHAR</code>
    </dt>

    <dd>Delete character at cursor.</dd>

    <dt><code>REQ_DEL_PREV</code>
    </dt>

    <dd>Delete previous word at cursor.</dd>

    <dt><code>REQ_DEL_LINE</code>
    </dt>

    <dd>Delete line at cursor.</dd>

    <dt><code>REQ_DEL_WORD</code>
    </dt>

    <dd>Delete word at cursor.</dd>

    <dt><code>REQ_CLR_EOL</code>
    </dt>

    <dd>Clear to end of line.</dd>

    <dt><code>REQ_CLR_EOF</code>
    </dt>

    <dd>Clear to end of field.</dd>

    <dt><code>REQ_CLEAR_FIELD</code>
    </dt>

    <dd>Clear entire field.</dd>
  </dl>

  <p>The behavior of the <code>REQ_NEW_LINE</code> and
  <code>REQ_DEL_PREV</code> requests is complicated and partly
  controlled by a pair of forms options. The special cases are
  triggered when the cursor is at the beginning of a field, or on
  the last line of the field.</p>

  <p>First, we consider <code>REQ_NEW_LINE</code>:</p>

  <p>The normal behavior of <code>REQ_NEW_LINE</code> in insert
  mode is to break the current line at the position of the edit
  cursor, inserting the portion of the current line after the
  cursor as a new line following the current and moving the cursor
  to the beginning of that new line (you may think of this as
  inserting a newline in the field buffer).</p>

  <p>The normal behavior of <code>REQ_NEW_LINE</code> in overlay
  mode is to clear the current line from the position of the edit
  cursor to end of line. The cursor is then moved to the beginning
  of the next line.</p>

  <p>However, <code>REQ_NEW_LINE</code> at the beginning of a
  field, or on the last line of a field, instead does a
  <code>REQ_NEXT_FIELD</code>. <code>O_NL_OVERLOAD</code> option is
  off, this special action is disabled.</p>

  <p>Now, let us consider <code>REQ_DEL_PREV</code>:</p>

  <p>The normal behavior of <code>REQ_DEL_PREV</code> is to delete
  the previous character. If insert mode is on, and the cursor is
  at the start of a line, and the text on that line will fit on the
  previous one, it instead appends the contents of the current line
  to the previous one and deletes the current line (you may think
  of this as deleting a newline from the field buffer).</p>

  <p>However, <code>REQ_DEL_PREV</code> at the beginning of a field
  is instead treated as a <code>REQ_PREV_FIELD</code>.</p>

  <p>If the <code>O_BS_OVERLOAD</code> option is off, this special
  action is disabled and the forms driver just returns
  <code>E_REQUEST_DENIED</code>.</p>

  <p>See <a href="#frmoptions">Form Options</a> for discussion of
  how to set and clear the overload options.</p>

  <h3><a name="forder" id="forder">Order Requests</a></h3>

  <p>If the type of your field is ordered, and has associated
  functions for getting the next and previous values of the type
  from a given value, there are requests that can fetch that value
  into the field buffer:</p>

  <dl>
    <dt><code>REQ_NEXT_CHOICE</code>
    </dt>

    <dd>Place the successor value of the current value in the
    buffer.</dd>

    <dt><code>REQ_PREV_CHOICE</code>
    </dt>

    <dd>Place the predecessor value of the current value in the
    buffer.</dd>
  </dl>

  <p>Of the built-in field types, only <code>TYPE_ENUM</code> has
  built-in successor and predecessor functions. When you define a
  field type of your own (see <a href="#fcustom">Custom Validation
  Types</a>), you can associate our own ordering functions.</p>

  <h3><a name="fappcmds" id="fappcmds">Application Commands</a></h3>

  <p>Form requests are represented as integers above the
  <code>curses</code> value greater than <code>KEY_MAX</code> and
  less than or equal to the constant <code>MAX_COMMAND</code>. If
  your input-virtualization routine returns a value above
  <code>MAX_COMMAND</code>, the forms driver will ignore it.</p>

