Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
.\"
.\" $FreeBSD$
.\"
.Dd August 21, 2020
.Dt IPFW 8
.Os
.Sh NAME
.Nm ipfw
.Nd User interface for firewall, traffic shaper, packet scheduler,
in-kernel NAT.
.Sh SYNOPSIS
.Ss FIREWALL CONFIGURATION
.Nm
.Op Fl cq
.Cm add
.Ar rule
.Nm
.Op Fl acdefnNStT
.Op Cm set Ar N
.Brq Cm list | show
.Op Ar rule | first-last ...
.Nm
.Op Fl f | q
.Op Cm set Ar N
.Cm flush
.Nm
.Op Fl q
.Op Cm set Ar N
.Brq Cm delete | zero | resetlog
.Op Ar number ...
.Pp
.Nm
.Cm set Oo Cm disable Ar number ... Oc Op Cm enable Ar number ...
.Nm
.Cm set move
.Op Cm rule
.Ar number Cm to Ar number
.Nm
.Cm set swap Ar number number
.Nm
.Cm set show
.Ss SYSCTL SHORTCUTS
.Nm
.Cm enable
.Brq Cm firewall | altq | one_pass | debug | verbose | dyn_keepalive
.Nm
.Cm disable
.Brq Cm firewall | altq | one_pass | debug | verbose | dyn_keepalive
.Ss LOOKUP TABLES
.Nm
.Oo Cm set Ar N Oc Cm table Ar name Cm create Ar create-options
.Nm
.Oo Cm set Ar N Oc Cm table
.Brq Ar name | all
.Cm destroy
.Nm
.Oo Cm set Ar N Oc Cm table Ar name Cm modify Ar modify-options
.Nm
.Oo Cm set Ar N Oc Cm table Ar name Cm swap Ar name
.Nm
.Oo Cm set Ar N Oc Cm table Ar name Cm add Ar table-key Op Ar value
.Nm
.Oo Cm set Ar N Oc Cm table Ar name Cm add Op Ar table-key Ar value ...
.Nm
.Oo Cm set Ar N Oc Cm table Ar name Cm atomic add Op Ar table-key Ar value ...
.Nm
.Oo Cm set Ar N Oc Cm table Ar name Cm delete Op Ar table-key ...
.Nm
.Oo Cm set Ar N Oc Cm table Ar name Cm lookup Ar addr
.Nm
.Oo Cm set Ar N Oc Cm table Ar name Cm lock
.Nm
.Oo Cm set Ar N Oc Cm table Ar name Cm unlock
.Nm
.Oo Cm set Ar N Oc Cm table
.Brq Ar name | all
.Cm list
.Nm
.Oo Cm set Ar N Oc Cm table
.Brq Ar name | all
.Cm info
.Nm
.Oo Cm set Ar N Oc Cm table
.Brq Ar name | all
.Cm detail
.Nm
.Oo Cm set Ar N Oc Cm table
.Brq Ar name | all
.Cm flush
.Ss DUMMYNET CONFIGURATION (TRAFFIC SHAPER AND PACKET SCHEDULER)
.Nm
.Brq Cm pipe | queue | sched
.Ar number
.Cm config
.Ar config-options
.Nm
.Op Fl s Op Ar field
.Brq Cm pipe | queue | sched
.Brq Cm delete | list | show
.Op Ar number ...
.Ss IN-KERNEL NAT
.Nm
.Op Fl q
.Cm nat
.Ar number
.Cm config
.Ar config-options
.Ss STATEFUL IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION
.Nm
.Oo Cm set Ar N Oc Cm nat64lsn Ar name Cm create Ar create-options
.Nm
.Oo Cm set Ar N Oc Cm nat64lsn Ar name Cm config Ar config-options
.Nm
.Oo Cm set Ar N Oc Cm nat64lsn
.Brq Ar name | all
.Brq Cm list | show
.Op Cm states
.Nm
.Oo Cm set Ar N Oc Cm nat64lsn
.Brq Ar name | all
.Cm destroy
.Nm
.Oo Cm set Ar N Oc Cm nat64lsn Ar name Cm stats Op Cm reset
.Ss STATELESS IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION
.Nm
.Oo Cm set Ar N Oc Cm nat64stl Ar name Cm create Ar create-options
.Nm
.Oo Cm set Ar N Oc Cm nat64stl Ar name Cm config Ar config-options
.Nm
.Oo Cm set Ar N Oc Cm nat64stl
.Brq Ar name | all
.Brq Cm list | show
.Nm
.Oo Cm set Ar N Oc Cm nat64stl
.Brq Ar name | all
.Cm destroy
.Nm
.Oo Cm set Ar N Oc Cm nat64stl Ar name Cm stats Op Cm reset
.Ss XLAT464 CLAT IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION
.Nm
.Oo Cm set Ar N Oc Cm nat64clat Ar name Cm create Ar create-options
.Nm
.Oo Cm set Ar N Oc Cm nat64clat Ar name Cm config Ar config-options
.Nm
.Oo Cm set Ar N Oc Cm nat64clat
.Brq Ar name | all
.Brq Cm list | show
.Nm
.Oo Cm set Ar N Oc Cm nat64clat
.Brq Ar name | all
.Cm destroy
.Nm
.Oo Cm set Ar N Oc Cm nat64clat Ar name Cm stats Op Cm reset
.Ss IPv6-to-IPv6 NETWORK PREFIX TRANSLATION
.Nm
.Oo Cm set Ar N Oc Cm nptv6 Ar name Cm create Ar create-options
.Nm
.Oo Cm set Ar N Oc Cm nptv6
.Brq Ar name | all
.Brq Cm list | show
.Nm
.Oo Cm set Ar N Oc Cm nptv6
.Brq Ar name | all
.Cm destroy
.Nm
.Oo Cm set Ar N Oc Cm nptv6 Ar name Cm stats Op Cm reset
.Ss INTERNAL DIAGNOSTICS
.Nm
.Cm internal iflist
.Nm
.Cm internal talist
.Nm
.Cm internal vlist
.Ss LIST OF RULES AND PREPROCESSING
.Nm
.Op Fl cfnNqS
.Oo
.Fl p Ar preproc
.Oo
.Ar preproc-flags
.Oc
.Oc
.Ar pathname
.Sh DESCRIPTION
The
.Nm
utility is the user interface for controlling the
.Xr ipfw 4
firewall, the
.Xr dummynet 4
traffic shaper/packet scheduler, and the
in-kernel NAT services.
.Pp
A firewall configuration, or
.Em ruleset ,
is made of a list of
.Em rules
numbered from 1 to 65535.
Packets are passed to the firewall
from a number of different places in the protocol stack
(depending on the source and destination of the packet,
it is possible for the firewall to be
invoked multiple times on the same packet).
The packet passed to the firewall is compared
against each of the rules in the
.Em ruleset ,
in rule-number order
(multiple rules with the same number are permitted, in which case
they are processed in order of insertion).
When a match is found, the action corresponding to the
matching rule is performed.
.Pp
Depending on the action and certain system settings, packets
can be reinjected into the firewall at some rule after the
matching one for further processing.
.Pp
A ruleset always includes a
.Em default
rule (numbered 65535) which cannot be modified or deleted,
and matches all packets.
The action associated with the
.Em default
rule can be either
.Cm deny
or
.Cm allow
depending on how the kernel is configured.
.Pp
If the ruleset includes one or more rules with the
.Cm keep-state ,
.Cm record-state ,
.Cm limit
or
.Cm set-limit
option,
the firewall will have a
.Em stateful
behaviour, i.e., upon a match it will create
.Em dynamic rules ,
i.e., rules that match packets with the same 5-tuple
(protocol, source and destination addresses and ports)
as the packet which caused their creation.
Dynamic rules, which have a limited lifetime, are checked
at the first occurrence of a
.Cm check-state ,
.Cm keep-state
or
.Cm limit
rule, and are typically used to open the firewall on-demand to
legitimate traffic only.
Please note, that
.Cm keep-state
and
.Cm limit
imply implicit
.Cm check-state
for all packets (not only these matched by the rule) but
.Cm record-state
and
.Cm set-limit
have no implicit
.Cm check-state .
See the
.Sx STATEFUL FIREWALL
and
.Sx EXAMPLES
Sections below for more information on the stateful behaviour of
.Nm .
.Pp
All rules (including dynamic ones) have a few associated counters:
a packet count, a byte count, a log count and a timestamp
indicating the time of the last match.
Counters can be displayed or reset with
.Nm
commands.
.Pp
Each rule belongs to one of 32 different
.Em sets
, and there are
.Nm
commands to atomically manipulate sets, such as enable,
disable, swap sets, move all rules in a set to another
one, delete all rules in a set.
These can be useful to
install temporary configurations, or to test them.
See Section
.Sx SETS OF RULES
for more information on
.Em sets .
.Pp
Rules can be added with the
.Cm add
command; deleted individually or in groups with the
.Cm delete
command, and globally (except those in set 31) with the
.Cm flush
command; displayed, optionally with the content of the
counters, using the
.Cm show
and
.Cm list
commands.
Finally, counters can be reset with the
.Cm zero
and
.Cm resetlog
commands.
.Pp
.Ss COMMAND OPTIONS
The following general options are available when invoking
.Nm :
.Bl -tag -width indent
.It Fl a
Show counter values when listing rules.
The
.Cm show
command implies this option.
.It Fl b
Only show the action and the comment, not the body of a rule.
Implies
.Fl c .
.It Fl c
When entering or showing rules, print them in compact form,
i.e., omitting the "ip from any to any" string
when this does not carry any additional information.
.It Fl d
When listing, show dynamic rules in addition to static ones.
.It Fl D
When listing, show only dynamic states.
When deleting, delete only dynamic states.
.It Fl f
Run without prompting for confirmation for commands that can cause problems if misused,
i.e.,
.Cm flush .
If there is no tty associated with the process, this is implied.
The
.Cm delete
command with this flag ignores possible errors,
i.e., nonexistent rule number.
And for batched commands execution continues with the next command.
.It Fl i
When listing a table (see the
.Sx LOOKUP TABLES
section below for more information on lookup tables), format values
as IP addresses.
By default, values are shown as integers.
.It Fl n
Only check syntax of the command strings, without actually passing
them to the kernel.
.It Fl N
Try to resolve addresses and service names in output.
.It Fl q
Be quiet when executing the
.Cm add ,
.Cm nat ,
.Cm zero ,
.Cm resetlog
or
.Cm flush
commands;
(implies
.Fl f ) .
This is useful when updating rulesets by executing multiple
.Nm
commands in a script
(e.g.,
.Ql sh\ /etc/rc.firewall ) ,
or by processing a file with many
.Nm
rules across a remote login session.
It also stops a table add or delete
from failing if the entry already exists or is not present.
