Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
/*
 * util/alloc.c - memory allocation service. 
 *
 * Copyright (c) 2007, NLnet Labs. All rights reserved.
 *
 * This software is open source.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 
 * Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 * 
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 * 
 * Neither the name of the NLNET LABS nor the names of its contributors may
 * be used to endorse or promote products derived from this software without
 * specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/**
 * \file
 *
 * This file contains memory allocation functions.
 */

#include "config.h"
#include "util/alloc.h"
#include "util/regional.h"
#include "util/data/packed_rrset.h"
#include "util/fptr_wlist.h"

/** custom size of cached regional blocks */
#define ALLOC_REG_SIZE	16384
/** number of bits for ID part of uint64, rest for number of threads. */
#define THRNUM_SHIFT	48	/* for 65k threads, 2^48 rrsets per thr. */

/** setup new special type */
static void
alloc_setup_special(alloc_special_type* t)
{
	memset(t, 0, sizeof(*t));
	lock_rw_init(&t->entry.lock);
	t->entry.key = t;
}

/** prealloc some entries in the cache. To minimize contention. 
 * Result is 1 lock per alloc_max newly created entries.
 * @param alloc: the structure to fill up.
 */
static void
prealloc_setup(struct alloc_cache* alloc)
{
	alloc_special_type* p;
	int i;
	for(i=0; i<ALLOC_SPECIAL_MAX; i++) {
		if(!(p = (alloc_special_type*)malloc(
			sizeof(alloc_special_type)))) {
			log_err("prealloc: out of memory");
			return;
		}
		alloc_setup_special(p);
		alloc_set_special_next(p, alloc->quar);
		alloc->quar = p;
		alloc->num_quar++;
	}
}

/** prealloc region blocks */
static void
prealloc_blocks(struct alloc_cache* alloc, size_t num)
{
	size_t i;
	struct regional* r;
	for(i=0; i<num; i++) {
		r = regional_create_custom(ALLOC_REG_SIZE);
		if(!r) {
			log_err("prealloc blocks: out of memory");
			return;
		}
		r->next = (char*)alloc->reg_list;
		alloc->reg_list = r;
		alloc->num_reg_blocks ++;
	}
}

void 
alloc_init(struct alloc_cache* alloc, struct alloc_cache* super,
	int thread_num)
{
	memset(alloc, 0, sizeof(*alloc));
	alloc->super = super;
	alloc->thread_num = thread_num;
	alloc->next_id = (uint64_t)thread_num; 	/* in steps, so that type */
	alloc->next_id <<= THRNUM_SHIFT; 	/* of *_id is used. */
	alloc->last_id = 1; 			/* so no 64bit constants, */
	alloc->last_id <<= THRNUM_SHIFT; 	/* or implicit 'int' ops. */
	alloc->last_id -= 1; 			/* for compiler portability. */
	alloc->last_id |= alloc->next_id;
	alloc->next_id += 1;			/* because id=0 is special. */
	alloc->max_reg_blocks = 100;
	alloc->num_reg_blocks = 0;
	alloc->reg_list = NULL;
	alloc->cleanup = NULL;
	alloc->cleanup_arg = NULL;
	if(alloc->super)
		prealloc_blocks(alloc, alloc->max_reg_blocks);
	if(!alloc->super) {
		lock_quick_init(&alloc->lock);
		lock_protect(&alloc->lock, alloc, sizeof(*alloc));
	}
}

/** free the special list */
static void
alloc_clear_special_list(struct alloc_cache* alloc)
{
	alloc_special_type* p, *np;
	/* free */
	p = alloc->quar;
	while(p) {
		np = alloc_special_next(p);
		/* deinit special type */
		lock_rw_destroy(&p->entry.lock);
		free(p);
		p = np;
	}
}

void
alloc_clear_special(struct alloc_cache* alloc)
{
	if(!alloc->super) {
		lock_quick_lock(&alloc->lock);
	}
	alloc_clear_special_list(alloc);
	alloc->quar = 0;
	alloc->num_quar = 0;
	if(!alloc->super) {
		lock_quick_unlock(&alloc->lock);
	}
}