  <h2><a name="fhooks" id="fhooks">Field Change Hooks</a></h2>

  <p>It is possible to set function hooks to be executed whenever
  the current field or form changes. Here are the functions that
  support this:</p>

  <pre>
typedef void    (*HOOK)();       /* pointer to function returning void */

int set_form_init(FORM *form,    /* form to alter */
                  HOOK hook);    /* initialization hook */

HOOK form_init(FORM *form);      /* form to query */

int set_form_term(FORM *form,    /* form to alter */
                  HOOK hook);    /* termination hook */

HOOK form_term(FORM *form);      /* form to query */

int set_field_init(FORM *form,   /* form to alter */
                  HOOK hook);    /* initialization hook */

HOOK field_init(FORM *form);     /* form to query */

int set_field_term(FORM *form,   /* form to alter */
                  HOOK hook);    /* termination hook */

HOOK field_term(FORM *form);     /* form to query */
</pre>

  <p>These functions allow you to either set or query four
  different hooks. In each of the set functions, the second
  argument should be the address of a hook function. These
  functions differ only in the timing of the hook call.</p>

  <dl>
    <dt>form_init</dt>

    <dd>This hook is called when the form is posted; also, just
    after each page change operation.</dd>

    <dt>field_init</dt>

    <dd>This hook is called when the form is posted; also, just
    after each field change</dd>

    <dt>field_term</dt>

    <dd>This hook is called just after field validation; that is,
    just before the field is altered. It is also called when the
    form is unposted.</dd>

    <dt>form_term</dt>

    <dd>This hook is called when the form is unposted; also, just
    before each page change operation.</dd>
  </dl>

  <p>Calls to these hooks may be triggered</p>

  <ol>
    <li>When user editing requests are processed by the forms
    driver</li>

    <li>When the current page is changed by
    <code>set_current_field()</code> call</li>

    <li>When the current field is changed by a
    <code>set_form_page()</code> call</li>
  </ol>

  <p>See <a name="ffocus" id="ffocus">Field Change Commands</a> for
  discussion of the latter two cases.</p>

  <p>You can set a default hook for all fields by passing one of
  the set functions a NULL first argument.</p>

  <p>You can disable any of these hooks by (re)setting them to
  NULL, the default value.</p>

  <h2><a href="#ffocus">Field Change Commands</a></h2>

  <p>Normally, navigation through the form will be driven by the
  user's input requests. But sometimes it is useful to be able to
  move the focus for editing and viewing under control of your
  application, or ask which field it currently is in. The following
  functions help you accomplish this:</p>

  <pre>
int set_current_field(FORM *form,         /* form to alter */
                      FIELD *field);      /* field to shift to */

FIELD *current_field(FORM *form);         /* form to query */

int field_index(FORM *form,               /* form to query */
                FIELD *field);            /* field to get index of */
</pre>

  <p>The function <code>field_index()</code> returns the index of
  the given field in the given form's field array (the array passed
  to <code>new_form()</code> or
  <code>set_form_fields()</code>).</p>

  <p>The initial current field of a form is the first active field
  on the first page. The function <code>set_form_fields()</code>
  resets this.</p>

  <p>It is also possible to move around by pages.</p>

  <pre>
int set_form_page(FORM *form,             /* form to alter */
                  int page);              /* page to go to (0-origin) */

int form_page(FORM *form);                /* return form's current page */
</pre>

  <p>The initial page of a newly-created form is 0. The function
  <code>set_form_fields()</code> resets this.</p>

  <h2><a name="frmoptions" id="frmoptions">Form Options</a></h2>

  <p>Like fields, forms may have control option bits. They can be
  changed or queried with these functions:</p>