.Pp
The reason why this option may be important is that
for some of these actions,
.Nm
may print a message; if the action results in blocking the
traffic to the remote client,
the remote login session will be closed
and the rest of the ruleset will not be processed.
Access to the console would then be required to recover.
.It Fl S
When listing rules, show the
.Em set
each rule belongs to.
If this flag is not specified, disabled rules will not be
listed.
.It Fl s Op Ar field
When listing pipes, sort according to one of the four
counters (total or current packets or bytes).
.It Fl t
When listing, show last match timestamp converted with ctime().
.It Fl T
When listing, show last match timestamp as seconds from the epoch.
This form can be more convenient for postprocessing by scripts.
.El
.Ss LIST OF RULES AND PREPROCESSING
To ease configuration, rules can be put into a file which is
processed using
.Nm
as shown in the last synopsis line.
An absolute
.Ar pathname
must be used.
The file will be read line by line and applied as arguments to the
.Nm
utility.
.Pp
Optionally, a preprocessor can be specified using
.Fl p Ar preproc
where
.Ar pathname
is to be piped through.
Useful preprocessors include
.Xr cpp 1
and
.Xr m4 1 .
If
.Ar preproc
does not start with a slash
.Pq Ql /
as its first character, the usual
.Ev PATH
name search is performed.
Care should be taken with this in environments where not all
file systems are mounted (yet) by the time
.Nm
is being run (e.g.\& when they are mounted over NFS).
Once
.Fl p
has been specified, any additional arguments are passed on to the preprocessor
for interpretation.
This allows for flexible configuration files (like conditionalizing
them on the local hostname) and the use of macros to centralize
frequently required arguments like IP addresses.
.Ss TRAFFIC SHAPER CONFIGURATION
The
.Nm
.Cm pipe , queue
and
.Cm sched
commands are used to configure the traffic shaper and packet scheduler.
See the
.Sx TRAFFIC SHAPER (DUMMYNET) CONFIGURATION
Section below for details.
.Pp
If the world and the kernel get out of sync the
.Nm
ABI may break, preventing you from being able to add any rules.
This can adversely affect the booting process.
You can use
.Nm
.Cm disable
.Cm firewall
to temporarily disable the firewall to regain access to the network,
allowing you to fix the problem.
.Sh PACKET FLOW
A packet is checked against the active ruleset in multiple places
in the protocol stack, under control of several sysctl variables.
These places and variables are shown below, and it is important to
have this picture in mind in order to design a correct ruleset.
.Bd -literal -offset indent
       ^    to upper layers    V
       |                       |
       +----------->-----------+
       ^                       V
 [ip(6)_input]           [ip(6)_output]     net.inet(6).ip(6).fw.enable=1
       |                       |
       ^                       V
 [ether_demux]        [ether_output_frame]  net.link.ether.ipfw=1
       |                       |
       +-->--[bdg_forward]-->--+            net.link.bridge.ipfw=1
       ^                       V
       |      to devices       |
.Ed
.Pp
The number of
times the same packet goes through the firewall can
vary between 0 and 4 depending on packet source and
destination, and system configuration.
.Pp
Note that as packets flow through the stack, headers can be
stripped or added to it, and so they may or may not be available
for inspection.
E.g., incoming packets will include the MAC header when
.Nm
is invoked from
.Cm ether_demux() ,
but the same packets will have the MAC header stripped off when
.Nm
is invoked from
.Cm ip_input()
or
.Cm ip6_input() .
.Pp
Also note that each packet is always checked against the complete ruleset,
irrespective of the place where the check occurs, or the source of the packet.
If a rule contains some match patterns or actions which are not valid
for the place of invocation (e.g.\& trying to match a MAC header within
.Cm ip_input
or
.Cm ip6_input ),
the match pattern will not match, but a
.Cm not
operator in front of such patterns
.Em will
cause the pattern to
.Em always
match on those packets.
It is thus the responsibility of
the programmer, if necessary, to write a suitable ruleset to
differentiate among the possible places.
.Cm skipto
rules can be useful here, as an example:
.Bd -literal -offset indent
# packets from ether_demux or bdg_forward
ipfw add 10 skipto 1000 all from any to any layer2 in
# packets from ip_input
ipfw add 10 skipto 2000 all from any to any not layer2 in
# packets from ip_output
ipfw add 10 skipto 3000 all from any to any not layer2 out
# packets from ether_output_frame
ipfw add 10 skipto 4000 all from any to any layer2 out
.Ed
.Pp
(yes, at the moment there is no way to differentiate between
ether_demux and bdg_forward).
.Pp
Also note that only actions
.Cm allow ,
.Cm deny ,
.Cm netgraph ,
.Cm ngtee
and related to
.Cm dummynet
are processed for
.Cm layer2
frames and all other actions act as if they were
.Cm allow
for such frames.
Full set of actions is supported for IP packets without
.Cm layer2
headers only.
For example,
.Cm divert
action does not divert
.Cm layer2
frames.
.Sh SYNTAX
In general, each keyword or argument must be provided as
a separate command line argument, with no leading or trailing
spaces.
Keywords are case-sensitive, whereas arguments may
or may not be case-sensitive depending on their nature
(e.g.\& uid's are, hostnames are not).
.Pp
Some arguments (e.g., port or address lists) are comma-separated
lists of values.
In this case, spaces after commas ',' are allowed to make
the line more readable.
You can also put the entire
command (including flags) into a single argument.
E.g., the following forms are equivalent:
.Bd -literal -offset indent
ipfw -q add deny src-ip 10.0.0.0/24,127.0.0.1/8
ipfw -q add deny src-ip 10.0.0.0/24, 127.0.0.1/8
ipfw "-q add deny src-ip 10.0.0.0/24, 127.0.0.1/8"
.Ed
.Sh RULE FORMAT
The format of firewall rules is the following:
.Bd -ragged -offset indent
.Bk -words
.Op Ar rule_number
.Op Cm set Ar set_number
.Op Cm prob Ar match_probability
.Ar action
.Op Cm log Op Cm logamount Ar number
.Op Cm altq Ar queue
.Oo
.Bro Cm tag | untag
.Brc Ar number
.Oc
.Ar body
.Ek
.Ed
.Pp
where the body of the rule specifies which information is used
for filtering packets, among the following:
.Pp
.Bl -tag -width "Source and dest. addresses and ports" -offset XXX -compact
.It Layer-2 header fields
When available
.It IPv4 and IPv6 Protocol
SCTP, TCP, UDP, ICMP, etc.
.It Source and dest. addresses and ports
.It Direction
See Section
.Sx PACKET FLOW
.It Transmit and receive interface
By name or address
.It Misc. IP header fields
Version, type of service, datagram length, identification,
fragmentation flags,
Time To Live
.It IP options
.It IPv6 Extension headers
Fragmentation, Hop-by-Hop options,
Routing Headers, Source routing rthdr0, Mobile IPv6 rthdr2, IPSec options.
.It IPv6 Flow-ID
.It Misc. TCP header fields
TCP flags (SYN, FIN, ACK, RST, etc.),
sequence number, acknowledgment number,
window
.It TCP options
.It ICMP types
for ICMP packets
.It ICMP6 types
for ICMP6 packets
.It User/group ID
When the packet can be associated with a local socket.
.It Divert status
Whether a packet came from a divert socket (e.g.,
.Xr natd 8 ) .
.It Fib annotation state
Whether a packet has been tagged for using a specific FIB (routing table)
in future forwarding decisions.
.El
.Pp
Note that some of the above information, e.g.\& source MAC or IP addresses and
TCP/UDP ports, can be easily spoofed, so filtering on those fields
alone might not guarantee the desired results.
.Bl -tag -width indent
.It Ar rule_number
Each rule is associated with a
.Ar rule_number
in the range 1..65535, with the latter reserved for the
.Em default
rule.
Rules are checked sequentially by rule number.
Multiple rules can have the same number, in which case they are
checked (and listed) according to the order in which they have
been added.
If a rule is entered without specifying a number, the kernel will
assign one in such a way that the rule becomes the last one
before the
.Em default
rule.
Automatic rule numbers are assigned by incrementing the last
non-default rule number by the value of the sysctl variable
.Ar net.inet.ip.fw.autoinc_step
which defaults to 100.
If this is not possible (e.g.\& because we would go beyond the
maximum allowed rule number), the number of the last
non-default value is used instead.
.It Cm set Ar set_number
Each rule is associated with a
.Ar set_number
in the range 0..31.
Sets can be individually disabled and enabled, so this parameter
is of fundamental importance for atomic ruleset manipulation.
It can be also used to simplify deletion of groups of rules.
If a rule is entered without specifying a set number,
set 0 will be used.
.br
Set 31 is special in that it cannot be disabled,
and rules in set 31 are not deleted by the
.Nm ipfw flush
command (but you can delete them with the
.Nm ipfw delete set 31
command).
Set 31 is also used for the
.Em default
rule.
.It Cm prob Ar match_probability
A match is only declared with the specified probability
(floating point number between 0 and 1).
This can be useful for a number of applications such as
random packet drop or
(in conjunction with
.Nm dummynet )
to simulate the effect of multiple paths leading to out-of-order
packet delivery.
.Pp
Note: this condition is checked before any other condition, including
ones such as
.Cm keep-state
or
.Cm check-state
which might have
side effects.
.It Cm log Op Cm logamount Ar number
Packets matching a rule with the
.Cm log
keyword will be made available for logging in two ways:
if the sysctl variable
.Va net.inet.ip.fw.verbose
is set to 0 (default), one can use
.Xr bpf 4
attached to the
.Li ipfw0
pseudo interface.
This pseudo interface can be created manually after a system
boot by using the following command:
.Bd -literal -offset indent
# ifconfig ipfw0 create
.Ed
.Pp
Or, automatically at boot time by adding the following
line to the
.Xr rc.conf 5
file:
.Bd -literal -offset indent
firewall_logif="YES"
.Ed
.Pp
There is zero overhead when no
.Xr bpf 4
is attached to the pseudo interface.
.Pp
If
.Va net.inet.ip.fw.verbose
is set to 1, packets will be logged to
.Xr syslogd 8
with a
.Dv LOG_SECURITY
facility up to a maximum of
.Cm logamount
packets.
If no
.Cm logamount
is specified, the limit is taken from the sysctl variable
.Va net.inet.ip.fw.verbose_limit .
In both cases, a value of 0 means unlimited logging.
.Pp
Once the limit is reached, logging can be re-enabled by
clearing the logging counter or the packet counter for that entry, see the
.Cm resetlog
command.
.Pp
Note: logging is done after all other packet matching conditions
have been successfully verified, and before performing the final
action (accept, deny, etc.) on the packet.