void 
alloc_clear(struct alloc_cache* alloc)
{
	alloc_special_type* p;
	struct regional* r, *nr;
	if(!alloc)
		return;
	if(!alloc->super) {
		lock_quick_destroy(&alloc->lock);
	}
	if(alloc->super && alloc->quar) {
		/* push entire list into super */
		p = alloc->quar;
		while(alloc_special_next(p)) /* find last */
			p = alloc_special_next(p);
		lock_quick_lock(&alloc->super->lock);
		alloc_set_special_next(p, alloc->super->quar);
		alloc->super->quar = alloc->quar;
		alloc->super->num_quar += alloc->num_quar;
		lock_quick_unlock(&alloc->super->lock);
	} else {
		alloc_clear_special_list(alloc);
	}
	alloc->quar = 0;
	alloc->num_quar = 0;
	r = alloc->reg_list;
	while(r) {
		nr = (struct regional*)r->next;
		free(r);
		r = nr;
	}
	alloc->reg_list = NULL;
	alloc->num_reg_blocks = 0;
}

uint64_t
alloc_get_id(struct alloc_cache* alloc)
{
	uint64_t id = alloc->next_id++;
	if(id == alloc->last_id) {
		log_warn("rrset alloc: out of 64bit ids. Clearing cache.");
		fptr_ok(fptr_whitelist_alloc_cleanup(alloc->cleanup));
		(*alloc->cleanup)(alloc->cleanup_arg);

		/* start back at first number */   	/* like in alloc_init*/
		alloc->next_id = (uint64_t)alloc->thread_num; 	
		alloc->next_id <<= THRNUM_SHIFT; 	/* in steps for comp. */
		alloc->next_id += 1;			/* portability. */
		/* and generate new and safe id */
		id = alloc->next_id++;
	}
	return id;
}

alloc_special_type* 
alloc_special_obtain(struct alloc_cache* alloc)
{
	alloc_special_type* p;
	log_assert(alloc);
	/* see if in local cache */
	if(alloc->quar) {
		p = alloc->quar;
		alloc->quar = alloc_special_next(p);
		alloc->num_quar--;
		p->id = alloc_get_id(alloc);
		return p;
	}
	/* see if in global cache */
	if(alloc->super) {
		/* could maybe grab alloc_max/2 entries in one go,
		 * but really, isn't that just as fast as this code? */
		lock_quick_lock(&alloc->super->lock);
		if((p = alloc->super->quar)) {
			alloc->super->quar = alloc_special_next(p);
			alloc->super->num_quar--;
		}
		lock_quick_unlock(&alloc->super->lock);
		if(p) {
			p->id = alloc_get_id(alloc);
			return p;
		}
	}
	/* allocate new */
	prealloc_setup(alloc);
	if(!(p = (alloc_special_type*)malloc(sizeof(alloc_special_type)))) {
		log_err("alloc_special_obtain: out of memory");
		return NULL;
	}
	alloc_setup_special(p);
	p->id = alloc_get_id(alloc);
	return p;
}

/** push mem and some more items to the super */
static void 
pushintosuper(struct alloc_cache* alloc, alloc_special_type* mem)
{
	int i;
	alloc_special_type *p = alloc->quar;
	log_assert(p);
	log_assert(alloc && alloc->super && 
		alloc->num_quar >= ALLOC_SPECIAL_MAX);
	/* push ALLOC_SPECIAL_MAX/2 after mem */
	alloc_set_special_next(mem, alloc->quar);
	for(i=1; i<ALLOC_SPECIAL_MAX/2; i++) {
		p = alloc_special_next(p);
	}
	alloc->quar = alloc_special_next(p);
	alloc->num_quar -= ALLOC_SPECIAL_MAX/2;

	/* dump mem+list into the super quar list */
	lock_quick_lock(&alloc->super->lock);
	alloc_set_special_next(p, alloc->super->quar);
	alloc->super->quar = mem;
	alloc->super->num_quar += ALLOC_SPECIAL_MAX/2 + 1;
	lock_quick_unlock(&alloc->super->lock);
	/* so 1 lock per mem+alloc/2 deletes */
}

void 
alloc_special_release(struct alloc_cache* alloc, alloc_special_type* mem)
{
	log_assert(alloc);
	if(!mem)
		return;
	if(!alloc->super) { 
		lock_quick_lock(&alloc->lock); /* superalloc needs locking */
	}

	alloc_special_clean(mem);
	if(alloc->super && alloc->num_quar >= ALLOC_SPECIAL_MAX) {
		/* push it to the super structure */
		pushintosuper(alloc, mem);
		return;
	}

	alloc_set_special_next(mem, alloc->quar);
	alloc->quar = mem;
	alloc->num_quar++;
	if(!alloc->super) {
		lock_quick_unlock(&alloc->lock);
	}
}