  <pre>
int set_form_opts(FORM *form,             /* form to alter */
                  int attr);              /* attribute to set */

int form_opts_on(FORM *form,              /* form to alter */
                 int attr);               /* attributes to turn on */

int form_opts_off(FORM *form,             /* form to alter */
                  int attr);              /* attributes to turn off */

int form_opts(FORM *form);                /* form to query */
</pre>

  <p>By default, all options are on. Here are the available option
  bits:</p>

  <dl>
    <dt>O_NL_OVERLOAD</dt>

    <dd>Enable overloading of <code>REQ_NEW_LINE</code> as
    described in <a href="#fedit">Editing Requests</a>. The value
    of this option is ignored on dynamic fields that have not
    reached their size limit; these have no last line, so the
    circumstances for triggering a <code>REQ_NEXT_FIELD</code>
    never arise.</dd>

    <dt>O_BS_OVERLOAD</dt>

    <dd>Enable overloading of <code>REQ_DEL_PREV</code> as
    described in <a href="#fedit">Editing Requests</a>.</dd>
  </dl>

  <p>The option values are bit-masks and can be composed with
  logical-or in the obvious way.</p>

  <h2><a name="fcustom" id="fcustom">Custom Validation Types</a></h2>

  <p>The <code>form</code> library gives you the capability to
  define custom validation types of your own. Further, the optional
  additional arguments of <code>set_field_type</code> effectively
  allow you to parameterize validation types. Most of the
  complications in the validation-type interface have to do with
  the handling of the additional arguments within custom validation
  functions.</p>

  <h3><a name="flinktypes" id="flinktypes">Union Types</a></h3>

  <p>The simplest way to create a custom data type is to compose it
  from two preexisting ones:</p>

  <pre>
FIELD *link_fieldtype(FIELDTYPE *type1,
                      FIELDTYPE *type2);
</pre>

  <p>This function creates a field type that will accept any of the
  values legal for either of its argument field types (which may be
  either predefined or programmer-defined). If a
  <code>set_field_type()</code> call later requires arguments, the
  new composite type expects all arguments for the first type, than
  all arguments for the second. Order functions (see <a href=
  "#forder">Order Requests</a>) associated with the component types
  will work on the composite; what it does is check the validation
  function for the first type, then for the second, to figure what
  type the buffer contents should be treated as.</p>

  <h3><a name="fnewtypes" id="fnewtypes">New Field Types</a></h3>

  <p>To create a field type from scratch, you need to specify one
  or both of the following things:</p>

  <ul>
    <li>A character-validation function, to check each character as
    it is entered.</li>

    <li>A field-validation function to be applied on exit from the
    field.</li>
  </ul>

  <p>Here is how you do that:</p>

  <pre>
typedef int     (*HOOK)();       /* pointer to function returning int */

FIELDTYPE *new_fieldtype(HOOK f_validate, /* field validator */
                         HOOK c_validate) /* character validator */

int free_fieldtype(FIELDTYPE *ftype);     /* type to free */
</pre>

  <p>At least one of the arguments of <code>new_fieldtype()</code>
  must be non-NULL. The forms driver will automatically call the
  new type's validation functions at appropriate points in
  processing a field of the new type.</p>

  <p>The function <code>free_fieldtype()</code> deallocates the
  argument fieldtype, freeing all storage associated with it.</p>

  <p>Normally, a field validator is called when the user attempts
  to leave the field. Its first argument is a field pointer, from
  which it can get to field buffer 0 and test it. If the function
  returns TRUE, the operation succeeds; if it returns FALSE, the
  edit cursor stays in the field.</p>

  <p>A character validator gets the character passed in as a first
  argument. It too should return TRUE if the character is valid,
  FALSE otherwise.</p>

  <h3><a name="fcheckargs" id="fcheckargs">Validation Function
  Arguments</a></h3>