.It Cm tag Ar number
When a packet matches a rule with the
.Cm tag
keyword, the numeric tag for the given
.Ar number
in the range 1..65534 will be attached to the packet.
The tag acts as an internal marker (it is not sent out over
the wire) that can be used to identify these packets later on.
This can be used, for example, to provide trust between interfaces
and to start doing policy-based filtering.
A packet can have multiple tags at the same time.
Tags are "sticky", meaning once a tag is applied to a packet by a
matching rule it exists until explicit removal.
Tags are kept with the packet everywhere within the kernel, but are
lost when packet leaves the kernel, for example, on transmitting
packet out to the network or sending packet to a
.Xr divert 4
socket.
.Pp
To check for previously applied tags, use the
.Cm tagged
rule option.
To delete previously applied tag, use the
.Cm untag
keyword.
.Pp
Note: since tags are kept with the packet everywhere in kernelspace,
they can be set and unset anywhere in the kernel network subsystem
(using the
.Xr mbuf_tags 9
facility), not only by means of the
.Xr ipfw 4
.Cm tag
and
.Cm untag
keywords.
For example, there can be a specialized
.Xr netgraph 4
node doing traffic analyzing and tagging for later inspecting
in firewall.
.It Cm untag Ar number
When a packet matches a rule with the
.Cm untag
keyword, the tag with the number
.Ar number
is searched among the tags attached to this packet and,
if found, removed from it.
Other tags bound to packet, if present, are left untouched.
.It Cm altq Ar queue
When a packet matches a rule with the
.Cm altq
keyword, the ALTQ identifier for the given
.Ar queue
(see
.Xr altq 4 )
will be attached.
Note that this ALTQ tag is only meaningful for packets going "out" of IPFW,
and not being rejected or going to divert sockets.
Note that if there is insufficient memory at the time the packet is
processed, it will not be tagged, so it is wise to make your ALTQ
"default" queue policy account for this.
If multiple
.Cm altq
rules match a single packet, only the first one adds the ALTQ classification
tag.
In doing so, traffic may be shaped by using
.Cm count Cm altq Ar queue
rules for classification early in the ruleset, then later applying
the filtering decision.
For example,
.Cm check-state
and
.Cm keep-state
rules may come later and provide the actual filtering decisions in
addition to the fallback ALTQ tag.
.Pp
You must run
.Xr pfctl 8
to set up the queues before IPFW will be able to look them up by name,
and if the ALTQ disciplines are rearranged, the rules in containing the
queue identifiers in the kernel will likely have gone stale and need
to be reloaded.
Stale queue identifiers will probably result in misclassification.
.Pp
All system ALTQ processing can be turned on or off via
.Nm
.Cm enable Ar altq
and
.Nm
.Cm disable Ar altq .
The usage of
.Va net.inet.ip.fw.one_pass
is irrelevant to ALTQ traffic shaping, as the actual rule action is followed
always after adding an ALTQ tag.
.El
.Ss RULE ACTIONS
A rule can be associated with one of the following actions, which
will be executed when the packet matches the body of the rule.
.Bl -tag -width indent
.It Cm allow | accept | pass | permit
Allow packets that match rule.
The search terminates.
.It Cm check-state Op Ar :flowname | Cm :any
Checks the packet against the dynamic ruleset.
If a match is found, execute the action associated with
the rule which generated this dynamic rule, otherwise
move to the next rule.
.br
.Cm Check-state
rules do not have a body.
If no
.Cm check-state
rule is found, the dynamic ruleset is checked at the first
.Cm keep-state
or
.Cm limit
rule.
The
.Ar :flowname
is symbolic name assigned to dynamic rule by
.Cm keep-state
opcode.
The special flowname
.Cm :any
can be used to ignore states flowname when matching.
The
.Cm :default
keyword is special name used for compatibility with old rulesets.
.It Cm count
Update counters for all packets that match rule.
The search continues with the next rule.
.It Cm deny | drop
Discard packets that match this rule.
The search terminates.
.It Cm divert Ar port
Divert packets that match this rule to the
.Xr divert 4
socket bound to port
.Ar port .
The search terminates.
.It Cm fwd | forward Ar ipaddr | tablearg Ns Op , Ns Ar port
Change the next-hop on matching packets to
.Ar ipaddr ,
which can be an IP address or a host name.
The next hop can also be supplied by the last table
looked up for the packet by using the
.Cm tablearg
keyword instead of an explicit address.
The search terminates if this rule matches.
.Pp
If
.Ar ipaddr
is a local address, then matching packets will be forwarded to
.Ar port
(or the port number in the packet if one is not specified in the rule)
on the local machine.
.br
If
.Ar ipaddr
is not a local address, then the port number
(if specified) is ignored, and the packet will be
forwarded to the remote address, using the route as found in
the local routing table for that IP.
.br
A
.Ar fwd
rule will not match layer-2 packets (those received
on ether_input, ether_output, or bridged).
.br
The
.Cm fwd
action does not change the contents of the packet at all.
In particular, the destination address remains unmodified, so
packets forwarded to another system will usually be rejected by that system
unless there is a matching rule on that system to capture them.
For packets forwarded locally,
the local address of the socket will be
set to the original destination address of the packet.
This makes the
.Xr netstat 1
entry look rather weird but is intended for
use with transparent proxy servers.
.It Cm nat Ar nat_nr | tablearg
Pass packet to a
nat instance
(for network address translation, address redirect, etc.):
see the
.Sx NETWORK ADDRESS TRANSLATION (NAT)
Section for further information.
.It Cm nat64lsn Ar name
Pass packet to a stateful NAT64 instance (for IPv6/IPv4 network address and
protocol translation): see the
.Sx IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION
Section for further information.
.It Cm nat64stl Ar name
Pass packet to a stateless NAT64 instance (for IPv6/IPv4 network address and
protocol translation): see the
.Sx IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION
Section for further information.
.It Cm nat64clat Ar name
Pass packet to a CLAT NAT64 instance (for client-side IPv6/IPv4 network address and
protocol translation): see the
.Sx IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION
Section for further information.
.It Cm nptv6 Ar name
Pass packet to a NPTv6 instance (for IPv6-to-IPv6 network prefix translation):
see the
.Sx IPv6-to-IPv6 NETWORK PREFIX TRANSLATION (NPTv6)
Section for further information.
.It Cm pipe Ar pipe_nr
Pass packet to a
.Nm dummynet
.Dq pipe
(for bandwidth limitation, delay, etc.).
See the
.Sx TRAFFIC SHAPER (DUMMYNET) CONFIGURATION
Section for further information.
The search terminates; however, on exit from the pipe and if
the
.Xr sysctl 8
variable
.Va net.inet.ip.fw.one_pass
is not set, the packet is passed again to the firewall code
starting from the next rule.
.It Cm queue Ar queue_nr
Pass packet to a
.Nm dummynet
.Dq queue
(for bandwidth limitation using WF2Q+).
.It Cm reject
(Deprecated).
Synonym for
.Cm unreach host .
.It Cm reset
Discard packets that match this rule, and if the
packet is a TCP packet, try to send a TCP reset (RST) notice.
The search terminates.
.It Cm reset6
Discard packets that match this rule, and if the
packet is a TCP packet, try to send a TCP reset (RST) notice.
The search terminates.
.It Cm skipto Ar number | tablearg
Skip all subsequent rules numbered less than
.Ar number .
The search continues with the first rule numbered
.Ar number
or higher.
It is possible to use the
.Cm tablearg
keyword with a skipto for a
.Em computed
skipto.
Skipto may work either in O(log(N)) or in O(1) depending
on amount of memory and/or sysctl variables.
See the
.Sx SYSCTL VARIABLES
section for more details.
.It Cm call Ar number | tablearg
The current rule number is saved in the internal stack and
ruleset processing continues with the first rule numbered
.Ar number
or higher.
If later a rule with the
.Cm return
action is encountered, the processing returns to the first rule
with number of this
.Cm call
rule plus one or higher
(the same behaviour as with packets returning from
.Xr divert 4
socket after a
.Cm divert
action).
This could be used to make somewhat like an assembly language
.Dq subroutine
calls to rules with common checks for different interfaces, etc.
.Pp
Rule with any number could be called, not just forward jumps as with
.Cm skipto .
So, to prevent endless loops in case of mistakes, both
.Cm call
and
.Cm return
actions don't do any jumps and simply go to the next rule if memory
cannot be allocated or stack overflowed/underflowed.
.Pp
Internally stack for rule numbers is implemented using
.Xr mbuf_tags 9
facility and currently has size of 16 entries.
As mbuf tags are lost when packet leaves the kernel,
.Cm divert
should not be used in subroutines to avoid endless loops
and other undesired effects.
.It Cm return
Takes rule number saved to internal stack by the last
.Cm call
action and returns ruleset processing to the first rule
with number greater than number of corresponding
.Cm call
rule.
See description of the
.Cm call
action for more details.
.Pp
Note that
.Cm return
rules usually end a
.Dq subroutine
and thus are unconditional, but
.Nm
command-line utility currently requires every action except
.Cm check-state
to have body.
While it is sometimes useful to return only on some packets,
usually you want to print just
.Dq return
for readability.
A workaround for this is to use new syntax and
.Fl c
switch:
.Bd -literal -offset indent
# Add a rule without actual body
ipfw add 2999 return via any

# List rules without "from any to any" part
ipfw -c list
.Ed
.Pp
This cosmetic annoyance may be fixed in future releases.
.It Cm tee Ar port
Send a copy of packets matching this rule to the
.Xr divert 4
socket bound to port
.Ar port .
The search continues with the next rule.
.It Cm unreach Ar code
Discard packets that match this rule, and try to send an ICMP
unreachable notice with code
.Ar code ,
where
.Ar code
is a number from 0 to 255, or one of these aliases:
.Cm net , host , protocol , port ,
.Cm needfrag , srcfail , net-unknown , host-unknown ,
.Cm isolated , net-prohib , host-prohib , tosnet ,
.Cm toshost , filter-prohib , host-precedence
or
.Cm precedence-cutoff .
The search terminates.
.It Cm unreach6 Ar code
Discard packets that match this rule, and try to send an ICMPv6
unreachable notice with code
.Ar code ,
where
.Ar code
is a number from 0, 1, 3 or 4, or one of these aliases:
.Cm no-route, admin-prohib, address
or
.Cm port .
The search terminates.
.It Cm netgraph Ar cookie
Divert packet into netgraph with given
.Ar cookie .
The search terminates.
If packet is later returned from netgraph it is either
accepted or continues with the next rule, depending on
.Va net.inet.ip.fw.one_pass
sysctl variable.
.It Cm ngtee Ar cookie
A copy of packet is diverted into netgraph, original
packet continues with the next rule.
See
.Xr ng_ipfw 4
for more information on
.Cm netgraph
and
.Cm ngtee
actions.