void 
alloc_stats(struct alloc_cache* alloc)
{
	log_info("%salloc: %d in cache, %d blocks.", alloc->super?"":"sup",
		(int)alloc->num_quar, (int)alloc->num_reg_blocks);
}

size_t alloc_get_mem(struct alloc_cache* alloc)
{
	alloc_special_type* p;
	size_t s = sizeof(*alloc);
	if(!alloc->super) { 
		lock_quick_lock(&alloc->lock); /* superalloc needs locking */
	}
	s += sizeof(alloc_special_type) * alloc->num_quar;
	for(p = alloc->quar; p; p = alloc_special_next(p)) {
		s += lock_get_mem(&p->entry.lock);
	}
	s += alloc->num_reg_blocks * ALLOC_REG_SIZE;
	if(!alloc->super) {
		lock_quick_unlock(&alloc->lock);
	}
	return s;
}

struct regional* 
alloc_reg_obtain(struct alloc_cache* alloc)
{
	if(alloc->num_reg_blocks > 0) {
		struct regional* r = alloc->reg_list;
		alloc->reg_list = (struct regional*)r->next;
		r->next = NULL;
		alloc->num_reg_blocks--;
		return r;
	}
	return regional_create_custom(ALLOC_REG_SIZE);
}

void 
alloc_reg_release(struct alloc_cache* alloc, struct regional* r)
{
	if(alloc->num_reg_blocks >= alloc->max_reg_blocks) {
		regional_destroy(r);
		return;
	}
	if(!r) return;
	regional_free_all(r);
	log_assert(r->next == NULL);
	r->next = (char*)alloc->reg_list;
	alloc->reg_list = r;
	alloc->num_reg_blocks++;
}

void 
alloc_set_id_cleanup(struct alloc_cache* alloc, void (*cleanup)(void*),
        void* arg)
{
	alloc->cleanup = cleanup;
	alloc->cleanup_arg = arg;
}

/** global debug value to keep track of total memory mallocs */
size_t unbound_mem_alloc = 0;
/** global debug value to keep track of total memory frees */
size_t unbound_mem_freed = 0;
#ifdef UNBOUND_ALLOC_STATS
/** special value to know if the memory is being tracked */
uint64_t mem_special = (uint64_t)0xfeed43327766abcdLL;
#ifdef malloc
#undef malloc
#endif
/** malloc with stats */
void *unbound_stat_malloc(size_t size)
{
	void* res;
	if(size == 0) size = 1;
	log_assert(size <= SIZE_MAX-16);
	res = malloc(size+16);
	if(!res) return NULL;
	unbound_mem_alloc += size;
	log_info("stat %p=malloc(%u)", res+16, (unsigned)size);
	memcpy(res, &size, sizeof(size));
	memcpy(res+8, &mem_special, sizeof(mem_special));
	return res+16;
}
#ifdef calloc
#undef calloc
#endif
#ifndef INT_MAX
#define INT_MAX (((int)-1)>>1)
#endif
/** calloc with stats */
void *unbound_stat_calloc(size_t nmemb, size_t size)
{
	size_t s;
	void* res;
	if(nmemb != 0 && INT_MAX/nmemb < size)
		return NULL; /* integer overflow check */
	s = (nmemb*size==0)?(size_t)1:nmemb*size;
	log_assert(s <= SIZE_MAX-16);
	res = calloc(1, s+16);
	if(!res) return NULL;
	log_info("stat %p=calloc(%u, %u)", res+16, (unsigned)nmemb, (unsigned)size);
	unbound_mem_alloc += s;
	memcpy(res, &s, sizeof(s));
	memcpy(res+8, &mem_special, sizeof(mem_special));
	return res+16;
}
#ifdef free
#undef free
#endif
/** free with stats */
void unbound_stat_free(void *ptr)
{
	size_t s;
	if(!ptr) return;
	if(memcmp(ptr-8, &mem_special, sizeof(mem_special)) != 0) {
		free(ptr);
		return;
	}
	ptr-=16;
	memcpy(&s, ptr, sizeof(s));
	log_info("stat free(%p) size %u", ptr+16, (unsigned)s);
	memset(ptr+8, 0, 8);
	unbound_mem_freed += s;
	free(ptr);
}
#ifdef realloc
#undef realloc
#endif
/** realloc with stats */
void *unbound_stat_realloc(void *ptr, size_t size)
{
	size_t cursz;
	void* res;
	if(!ptr) return unbound_stat_malloc(size);
	if(memcmp(ptr-8, &mem_special, sizeof(mem_special)) != 0) {
		return realloc(ptr, size);
	}
	if(size==0) {
		unbound_stat_free(ptr);
		return NULL;
	}
	ptr -= 16;
	memcpy(&cursz, ptr, sizeof(cursz));
	if(cursz == size) {
		/* nothing changes */
		return ptr;
	}
	log_assert(size <= SIZE_MAX-16);
	res = malloc(size+16);
	if(!res) return NULL;
	unbound_mem_alloc += size;
	unbound_mem_freed += cursz;
	log_info("stat realloc(%p, %u) from %u", ptr+16, (unsigned)size, (unsigned)cursz);
	if(cursz > size) {
		memcpy(res+16, ptr+16, size);
	} else if(size > cursz) {
		memcpy(res+16, ptr+16, cursz);
	}
	memset(ptr+8, 0, 8);
	free(ptr);
	memcpy(res, &size, sizeof(size));
	memcpy(res+8, &mem_special, sizeof(mem_special));
	return res+16;
}