  <p>Your field- and character- validation functions will be passed
  a second argument as well. This second argument is the address of
  a structure (which we will call a <em>pile</em>) built from any
  of the field-type-specific arguments passed to
  <code>set_field_type()</code>. If no such arguments are defined
  for the field type, this pile pointer argument will be NULL.</p>

  <p>In order to arrange for such arguments to be passed to your
  validation functions, you must associate a small set of
  storage-management functions with the type. The forms driver will
  use these to synthesize a pile from the trailing arguments of
  each <code>set_field_type()</code> argument, and a pointer to the
  pile will be passed to the validation functions.</p>

  <p>Here is how you make the association:</p>

  <pre>
typedef char    *(*PTRHOOK)();    /* pointer to function returning (char *) */
typedef void    (*VOIDHOOK)();    /* pointer to function returning void */

int set_fieldtype_arg(FIELDTYPE *type,    /* type to alter */
                      PTRHOOK make_str,   /* make structure from args */
                      PTRHOOK copy_str,   /* make copy of structure */
                      VOIDHOOK free_str); /* free structure storage */
</pre>

  <p>Here is how the storage-management hooks are used:</p>

  <dl>
    <dt><code>make_str</code>
    </dt>

    <dd>This function is called by <code>set_field_type()</code>.
    It gets one argument, a <code>va_list</code> of the
    type-specific arguments passed to
    <code>set_field_type()</code>. It is expected to return a pile
    pointer to a data structure that encapsulates those
    arguments.</dd>

    <dt><code>copy_str</code>
    </dt>

    <dd>This function is called by form library functions that
    allocate new field instances. It is expected to take a pile
    pointer, copy the pile to allocated storage, and return the
    address of the pile copy.</dd>

    <dt><code>free_str</code>
    </dt>

    <dd>This function is called by field- and type-deallocation
    routines in the library. It takes a pile pointer argument, and
    is expected to free the storage of that pile.</dd>
  </dl>

  <p>The <code>make_str</code> and <code>copy_str</code> functions
  may return NULL to signal allocation failure. The library
  routines will that call them will return error indication when
  this happens. Thus, your validation functions should never see a
  NULL file pointer and need not check specially for it.</p>

  <h3><a name="fcustorder" id="fcustorder">Order Functions For
  Custom Types</a></h3>

  <p>Some custom field types are simply ordered in the same
  well-defined way that <code>TYPE_ENUM</code> is. For such types,
  it is possible to define successor and predecessor functions to
  support the <code>REQ_NEXT_CHOICE</code> and
  <code>REQ_PREV_CHOICE</code> requests. Here is how:</p>

  <pre>
typedef int     (*INTHOOK)();     /* pointer to function returning int */

int set_fieldtype_arg(FIELDTYPE *type,    /* type to alter */
                      INTHOOK succ,       /* get successor value */
                      INTHOOK pred);      /* get predecessor value */
</pre>

  <p>The successor and predecessor arguments will each be passed
  two arguments; a field pointer, and a pile pointer (as for the
  validation functions). They are expected to use the function
  <code>field_buffer()</code> to read the current value, and
  <code>set_field_buffer()</code> on buffer 0 to set the next or
  previous value. Either hook may return TRUE to indicate success
  (a legal next or previous value was set) or FALSE to indicate
  failure.</p>

  <h3><a name="fcustprobs" id="fcustprobs">Avoiding Problems</a></h3>

  <p>The interface for defining custom types is complicated and
  tricky. Rather than attempting to create a custom type entirely
  from scratch, you should start by studying the library source
  code for whichever of the pre-defined types seems to be closest
  to what you want.</p>

  <p>Use that code as a model, and evolve it towards what you
  really want. You will avoid many problems and annoyances that
  way. The code in the <code>ncurses</code> library has been
  specifically exempted from the package copyright to support
  this.</p>

  <p>If your custom type defines order functions, have do something
  intuitive with a blank field. A useful convention is to make the
  successor of a blank field the types minimum value, and its
  predecessor the maximum.</p>
</body>
</html>