.It Cm setfib Ar fibnum | tablearg
The packet is tagged so as to use the FIB (routing table)
.Ar fibnum
in any subsequent forwarding decisions.
In the current implementation, this is limited to the values 0 through 15, see
.Xr setfib 2 .
Processing continues at the next rule.
It is possible to use the
.Cm tablearg
keyword with setfib.
If the tablearg value is not within the compiled range of fibs,
the packet's fib is set to 0.
.It Cm setdscp Ar DSCP | number | tablearg
Set specified DiffServ codepoint for an IPv4/IPv6 packet.
Processing continues at the next rule.
Supported values are:
.Pp
.Cm cs0
.Pq Dv 000000 ,
.Cm cs1
.Pq Dv 001000 ,
.Cm cs2
.Pq Dv 010000 ,
.Cm cs3
.Pq Dv 011000 ,
.Cm cs4
.Pq Dv 100000 ,
.Cm cs5
.Pq Dv 101000 ,
.Cm cs6
.Pq Dv 110000 ,
.Cm cs7
.Pq Dv 111000 ,
.Cm af11
.Pq Dv 001010 ,
.Cm af12
.Pq Dv 001100 ,
.Cm af13
.Pq Dv 001110 ,
.Cm af21
.Pq Dv 010010 ,
.Cm af22
.Pq Dv 010100 ,
.Cm af23
.Pq Dv 010110 ,
.Cm af31
.Pq Dv 011010 ,
.Cm af32
.Pq Dv 011100 ,
.Cm af33
.Pq Dv 011110 ,
.Cm af41
.Pq Dv 100010 ,
.Cm af42
.Pq Dv 100100 ,
.Cm af43
.Pq Dv 100110 ,
.Cm ef
.Pq Dv 101110 ,
.Cm be
.Pq Dv 000000 .
Additionally, DSCP value can be specified by number (0..63).
It is also possible to use the
.Cm tablearg
keyword with setdscp.
If the tablearg value is not within the 0..63 range, lower 6 bits of supplied
value are used.
.It Cm tcp-setmss Ar mss
Set the Maximum Segment Size (MSS) in the TCP segment to value
.Ar mss .
The kernel module
.Cm ipfw_pmod
should be loaded or kernel should have
.Cm options IPFIREWALL_PMOD
to be able use this action.
This command does not change a packet if original MSS value is lower than
specified value.
Both TCP over IPv4 and over IPv6 are supported.
Regardless of matched a packet or not by the
.Cm tcp-setmss
rule, the search continues with the next rule.
.It Cm reass
Queue and reassemble IPv4 fragments.
If the packet is not fragmented, counters are updated and
processing continues with the next rule.
If the packet is the last logical fragment, the packet is reassembled and, if
.Va net.inet.ip.fw.one_pass
is set to 0, processing continues with the next rule.
Otherwise, the packet is allowed to pass and the search terminates.
If the packet is a fragment in the middle of a logical group of fragments,
it is consumed and
processing stops immediately.
.Pp
Fragment handling can be tuned via
.Va net.inet.ip.maxfragpackets
and
.Va net.inet.ip.maxfragsperpacket
which limit, respectively, the maximum number of processable
fragments (default: 800) and
the maximum number of fragments per packet (default: 16).
.Pp
NOTA BENE: since fragments do not contain port numbers,
they should be avoided with the
.Nm reass
rule.
Alternatively, direction-based (like
.Nm in
/
.Nm out
) and source-based (like
.Nm via
) match patterns can be used to select fragments.
.Pp
Usually a simple rule like:
.Bd -literal -offset indent
# reassemble incoming fragments
ipfw add reass all from any to any in
.Ed
.Pp
is all you need at the beginning of your ruleset.
.It Cm abort
Discard packets that match this rule, and if the packet is an SCTP packet,
try to send an SCTP packet containing an ABORT chunk.
The search terminates.
.It Cm abort6
Discard packets that match this rule, and if the packet is an SCTP packet,
try to send an SCTP packet containing an ABORT chunk.
The search terminates.
.El
.Ss RULE BODY
The body of a rule contains zero or more patterns (such as
specific source and destination addresses or ports,
protocol options, incoming or outgoing interfaces, etc.)
that the packet must match in order to be recognised.
In general, the patterns are connected by (implicit)
.Cm and
operators -- i.e., all must match in order for the
rule to match.
Individual patterns can be prefixed by the
.Cm not
operator to reverse the result of the match, as in
.Pp
.Dl "ipfw add 100 allow ip from not 1.2.3.4 to any"
.Pp
Additionally, sets of alternative match patterns
.Pq Em or-blocks
can be constructed by putting the patterns in
lists enclosed between parentheses ( ) or braces { }, and
using the
.Cm or
operator as follows:
.Pp
.Dl "ipfw add 100 allow ip from { x or not y or z } to any"
.Pp
Only one level of parentheses is allowed.
Beware that most shells have special meanings for parentheses
or braces, so it is advisable to put a backslash \\ in front of them
to prevent such interpretations.
.Pp
The body of a rule must in general include a source and destination
address specifier.
The keyword
.Ar any
can be used in various places to specify that the content of
a required field is irrelevant.
.Pp
The rule body has the following format:
.Bd -ragged -offset indent
.Op Ar proto Cm from Ar src Cm to Ar dst
.Op Ar options
.Ed
.Pp
The first part (proto from src to dst) is for backward
compatibility with earlier versions of
.Fx .
In modern
.Fx
any match pattern (including MAC headers, IP protocols,
addresses and ports) can be specified in the
.Ar options
section.
.Pp
Rule fields have the following meaning:
.Bl -tag -width indent
.It Ar proto : protocol | Cm { Ar protocol Cm or ... }
.It Ar protocol : Oo Cm not Oc Ar protocol-name | protocol-number
An IP protocol specified by number or name
(for a complete list see
.Pa /etc/protocols ) ,
or one of the following keywords:
.Bl -tag -width indent
.It Cm ip4 | ipv4
Matches IPv4 packets.
.It Cm ip6 | ipv6
Matches IPv6 packets.
.It Cm ip | all
Matches any packet.
.El
.Pp
The
.Cm ipv6
in
.Cm proto
option will be treated as inner protocol.
And, the
.Cm ipv4
is not available in
.Cm proto
option.
.Pp
The
.Cm { Ar protocol Cm or ... }
format (an
.Em or-block )
is provided for convenience only but its use is deprecated.
.It Ar src No and Ar dst : Bro Cm addr | Cm { Ar addr Cm or ... } Brc Op Oo Cm not Oc Ar ports
An address (or a list, see below)
optionally followed by
.Ar ports
specifiers.
.Pp
The second format
.Em ( or-block
with multiple addresses) is provided for convenience only and
its use is discouraged.
.It Ar addr : Oo Cm not Oc Bro
.Cm any | me | me6 |
.Cm table Ns Pq Ar name Ns Op , Ns Ar value
.Ar | addr-list | addr-set
.Brc
.Bl -tag -width indent
.It Cm any
Matches any IP address.
.It Cm me
Matches any IP address configured on an interface in the system.
.It Cm me6
Matches any IPv6 address configured on an interface in the system.
The address list is evaluated at the time the packet is
analysed.
.It Cm table Ns Pq Ar name Ns Op , Ns Ar value
Matches any IPv4 or IPv6 address for which an entry exists in the lookup table
.Ar number .
If an optional 32-bit unsigned
.Ar value
is also specified, an entry will match only if it has this value.
See the
.Sx LOOKUP TABLES
section below for more information on lookup tables.
.El
.It Ar addr-list : ip-addr Ns Op Ns , Ns Ar addr-list
.It Ar ip-addr :
A host or subnet address specified in one of the following ways:
.Bl -tag -width indent
.It Ar numeric-ip | hostname
Matches a single IPv4 address, specified as dotted-quad or a hostname.
Hostnames are resolved at the time the rule is added to the firewall list.
.It Ar addr Ns / Ns Ar masklen
Matches all addresses with base
.Ar addr
(specified as an IP address, a network number, or a hostname)
and mask width of
.Cm masklen
bits.
As an example, 1.2.3.4/25 or 1.2.3.0/25 will match
all IP numbers from 1.2.3.0 to 1.2.3.127 .
.It Ar addr Ns : Ns Ar mask
Matches all addresses with base
.Ar addr
(specified as an IP address, a network number, or a hostname)
and the mask of
.Ar mask ,
specified as a dotted quad.
As an example, 1.2.3.4:255.0.255.0 or 1.0.3.0:255.0.255.0 will match
1.*.3.*.
This form is advised only for non-contiguous
masks.
It is better to resort to the
.Ar addr Ns / Ns Ar masklen
format for contiguous masks, which is more compact and less
error-prone.
.El
.It Ar addr-set : addr Ns Oo Ns / Ns Ar masklen Oc Ns Cm { Ns Ar list Ns Cm }
.It Ar list : Bro Ar num | num-num Brc Ns Op Ns , Ns Ar list
Matches all addresses with base address
.Ar addr
(specified as an IP address, a network number, or a hostname)
and whose last byte is in the list between braces { } .
Note that there must be no spaces between braces and
numbers (spaces after commas are allowed).
Elements of the list can be specified as single entries
or ranges.
The
.Ar masklen
field is used to limit the size of the set of addresses,
and can have any value between 24 and 32.
If not specified,
it will be assumed as 24.
.br
This format is particularly useful to handle sparse address sets
within a single rule.
Because the matching occurs using a
bitmask, it takes constant time and dramatically reduces
the complexity of rulesets.
.br
As an example, an address specified as 1.2.3.4/24{128,35-55,89}
or 1.2.3.0/24{128,35-55,89}
will match the following IP addresses:
.br
1.2.3.128, 1.2.3.35 to 1.2.3.55, 1.2.3.89 .
.It Ar addr6-list : ip6-addr Ns Op Ns , Ns Ar addr6-list
.It Ar ip6-addr :
A host or subnet specified one of the following ways:
.Bl -tag -width indent
.It Ar numeric-ip | hostname
Matches a single IPv6 address as allowed by
.Xr inet_pton 3
or a hostname.
Hostnames are resolved at the time the rule is added to the firewall
list.
.It Ar addr Ns / Ns Ar masklen
Matches all IPv6 addresses with base
.Ar addr
(specified as allowed by
.Xr inet_pton
or a hostname)
and mask width of
.Cm masklen
bits.
.It Ar addr Ns / Ns Ar mask
Matches all IPv6 addresses with base
.Ar addr
(specified as allowed by
.Xr inet_pton
or a hostname)
and the mask of
.Ar mask ,
specified as allowed by
.Xr inet_pton .
As an example, fe::640:0:0/ffff::ffff:ffff:0:0 will match
fe:*:*:*:0:640:*:*.