/** log to file where alloc was done */
void *unbound_stat_malloc_log(size_t size, const char* file, int line,
        const char* func)
{
	log_info("%s:%d %s malloc(%u)", file, line, func, (unsigned)size);
	return unbound_stat_malloc(size);
}

/** log to file where alloc was done */
void *unbound_stat_calloc_log(size_t nmemb, size_t size, const char* file,
        int line, const char* func)
{
	log_info("%s:%d %s calloc(%u, %u)", file, line, func, 
		(unsigned) nmemb, (unsigned)size);
	return unbound_stat_calloc(nmemb, size);
}

/** log to file where free was done */
void unbound_stat_free_log(void *ptr, const char* file, int line,
        const char* func)
{
	if(ptr && memcmp(ptr-8, &mem_special, sizeof(mem_special)) == 0) {
		size_t s;
		memcpy(&s, ptr-16, sizeof(s));
		log_info("%s:%d %s free(%p) size %u", 
			file, line, func, ptr, (unsigned)s);
	} else
		log_info("%s:%d %s unmatched free(%p)", file, line, func, ptr);
	unbound_stat_free(ptr);
}

/** log to file where alloc was done */
void *unbound_stat_realloc_log(void *ptr, size_t size, const char* file,
        int line, const char* func)
{
	log_info("%s:%d %s realloc(%p, %u)", file, line, func, 
		ptr, (unsigned)size);
	return unbound_stat_realloc(ptr, size);
}

#endif /* UNBOUND_ALLOC_STATS */
#ifdef UNBOUND_ALLOC_LITE
#undef malloc
#undef calloc
#undef free
#undef realloc
/** length of prefix and suffix */
static size_t lite_pad = 16;
/** prefix value to check */
static char* lite_pre = "checkfront123456";
/** suffix value to check */
static char* lite_post= "checkafter123456";

void *unbound_stat_malloc_lite(size_t size, const char* file, int line,
        const char* func)
{
	/*  [prefix .. len .. actual data .. suffix] */
	void* res;
	log_assert(size <= SIZE_MAX-(lite_pad*2+sizeof(size_t)));
	res = malloc(size+lite_pad*2+sizeof(size_t));
	if(!res) return NULL;
	memmove(res, lite_pre, lite_pad);
	memmove(res+lite_pad, &size, sizeof(size_t));
	memset(res+lite_pad+sizeof(size_t), 0x1a, size); /* init the memory */
	memmove(res+lite_pad+size+sizeof(size_t), lite_post, lite_pad);
	return res+lite_pad+sizeof(size_t);
}

void *unbound_stat_calloc_lite(size_t nmemb, size_t size, const char* file,
        int line, const char* func)
{
	size_t req;
	void* res;
	if(nmemb != 0 && INT_MAX/nmemb < size)
		return NULL; /* integer overflow check */
	req = nmemb * size;
	log_assert(req <= SIZE_MAX-(lite_pad*2+sizeof(size_t)));
	res = malloc(req+lite_pad*2+sizeof(size_t));
	if(!res) return NULL;
	memmove(res, lite_pre, lite_pad);
	memmove(res+lite_pad, &req, sizeof(size_t));
	memset(res+lite_pad+sizeof(size_t), 0, req);
	memmove(res+lite_pad+req+sizeof(size_t), lite_post, lite_pad);
	return res+lite_pad+sizeof(size_t);
}