This form is advised only for non-contiguous
masks.
It is better to resort to the
.Ar addr Ns / Ns Ar masklen
format for contiguous masks, which is more compact and less
error-prone.
.El
.Pp
No support for sets of IPv6 addresses is provided because IPv6 addresses
are typically random past the initial prefix.
.It Ar ports : Bro Ar port | port Ns \&- Ns Ar port Ns Brc Ns Op , Ns Ar ports
For protocols which support port numbers (such as SCTP, TCP and UDP), optional
.Cm ports
may be specified as one or more ports or port ranges, separated
by commas but no spaces, and an optional
.Cm not
operator.
The
.Ql \&-
notation specifies a range of ports (including boundaries).
.Pp
Service names (from
.Pa /etc/services )
may be used instead of numeric port values.
The length of the port list is limited to 30 ports or ranges,
though one can specify larger ranges by using an
.Em or-block
in the
.Cm options
section of the rule.
.Pp
A backslash
.Pq Ql \e
can be used to escape the dash
.Pq Ql -
character in a service name (from a shell, the backslash must be
typed twice to avoid the shell itself interpreting it as an escape
character).
.Pp
.Dl "ipfw add count tcp from any ftp\e\e-data-ftp to any"
.Pp
Fragmented packets which have a non-zero offset (i.e., not the first
fragment) will never match a rule which has one or more port
specifications.
See the
.Cm frag
option for details on matching fragmented packets.
.El
.Ss RULE OPTIONS (MATCH PATTERNS)
Additional match patterns can be used within
rules.
Zero or more of these so-called
.Em options
can be present in a rule, optionally prefixed by the
.Cm not
operand, and possibly grouped into
.Em or-blocks .
.Pp
The following match patterns can be used (listed in alphabetical order):
.Bl -tag -width indent
.It Cm // this is a comment.
Inserts the specified text as a comment in the rule.
Everything following // is considered as a comment and stored in the rule.
You can have comment-only rules, which are listed as having a
.Cm count
action followed by the comment.
.It Cm bridged
Alias for
.Cm layer2 .
.It Cm defer-immediate-action | defer-action
A rule with this option will not perform normal action
upon a match.
This option is intended to be used with
.Cm record-state
or
.Cm keep-state
as the dynamic rule, created but ignored on match, will work
as intended.
Rules with both
.Cm record-state
and
.Cm defer-immediate-action
create a dynamic rule and continue with the next rule without actually
performing the action part of this rule.
When the rule is later activated via the state table, the action is
performed as usual.
.It Cm diverted
Matches only packets generated by a divert socket.
.It Cm diverted-loopback
Matches only packets coming from a divert socket back into the IP stack
input for delivery.
.It Cm diverted-output
Matches only packets going from a divert socket back outward to the IP
stack output for delivery.
.It Cm dst-ip Ar ip-address
Matches IPv4 packets whose destination IP is one of the address(es)
specified as argument.
.It Bro Cm dst-ip6 | dst-ipv6 Brc Ar ip6-address
Matches IPv6 packets whose destination IP is one of the address(es)
specified as argument.
.It Cm dst-port Ar ports
Matches IP packets whose destination port is one of the port(s)
specified as argument.
.It Cm established
Matches TCP packets that have the RST or ACK bits set.
.It Cm ext6hdr Ar header
Matches IPv6 packets containing the extended header given by
.Ar header .
Supported headers are:
.Pp
Fragment,
.Pq Cm frag ,
Hop-to-hop options
.Pq Cm hopopt ,
any type of Routing Header
.Pq Cm route ,
Source routing Routing Header Type 0
.Pq Cm rthdr0 ,
Mobile IPv6 Routing Header Type 2
.Pq Cm rthdr2 ,
Destination options
.Pq Cm dstopt ,
IPSec authentication headers
.Pq Cm ah ,
and IPsec encapsulated security payload headers
.Pq Cm esp .
.It Cm fib Ar fibnum
Matches a packet that has been tagged to use
the given FIB (routing table) number.
.It Cm flow Ar table Ns Pq Ar name Ns Op , Ns Ar value
Search for the flow entry in lookup table
.Ar name .
If not found, the match fails.
Otherwise, the match succeeds and
.Cm tablearg
is set to the value extracted from the table.
.Pp
This option can be useful to quickly dispatch traffic based on
certain packet fields.
See the
.Sx LOOKUP TABLES
section below for more information on lookup tables.
.It Cm flow-id Ar labels
Matches IPv6 packets containing any of the flow labels given in
.Ar labels .
.Ar labels
is a comma separated list of numeric flow labels.
.It Cm frag Ar spec
Matches IPv4 packets whose
.Cm ip_off
field contains the comma separated list of IPv4 fragmentation
options specified in
.Ar spec .
The recognized options are:
.Cm df
.Pq Dv don't fragment ,
.Cm mf
.Pq Dv more fragments ,
.Cm rf
.Pq Dv reserved fragment bit
.Cm offset
.Pq Dv non-zero fragment offset .
The absence of a particular options may be denoted
with a
.Ql \&! .
.Pp
Empty list of options defaults to matching on non-zero fragment offset.
Such rule would match all not the first fragment datagrams,
both IPv4 and IPv6.
This is a backward compatibility with older rulesets.
.It Cm gid Ar group
Matches all TCP or UDP packets sent by or received for a
.Ar group .
A
.Ar group
may be specified by name or number.
.It Cm jail Ar jail
Matches all TCP or UDP packets sent by or received for the
jail whose ID or name is
.Ar jail .
.It Cm icmptypes Ar types
Matches ICMP packets whose ICMP type is in the list
.Ar types .
The list may be specified as any combination of
individual types (numeric) separated by commas.
.Em Ranges are not allowed .
The supported ICMP types are:
.Pp
echo reply
.Pq Cm 0 ,
destination unreachable
.Pq Cm 3 ,
source quench
.Pq Cm 4 ,
redirect
.Pq Cm 5 ,
echo request
.Pq Cm 8 ,
router advertisement
.Pq Cm 9 ,
router solicitation
.Pq Cm 10 ,
time-to-live exceeded
.Pq Cm 11 ,
IP header bad
.Pq Cm 12 ,
timestamp request
.Pq Cm 13 ,
timestamp reply
.Pq Cm 14 ,
information request
.Pq Cm 15 ,
information reply
.Pq Cm 16 ,
address mask request
.Pq Cm 17
and address mask reply
.Pq Cm 18 .
.It Cm icmp6types Ar types
Matches ICMP6 packets whose ICMP6 type is in the list of
.Ar types .
The list may be specified as any combination of
individual types (numeric) separated by commas.
.Em Ranges are not allowed .
.It Cm in | out
Matches incoming or outgoing packets, respectively.
.Cm in
and
.Cm out
are mutually exclusive (in fact,
.Cm out
is implemented as
.Cm not in Ns No ).
.It Cm ipid Ar id-list
Matches IPv4 packets whose
.Cm ip_id
field has value included in
.Ar id-list ,
which is either a single value or a list of values or ranges
specified in the same way as
.Ar ports .
.It Cm iplen Ar len-list
Matches IP packets whose total length, including header and data, is
in the set
.Ar len-list ,
which is either a single value or a list of values or ranges
specified in the same way as
.Ar ports .
.It Cm ipoptions Ar spec
Matches packets whose IPv4 header contains the comma separated list of
options specified in
.Ar spec .
The supported IP options are:
.Pp
.Cm ssrr
(strict source route),
.Cm lsrr
(loose source route),
.Cm rr
(record packet route) and
.Cm ts
(timestamp).
The absence of a particular option may be denoted
with a
.Ql \&! .
.It Cm ipprecedence Ar precedence
Matches IPv4 packets whose precedence field is equal to
.Ar precedence .
.It Cm ipsec
Matches packets that have IPSEC history associated with them
(i.e., the packet comes encapsulated in IPSEC, the kernel
has IPSEC support, and can correctly decapsulate it).
.Pp
Note that specifying
.Cm ipsec
is different from specifying
.Cm proto Ar ipsec
as the latter will only look at the specific IP protocol field,
irrespective of IPSEC kernel support and the validity of the IPSEC data.
.Pp
Further note that this flag is silently ignored in kernels without
IPSEC support.
It does not affect rule processing when given and the
rules are handled as if with no
.Cm ipsec
flag.
.It Cm iptos Ar spec
Matches IPv4 packets whose
.Cm tos
field contains the comma separated list of
service types specified in
.Ar spec .
The supported IP types of service are:
.Pp
.Cm lowdelay
.Pq Dv IPTOS_LOWDELAY ,
.Cm throughput
.Pq Dv IPTOS_THROUGHPUT ,
.Cm reliability
.Pq Dv IPTOS_RELIABILITY ,
.Cm mincost
.Pq Dv IPTOS_MINCOST ,
.Cm congestion
.Pq Dv IPTOS_ECN_CE .
The absence of a particular type may be denoted
with a
.Ql \&! .
.It Cm dscp spec Ns Op , Ns Ar spec
Matches IPv4/IPv6 packets whose
.Cm DS
field value is contained in
.Ar spec
mask.
Multiple values can be specified via
the comma separated list.
Value can be one of keywords used in
.Cm setdscp
action or exact number.
.It Cm ipttl Ar ttl-list
Matches IPv4 packets whose time to live is included in
.Ar ttl-list ,
which is either a single value or a list of values or ranges
specified in the same way as
.Ar ports .
.It Cm ipversion Ar ver
Matches IP packets whose IP version field is
.Ar ver .
.It Cm keep-state Op Ar :flowname
Upon a match, the firewall will create a dynamic rule, whose
default behaviour is to match bidirectional traffic between
source and destination IP/port using the same protocol.
The rule has a limited lifetime (controlled by a set of
.Xr sysctl 8
variables), and the lifetime is refreshed every time a matching
packet is found.
The
.Ar :flowname
is used to assign additional to addresses, ports and protocol parameter
to dynamic rule.
It can be used for more accurate matching by
.Cm check-state
rule.
The
.Cm :default
keyword is special name used for compatibility with old rulesets.
.It Cm layer2
Matches only layer2 packets, i.e., those passed to
.Nm
from ether_demux() and ether_output_frame().
.It Cm limit Bro Cm src-addr | src-port | dst-addr | dst-port Brc Ar N Op Ar :flowname
The firewall will only allow
.Ar N
connections with the same
set of parameters as specified in the rule.
One or more
of source and destination addresses and ports can be
specified.
.It Cm lookup Bro Cm dst-ip | dst-port | src-ip | src-port | uid | jail Brc Ar name
Search an entry in lookup table
.Ar name
that matches the field specified as argument.
If not found, the match fails.
Otherwise, the match succeeds and
.Cm tablearg
is set to the value extracted from the table.
.Pp
This option can be useful to quickly dispatch traffic based on
certain packet fields.
See the
.Sx LOOKUP TABLES
section below for more information on lookup tables.
.It Cm { MAC | mac } Ar dst-mac src-mac
Match packets with a given
.Ar dst-mac
and
.Ar src-mac
addresses, specified as the
.Cm any
keyword (matching any MAC address), or six groups of hex digits
separated by colons,
and optionally followed by a mask indicating the significant bits.
The mask may be specified using either of the following methods:
.Bl -enum -width indent
.It
A slash
.Pq /
followed by the number of significant bits.
For example, an address with 33 significant bits could be specified as:
.Pp
.Dl "MAC 10:20:30:40:50:60/33 any"
.It
An ampersand
.Pq &
followed by a bitmask specified as six groups of hex digits separated
by colons.
For example, an address in which the last 16 bits are significant could
be specified as:
.Pp
.Dl "MAC 10:20:30:40:50:60&00:00:00:00:ff:ff any"
.Pp
Note that the ampersand character has a special meaning in many shells
and should generally be escaped.
.El
Note that the order of MAC addresses (destination first,
source second) is
the same as on the wire, but the opposite of the one used for
IP addresses.
.It Cm mac-type Ar mac-type
Matches packets whose Ethernet Type field
corresponds to one of those specified as argument.
.Ar mac-type
is specified in the same way as
.Cm port numbers
(i.e., one or more comma-separated single values or ranges).
You can use symbolic names for known values such as
.Em vlan , ipv4, ipv6 .
Values can be entered as decimal or hexadecimal (if prefixed by 0x),
and they are always printed as hexadecimal (unless the
.Cm -N
option is used, in which case symbolic resolution will be attempted).
.It Cm proto Ar protocol
Matches packets with the corresponding IP protocol.
.It Cm record-state
Upon a match, the firewall will create a dynamic rule as if
.Cm keep-state
was specified.
However, this option doesn't imply an implicit
.Cm check-state
in contrast to
.Cm keep-state .
.It Cm recv | xmit | via Brq Ar ifX | Ar if Ns Cm * | Ar table Ns Po Ar name Ns Oo , Ns Ar value Oc Pc | Ar ipno | Ar any
Matches packets received, transmitted or going through,
respectively, the interface specified by exact name
.Po Ar ifX Pc ,
by device name
.Po Ar if* Pc ,
by IP address, or through some interface.
Table
.Ar name
may be used to match interface by its kernel ifindex.
See the
.Sx LOOKUP TABLES
section below for more information on lookup tables.
.Pp
The
.Cm via
keyword causes the interface to always be checked.
If
.Cm recv
or
.Cm xmit
is used instead of
.Cm via ,
then only the receive or transmit interface (respectively)
is checked.
By specifying both, it is possible to match packets based on
both receive and transmit interface, e.g.:
.Pp
.Dl "ipfw add deny ip from any to any out recv ed0 xmit ed1"
.Pp
The
.Cm recv
interface can be tested on either incoming or outgoing packets,
while the
.Cm xmit
interface can only be tested on outgoing packets.
So
.Cm out
is required (and
.Cm in
is invalid) whenever
.Cm xmit
is used.
.Pp
A packet might not have a receive or transmit interface: packets
originating from the local host have no receive interface,
while packets destined for the local host have no transmit
interface.
.It Cm set-limit Bro Cm src-addr | src-port | dst-addr | dst-port Brc Ar N
Works like
.Cm limit
but does not have an implicit
.Cm check-state
attached to it.
.It Cm setup
Matches TCP packets that have the SYN bit set but no ACK bit.
This is the short form of
.Dq Li tcpflags\ syn,!ack .
.It Cm sockarg
Matches packets that are associated to a local socket and
for which the SO_USER_COOKIE socket option has been set
to a non-zero value.
As a side effect, the value of the
option is made available as
.Cm tablearg
value, which in turn can be used as
.Cm skipto
or
.Cm pipe
number.
.It Cm src-ip Ar ip-address
Matches IPv4 packets whose source IP is one of the address(es)
specified as an argument.
.It Cm src-ip6 Ar ip6-address
Matches IPv6 packets whose source IP is one of the address(es)
specified as an argument.
.It Cm src-port Ar ports
Matches IP packets whose source port is one of the port(s)
specified as argument.
.It Cm tagged Ar tag-list
Matches packets whose tags are included in
.Ar tag-list ,
which is either a single value or a list of values or ranges
specified in the same way as
.Ar ports .
Tags can be applied to the packet using
.Cm tag
rule action parameter (see it's description for details on tags).
.It Cm tcpack Ar ack
TCP packets only.
Match if the TCP header acknowledgment number field is set to
.Ar ack .
.It Cm tcpdatalen Ar tcpdatalen-list
Matches TCP packets whose length of TCP data is
.Ar tcpdatalen-list ,
which is either a single value or a list of values or ranges
specified in the same way as
.Ar ports .
.It Cm tcpflags Ar spec
TCP packets only.
Match if the TCP header contains the comma separated list of
flags specified in
.Ar spec .
The supported TCP flags are:
.Pp
.Cm fin ,
.Cm syn ,
.Cm rst ,
.Cm psh ,
.Cm ack
and
.Cm urg .
The absence of a particular flag may be denoted
with a
.Ql \&! .
A rule which contains a
.Cm tcpflags
specification can never match a fragmented packet which has
a non-zero offset.
See the
.Cm frag
option for details on matching fragmented packets.
.It Cm tcpmss Ar tcpmss-list
Matches TCP packets whose MSS (maximum segment size) value is set to
.Ar tcpmss-list ,
which is either a single value or a list of values or ranges
specified in the same way as
.Ar ports .
.It Cm tcpseq Ar seq
TCP packets only.
Match if the TCP header sequence number field is set to
.Ar seq .
.It Cm tcpwin Ar tcpwin-list
Matches TCP packets whose  header window field is set to
.Ar tcpwin-list ,
which is either a single value or a list of values or ranges
specified in the same way as
.Ar ports .
.It Cm tcpoptions Ar spec
TCP packets only.
Match if the TCP header contains the comma separated list of
options specified in
.Ar spec .
The supported TCP options are:
.Pp
.Cm mss
(maximum segment size),
.Cm window
(tcp window advertisement),
.Cm sack
(selective ack),
.Cm ts
(rfc1323 timestamp) and
.Cm cc
(rfc1644 t/tcp connection count).
The absence of a particular option may be denoted
with a
.Ql \&! .
.It Cm uid Ar user
Match all TCP or UDP packets sent by or received for a
.Ar user .
A
.Ar user
may be matched by name or identification number.
.It Cm verrevpath
For incoming packets,
a routing table lookup is done on the packet's source address.
If the interface on which the packet entered the system matches the
outgoing interface for the route,
the packet matches.
If the interfaces do not match up,
the packet does not match.
All outgoing packets or packets with no incoming interface match.
.Pp
The name and functionality of the option is intentionally similar to
the Cisco IOS command:
.Pp
.Dl ip verify unicast reverse-path
.Pp
This option can be used to make anti-spoofing rules to reject all
packets with source addresses not from this interface.
See also the option
.Cm antispoof .
.It Cm versrcreach
For incoming packets,
a routing table lookup is done on the packet's source address.
If a route to the source address exists, but not the default route
or a blackhole/reject route, the packet matches.
Otherwise, the packet does not match.
All outgoing packets match.
.Pp
The name and functionality of the option is intentionally similar to
the Cisco IOS command:
.Pp
.Dl ip verify unicast source reachable-via any
.Pp
This option can be used to make anti-spoofing rules to reject all
packets whose source address is unreachable.
.It Cm antispoof
For incoming packets, the packet's source address is checked if it
belongs to a directly connected network.
If the network is directly connected, then the interface the packet
came on in is compared to the interface the network is connected to.
When incoming interface and directly connected interface are not the
same, the packet does not match.
Otherwise, the packet does match.
All outgoing packets match.
.Pp
This option can be used to make anti-spoofing rules to reject all
packets that pretend to be from a directly connected network but do
not come in through that interface.
This option is similar to but more restricted than
.Cm verrevpath
because it engages only on packets with source addresses of directly
connected networks instead of all source addresses.
.El
.Sh LOOKUP TABLES
Lookup tables are useful to handle large sparse sets of
addresses or other search keys (e.g., ports, jail IDs, interface names).
In the rest of this section we will use the term ``key''.
Table name needs to match the following spec:
.Ar table-name .
Tables with the same name can be created in different
.Ar sets .
However, rule links to the tables in
.Ar set 0
by default.
This behavior can be controlled by
.Va net.inet.ip.fw.tables_sets
variable.
See the
.Sx SETS OF RULES
section for more information.
There may be up to 65535 different lookup tables.
.Pp
The following table types are supported:
.Bl -tag -width indent
.It Ar table-type : Ar addr | iface | number | flow
.It Ar table-key : Ar addr Ns Oo / Ns Ar masklen Oc | iface-name | number | flow-spec
.It Ar flow-spec : Ar flow-field Ns Op , Ns Ar flow-spec
.It Ar flow-field : src-ip | proto | src-port | dst-ip | dst-port
.It Cm addr
Matches IPv4 or IPv6 address.
Each entry is represented by an
.Ar addr Ns Op / Ns Ar masklen
and will match all addresses with base
.Ar addr
(specified as an IPv4/IPv6 address, or a hostname) and mask width of
.Ar masklen
bits.
If
.Ar masklen
is not specified, it defaults to 32 for IPv4 and 128 for IPv6.
When looking up an IP address in a table, the most specific
entry will match.
.It Cm iface
Matches interface names.
Each entry is represented by string treated as interface name.
Wildcards are not supported.
.It Cm number
Matches protocol ports, uids/gids or jail IDs.
Each entry is represented by 32-bit unsigned integer.
Ranges are not supported.
.It Cm flow
Matches packet fields specified by
.Ar flow
type suboptions with table entries.
.El
.Pp
Tables require explicit creation via
.Cm create
before use.
.Pp
The following creation options are supported:
.Bl -tag -width indent
.It Ar create-options : Ar create-option | create-options
.It Ar create-option : Cm type Ar table-type | Cm valtype Ar value-mask | Cm algo Ar algo-desc |
.Cm limit Ar number | Cm locked | Cm missing | Cm or-flush
.It Cm type
Table key type.
.It Cm valtype
Table value mask.
.It Cm algo
Table algorithm to use (see below).
.It Cm limit
Maximum number of items that may be inserted into table.
.It Cm locked
Restrict any table modifications.
.It Cm missing
Do not fail if table already exists and has exactly same options as new one.
.It Cm or-flush
Flush existing table with same name instead of returning error.
Implies
.Cm missing
so existing table must be compatible with new one.