void unbound_stat_free_lite(void *ptr, const char* file, int line,
        const char* func)
{
	void* real;
	size_t orig = 0;
	if(!ptr) return;
	real = ptr-lite_pad-sizeof(size_t);
	if(memcmp(real, lite_pre, lite_pad) != 0) {
		log_err("free(): prefix failed %s:%d %s", file, line, func);
		log_hex("prefix here", real, lite_pad);
		log_hex("  should be", lite_pre, lite_pad);
		fatal_exit("alloc assertion failed");
	}
	memmove(&orig, real+lite_pad, sizeof(size_t));
	if(memcmp(real+lite_pad+orig+sizeof(size_t), lite_post, lite_pad)!=0){
		log_err("free(): suffix failed %s:%d %s", file, line, func);
		log_err("alloc size is %d", (int)orig);
		log_hex("suffix here", real+lite_pad+orig+sizeof(size_t), 
			lite_pad);
		log_hex("  should be", lite_post, lite_pad);
		fatal_exit("alloc assertion failed");
	}
	memset(real, 0xdd, orig+lite_pad*2+sizeof(size_t)); /* mark it */
	free(real);
}

void *unbound_stat_realloc_lite(void *ptr, size_t size, const char* file,
        int line, const char* func)
{
	/* always free and realloc (no growing) */
	void* real, *newa;
	size_t orig = 0;
	if(!ptr) {
		/* like malloc() */
		return unbound_stat_malloc_lite(size, file, line, func);
	}
	if(!size) {
		/* like free() */
		unbound_stat_free_lite(ptr, file, line, func);
		return NULL;
	}
	/* change allocation size and copy */
	real = ptr-lite_pad-sizeof(size_t);
	if(memcmp(real, lite_pre, lite_pad) != 0) {
		log_err("realloc(): prefix failed %s:%d %s", file, line, func);
		log_hex("prefix here", real, lite_pad);
		log_hex("  should be", lite_pre, lite_pad);
		fatal_exit("alloc assertion failed");
	}
	memmove(&orig, real+lite_pad, sizeof(size_t));
	if(memcmp(real+lite_pad+orig+sizeof(size_t), lite_post, lite_pad)!=0){
		log_err("realloc(): suffix failed %s:%d %s", file, line, func);
		log_err("alloc size is %d", (int)orig);
		log_hex("suffix here", real+lite_pad+orig+sizeof(size_t), 
			lite_pad);
		log_hex("  should be", lite_post, lite_pad);
		fatal_exit("alloc assertion failed");
	}
	/* new alloc and copy over */
	newa = unbound_stat_malloc_lite(size, file, line, func);
	if(!newa)
		return NULL;
	if(orig < size)
		memmove(newa, ptr, orig);
	else	memmove(newa, ptr, size);
	memset(real, 0xdd, orig+lite_pad*2+sizeof(size_t)); /* mark it */
	free(real);
	return newa;
}

char* unbound_strdup_lite(const char* s, const char* file, int line, 
        const char* func)
{
	/* this routine is made to make sure strdup() uses the malloc_lite */
	size_t l = strlen(s)+1;
	char* n = (char*)unbound_stat_malloc_lite(l, file, line, func);
	if(!n) return NULL;
	memmove(n, s, l);
	return n;
}

char* unbound_lite_wrapstr(char* s)
{
	char* n = unbound_strdup_lite(s, __FILE__, __LINE__, __func__);
	free(s);
	return n;
}

#undef sldns_pkt2wire
sldns_status unbound_lite_pkt2wire(uint8_t **dest, const sldns_pkt *p, 
	size_t *size)
{
	uint8_t* md = NULL;
	size_t ms = 0;
	sldns_status s = sldns_pkt2wire(&md, p, &ms);
	if(md) {
		*dest = unbound_stat_malloc_lite(ms, __FILE__, __LINE__, 
			__func__);
		*size = ms;
		if(!*dest) { free(md); return LDNS_STATUS_MEM_ERR; }
		memcpy(*dest, md, ms);
		free(md);
	} else {
		*dest = NULL;
		*size = 0;
	}
	return s;
}

#undef i2d_DSA_SIG
int unbound_lite_i2d_DSA_SIG(DSA_SIG* dsasig, unsigned char** sig)
{
	unsigned char* n = NULL;
	int r= i2d_DSA_SIG(dsasig, &n);
	if(n) {
		*sig = unbound_stat_malloc_lite((size_t)r, __FILE__, __LINE__, 
			__func__);
		if(!*sig) return -1;
		memcpy(*sig, n, (size_t)r);
		free(n);
		return r;
	}
	*sig = NULL;
	return r;
}

#endif /* UNBOUND_ALLOC_LITE */