.El
.Pp
Some of these options may be modified later via
.Cm modify
keyword.
The following options can be changed:
.Bl -tag -width indent
.It Ar modify-options : Ar modify-option | modify-options
.It Ar modify-option : Cm limit Ar number
.It Cm limit
Alter maximum number of items that may be inserted into table.
.El
.Pp
Additionally, table can be locked or unlocked using
.Cm lock
or
.Cm unlock
commands.
.Pp
Tables of the same
.Ar type
can be swapped with each other using
.Cm swap Ar name
command.
Swap may fail if tables limits are set and data exchange
would result in limits hit.
Operation is performed atomically.
.Pp
One or more entries can be added to a table at once using
.Cm add
command.
Addition of all items are performed atomically.
By default, error in addition of one entry does not influence
addition of other entries.
However, non-zero error code is returned in that case.
Special
.Cm atomic
keyword may be specified before
.Cm add
to indicate all-or-none add request.
.Pp
One or more entries can be removed from a table at once using
.Cm delete
command.
By default, error in removal of one entry does not influence
removing of other entries.
However, non-zero error code is returned in that case.
.Pp
It may be possible to check what entry will be found on particular
.Ar table-key
using
.Cm lookup
.Ar table-key
command.
This functionality is optional and may be unsupported in some algorithms.
.Pp
The following operations can be performed on
.Ar one
or
.Cm all
tables:
.Bl -tag -width indent
.It Cm list
List all entries.
.It Cm flush
Removes all entries.
.It Cm info
Shows generic table information.
.It Cm detail
Shows generic table information and algo-specific data.
.El
.Pp
The following lookup algorithms are supported:
.Bl -tag -width indent
.It Ar algo-desc : algo-name | "algo-name algo-data"
.It Ar algo-name: Ar addr:radix | addr:hash | iface:array | number:array | flow:hash
.It Cm addr:radix
Separate Radix trees for IPv4 and IPv6, the same way as the routing table (see
.Xr route 4 ) .
Default choice for
.Ar addr
type.
.It Cm addr:hash
Separate auto-growing hashes for IPv4 and IPv6.
Accepts entries with the same mask length specified initially via
.Cm "addr:hash masks=/v4,/v6"
algorithm creation options.
Assume /32 and /128 masks by default.
Search removes host bits (according to mask) from supplied address and checks
resulting key in appropriate hash.
Mostly optimized for /64 and byte-ranged IPv6 masks.
.It Cm iface:array
Array storing sorted indexes for entries which are presented in the system.
Optimized for very fast lookup.
.It Cm number:array
Array storing sorted u32 numbers.
.It Cm flow:hash
Auto-growing hash storing flow entries.
Search calculates hash on required packet fields and searches for matching
entries in selected bucket.
.El
.Pp
The
.Cm tablearg
feature provides the ability to use a value, looked up in the table, as
the argument for a rule action, action parameter or rule option.
This can significantly reduce number of rules in some configurations.
If two tables are used in a rule, the result of the second (destination)
is used.
.Pp
Each record may hold one or more values according to
.Ar value-mask .
This mask is set on table creation via
.Cm valtype
option.
The following value types are supported:
.Bl -tag -width indent
.It Ar value-mask : Ar value-type Ns Op , Ns Ar value-mask
.It Ar value-type : Ar skipto | pipe | fib | nat | dscp | tag | divert |
.Ar netgraph | limit | ipv4
.It Cm skipto
rule number to jump to.
.It Cm pipe
Pipe number to use.
.It Cm fib
fib number to match/set.
.It Cm nat
nat number to jump to.
.It Cm dscp
dscp value to match/set.
.It Cm tag
tag number to match/set.
.It Cm divert
port number to divert traffic to.
.It Cm netgraph
hook number to move packet to.
.It Cm limit
maximum number of connections.
.It Cm ipv4
IPv4 nexthop to fwd packets to.
.It Cm ipv6
IPv6 nexthop to fwd packets to.
.El
.Pp
The
.Cm tablearg
argument can be used with the following actions:
.Cm nat, pipe , queue, divert, tee, netgraph, ngtee, fwd, skipto, setfib,
action parameters:
.Cm tag, untag,
rule options:
.Cm limit, tagged.
.Pp
When used with the
.Cm skipto
action, the user should be aware that the code will walk the ruleset
up to a rule equal to, or past, the given number.
.Pp
See the
.Sx EXAMPLES
Section for example usage of tables and the tablearg keyword.
.Sh SETS OF RULES
Each rule or table belongs to one of 32 different
.Em sets
, numbered 0 to 31.
Set 31 is reserved for the default rule.
.Pp
By default, rules or tables are put in set 0, unless you use the
.Cm set N
attribute when adding a new rule or table.
Sets can be individually and atomically enabled or disabled,
so this mechanism permits an easy way to store multiple configurations
of the firewall and quickly (and atomically) switch between them.
.Pp
By default, tables from set 0 are referenced when adding rule with
table opcodes regardless of rule set.
This behavior can be changed by setting
.Va net.inet.ip.fw.tables_sets
variable to 1.
Rule's set will then be used for table references.
.Pp
The command to enable/disable sets is
.Bd -ragged -offset indent
.Nm
.Cm set Oo Cm disable Ar number ... Oc Op Cm enable Ar number ...
.Ed
.Pp
where multiple
.Cm enable
or
.Cm disable
sections can be specified.
Command execution is atomic on all the sets specified in the command.
By default, all sets are enabled.
.Pp
When you disable a set, its rules behave as if they do not exist
in the firewall configuration, with only one exception:
.Bd -ragged -offset indent
dynamic rules created from a rule before it had been disabled
will still be active until they expire.
In order to delete
dynamic rules you have to explicitly delete the parent rule
which generated them.
.Ed
.Pp
The set number of rules can be changed with the command
.Bd -ragged -offset indent
.Nm
.Cm set move
.Brq Cm rule Ar rule-number | old-set
.Cm to Ar new-set
.Ed
.Pp
Also, you can atomically swap two rulesets with the command
.Bd -ragged -offset indent
.Nm
.Cm set swap Ar first-set second-set
.Ed
.Pp
See the
.Sx EXAMPLES
Section on some possible uses of sets of rules.
.Sh STATEFUL FIREWALL
Stateful operation is a way for the firewall to dynamically
create rules for specific flows when packets that
match a given pattern are detected.
Support for stateful
operation comes through the
.Cm check-state , keep-state , record-state , limit
and
.Cm set-limit
options of
.Nm rules .
.Pp
Dynamic rules are created when a packet matches a
.Cm keep-state ,
.Cm record-state ,
.Cm limit
or
.Cm set-limit
rule, causing the creation of a
.Em dynamic
rule which will match all and only packets with
a given
.Em protocol
between a
.Em src-ip/src-port dst-ip/dst-port
pair of addresses
.Em ( src
and
.Em dst
are used here only to denote the initial match addresses, but they
are completely equivalent afterwards).
Rules created by
.Cm keep-state
option also have a
.Ar :flowname
taken from it.
This name is used in matching together with addresses, ports and protocol.
Dynamic rules will be checked at the first
.Cm check-state, keep-state
or
.Cm limit
occurrence, and the action performed upon a match will be the same
as in the parent rule.
.Pp
Note that no additional attributes other than protocol and IP addresses
and ports and :flowname are checked on dynamic rules.
.Pp
The typical use of dynamic rules is to keep a closed firewall configuration,
but let the first TCP SYN packet from the inside network install a
dynamic rule for the flow so that packets belonging to that session
will be allowed through the firewall:
.Pp
.Dl "ipfw add check-state :OUTBOUND"
.Dl "ipfw add allow tcp from my-subnet to any setup keep-state :OUTBOUND"
.Dl "ipfw add deny tcp from any to any"
.Pp
A similar approach can be used for UDP, where an UDP packet coming
from the inside will install a dynamic rule to let the response through
the firewall:
.Pp
.Dl "ipfw add check-state :OUTBOUND"
.Dl "ipfw add allow udp from my-subnet to any keep-state :OUTBOUND"
.Dl "ipfw add deny udp from any to any"
.Pp
Dynamic rules expire after some time, which depends on the status
of the flow and the setting of some
.Cm sysctl
variables.
See Section
.Sx SYSCTL VARIABLES
for more details.
For TCP sessions, dynamic rules can be instructed to periodically
send keepalive packets to refresh the state of the rule when it is
about to expire.
.Pp
See Section
.Sx EXAMPLES
for more examples on how to use dynamic rules.
.Sh TRAFFIC SHAPER (DUMMYNET) CONFIGURATION
.Nm
is also the user interface for the
.Nm dummynet
traffic shaper, packet scheduler and network emulator, a subsystem that
can artificially queue, delay or drop packets
emulating the behaviour of certain network links
or queueing systems.
.Pp
.Nm dummynet
operates by first using the firewall to select packets
using any match pattern that can be used in
.Nm
rules.
Matching packets are then passed to either of two
different objects, which implement the traffic regulation:
.Bl -hang -offset XXXX
.It Em pipe
A
.Em pipe
emulates a
.Em link
with given bandwidth and propagation delay,
driven by a FIFO scheduler and a single queue with programmable
queue size and packet loss rate.
Packets are appended to the queue as they come out from
.Nm ipfw ,
and then transferred in FIFO order to the link at the desired rate.
.It Em queue
A
.Em queue
is an abstraction used to implement packet scheduling
using one of several packet scheduling algorithms.
Packets sent to a
.Em queue
are first grouped into flows according to a mask on the 5-tuple.
Flows are then passed to the scheduler associated to the
.Em queue ,
and each flow uses scheduling parameters (weight and others)
as configured in the
.Em queue
itself.
A scheduler in turn is connected to an emulated link,
and arbitrates the link's bandwidth among backlogged flows according to
weights and to the features of the scheduling algorithm in use.
.El
.Pp
In practice,
.Em pipes
can be used to set hard limits to the bandwidth that a flow can use, whereas
.Em queues
can be used to determine how different flows share the available bandwidth.
.Pp
A graphical representation of the binding of queues,
flows, schedulers and links is below.
.Bd -literal -offset indent
                 (flow_mask|sched_mask)  sched_mask
         +---------+   weight Wx  +-------------+
         |         |->-[flow]-->--|             |-+
    -->--| QUEUE x |   ...        |             | |
         |         |->-[flow]-->--| SCHEDuler N | |
         +---------+              |             | |
             ...                  |             +--[LINK N]-->--
         +---------+   weight Wy  |             | +--[LINK N]-->--
         |         |->-[flow]-->--|             | |
    -->--| QUEUE y |   ...        |             | |
         |         |->-[flow]-->--|             | |
         +---------+              +-------------+ |
                                    +-------------+
.Ed
It is important to understand the role of the SCHED_MASK
and FLOW_MASK, which are configured through the commands
.Dl "ipfw sched N config mask SCHED_MASK ..."
and
.Dl "ipfw queue X config mask FLOW_MASK ..." .
.Pp
The SCHED_MASK is used to assign flows to one or more
scheduler instances, one for each
value of the packet's 5-tuple after applying SCHED_MASK.
As an example, using ``src-ip 0xffffff00'' creates one instance
for each /24 destination subnet.
.Pp
The FLOW_MASK, together with the SCHED_MASK, is used to split
packets into flows.
As an example, using
``src-ip 0x000000ff''
together with the previous SCHED_MASK makes a flow for
each individual source address.
In turn, flows for each /24
subnet will be sent to the same scheduler instance.
.Pp
The above diagram holds even for the
.Em pipe
case, with the only restriction that a
.Em pipe
only supports a SCHED_MASK, and forces the use of a FIFO
scheduler (these are for backward compatibility reasons;
in fact, internally, a
.Nm dummynet's
pipe is implemented exactly as above).
.Pp
There are two modes of
.Nm dummynet
operation:
.Dq normal
and
.Dq fast .
The
.Dq normal
mode tries to emulate a real link: the
.Nm dummynet
scheduler ensures that the packet will not leave the pipe faster than it
would on the real link with a given bandwidth.
The
.Dq fast
mode allows certain packets to bypass the
.Nm dummynet
scheduler (if packet flow does not exceed pipe's bandwidth).
This is the reason why the
.Dq fast
mode requires less CPU cycles per packet (on average) and packet latency
can be significantly lower in comparison to a real link with the same
bandwidth.
The default mode is
.Dq normal .
The
.Dq fast
mode can be enabled by setting the
.Va net.inet.ip.dummynet.io_fast
.Xr sysctl 8
variable to a non-zero value.
.Pp
.Ss PIPE, QUEUE AND SCHEDULER CONFIGURATION
The
.Em pipe ,
.Em queue
and
.Em scheduler
configuration commands are the following:
.Bd -ragged -offset indent
.Cm pipe Ar number Cm config Ar pipe-configuration
.Pp
.Cm queue Ar number Cm config Ar queue-configuration
.Pp
.Cm sched Ar number Cm config Ar sched-configuration
.Ed
.Pp
The following parameters can be configured for a pipe:
.Pp
.Bl -tag -width indent -compact
.It Cm bw Ar bandwidth | device
Bandwidth, measured in
.Sm off
.Op Cm K | M | G
.Brq Cm bit/s | Byte/s .
.Sm on
.Pp
A value of 0 (default) means unlimited bandwidth.
The unit must immediately follow the number, as in
.Pp
.Dl "ipfw pipe 1 config bw 300Kbit/s"
.Pp
If a device name is specified instead of a numeric value, as in
.Pp
.Dl "ipfw pipe 1 config bw tun0"
.Pp
then the transmit clock is supplied by the specified device.
At the moment only the
.Xr tun 4
device supports this
functionality, for use in conjunction with
.Xr ppp 8 .
.Pp
.It Cm delay Ar ms-delay
Propagation delay, measured in milliseconds.
The value is rounded to the next multiple of the clock tick
(typically 10ms, but it is a good practice to run kernels
with
.Dq "options HZ=1000"
to reduce
the granularity to 1ms or less).
The default value is 0, meaning no delay.
.Pp
.It Cm burst Ar size
If the data to be sent exceeds the pipe's bandwidth limit
(and the pipe was previously idle), up to
.Ar size
bytes of data are allowed to bypass the
.Nm dummynet
scheduler, and will be sent as fast as the physical link allows.
Any additional data will be transmitted at the rate specified
by the
.Nm pipe
bandwidth.
The burst size depends on how long the pipe has been idle;
the effective burst size is calculated as follows:
MAX(
.Ar size
,
.Nm bw
* pipe_idle_time).
.Pp
.It Cm profile Ar filename
A file specifying the additional overhead incurred in the transmission
of a packet on the link.
.Pp
Some link types introduce extra delays in the transmission
of a packet, e.g., because of MAC level framing, contention on
the use of the channel, MAC level retransmissions and so on.
From our point of view, the channel is effectively unavailable
for this extra time, which is constant or variable depending
on the link type.
Additionally, packets may be dropped after this
time (e.g., on a wireless link after too many retransmissions).
We can model the additional delay with an empirical curve
that represents its distribution.
.Bd -literal -offset indent
      cumulative probability
      1.0 ^
          |
      L   +-- loss-level          x
          |                 ******
          |                *
          |           *****
          |          *
          |        **
          |       *
          +-------*------------------->
                      delay
.Ed
The empirical curve may have both vertical and horizontal lines.
Vertical lines represent constant delay for a range of
probabilities.
Horizontal lines correspond to a discontinuity in the delay
distribution: the pipe will use the largest delay for a
given probability.
.Pp
The file format is the following, with whitespace acting as
a separator and '#' indicating the beginning a comment:
.Bl -tag -width indent
.It Cm name Ar identifier
optional name (listed by "ipfw pipe show")
to identify the delay distribution;
.It Cm bw Ar value
the bandwidth used for the pipe.
If not specified here, it must be present
explicitly as a configuration parameter for the pipe;
.It Cm loss-level Ar L
the probability above which packets are lost.
(0.0 <= L <= 1.0, default 1.0 i.e., no loss);
.It Cm samples Ar N
the number of samples used in the internal
representation of the curve (2..1024; default 100);
.It Cm "delay prob" | "prob delay"
One of these two lines is mandatory and defines
the format of the following lines with data points.
.It Ar XXX Ar YYY
2 or more lines representing points in the curve,
with either delay or probability first, according
to the chosen format.
The unit for delay is milliseconds.
Data points do not need to be sorted.
Also, the number of actual lines can be different
from the value of the "samples" parameter:
.Nm
utility will sort and interpolate
the curve as needed.
.El
.Pp
Example of a profile file:
.Bd -literal -offset indent
name    bla_bla_bla
samples 100
loss-level    0.86
prob    delay
0       200	# minimum overhead is 200ms
0.5     200
0.5     300
0.8     1000
0.9     1300
1       1300
#configuration file end
.Ed
.El
.Pp
The following parameters can be configured for a queue:
.Pp
.Bl -tag -width indent -compact
.It Cm pipe Ar pipe_nr
Connects a queue to the specified pipe.
Multiple queues (with the same or different weights) can be connected to
the same pipe, which specifies the aggregate rate for the set of queues.
.Pp
.It Cm weight Ar weight
Specifies the weight to be used for flows matching this queue.
The weight must be in the range 1..100, and defaults to 1.
.El
.Pp
The following case-insensitive parameters can be configured for a
scheduler:
.Pp
.Bl -tag -width indent -compact
.It Cm type Ar {fifo | wf2q+ | rr | qfq | fq_codel | fq_pie}
specifies the scheduling algorithm to use.
.Bl -tag -width indent -compact
.It Cm fifo
is just a FIFO scheduler (which means that all packets
are stored in the same queue as they arrive to the scheduler).
FIFO has O(1) per-packet time complexity, with very low
constants (estimate 60-80ns on a 2GHz desktop machine)
but gives no service guarantees.
.It Cm wf2q+
implements the WF2Q+ algorithm, which is a Weighted Fair Queueing
algorithm which permits flows to share bandwidth according to
their weights.
Note that weights are not priorities; even a flow
with a minuscule weight will never starve.
WF2Q+ has O(log N) per-packet processing cost, where N is the number
of flows, and is the default algorithm used by previous versions
dummynet's queues.
.It Cm rr
implements the Deficit Round Robin algorithm, which has O(1) processing
costs (roughly, 100-150ns per packet)
and permits bandwidth allocation according to weights, but
with poor service guarantees.
.It Cm qfq
implements the QFQ algorithm, which is a very fast variant of
WF2Q+, with similar service guarantees and O(1) processing
costs (roughly, 200-250ns per packet).
.It Cm fq_codel
implements the FQ-CoDel (FlowQueue-CoDel) scheduler/AQM algorithm, which
uses a modified Deficit Round Robin scheduler to manage two lists of sub-queues
(old sub-queues and new sub-queues) for providing brief periods of priority to
lightweight or short burst flows.
By default, the total number of sub-queues is 1024.
FQ-CoDel's internal, dynamically
created sub-queues are controlled by separate instances of CoDel AQM.
.It Cm fq_pie
implements the FQ-PIE (FlowQueue-PIE) scheduler/AQM algorithm, which similar to
.Cm fq_codel
but uses per sub-queue PIE AQM instance to control the queue delay.
.El
.Pp
.Cm fq_codel
inherits AQM parameters and options from
.Cm codel
(see below), and
.Cm fq_pie
inherits AQM parameters and options from
.Cm pie
(see below).
Additionally, both of
.Cm fq_codel
and
.Cm fq_pie
have shared scheduler parameters which are:
.Bl -tag -width indent
.It Cm quantum
.Ar m
specifies the quantum (credit) of the scheduler.
.Ar m
is the number of bytes a queue can serve before being moved to the tail
of old queues list.
The default is 1514 bytes, and the maximum acceptable value
is 9000 bytes.
.It Cm limit
.Ar m
specifies the hard size limit (in unit of packets) of all queues managed by an
instance of the scheduler.
The default value of
.Ar m
is 10240 packets, and the maximum acceptable value is 20480 packets.
.It Cm flows
.Ar m
specifies the total number of flow queues (sub-queues) that fq_*
creates and manages.
By default, 1024 sub-queues are created when an instance
of the fq_{codel/pie} scheduler is created.
The maximum acceptable value is
65536.
.El
.Pp
Note that any token after
.Cm fq_codel
or
.Cm fq_pie
is considered a parameter for fq_{codel/pie}.
So, ensure all scheduler
configuration options not related to fq_{codel/pie} are written before
.Cm fq_codel/fq_pie
tokens.
.El
.Pp
In addition to the type, all parameters allowed for a pipe can also
be specified for a scheduler.
.Pp
Finally, the following parameters can be configured for both
pipes and queues:
.Pp
.Bl -tag -width XXXX -compact
.It Cm buckets Ar hash-table-size
Specifies the size of the hash table used for storing the
various queues.
Default value is 64 controlled by the
.Xr sysctl 8
variable
.Va net.inet.ip.dummynet.hash_size ,
allowed range is 16 to 65536.
.Pp
.It Cm mask Ar mask-specifier
Packets sent to a given pipe or queue by an
.Nm
rule can be further classified into multiple flows, each of which is then
sent to a different
.Em dynamic
pipe or queue.
A flow identifier is constructed by masking the IP addresses,
ports and protocol types as specified with the
.Cm mask
options in the configuration of the pipe or queue.
For each different flow identifier, a new pipe or queue is created
with the same parameters as the original object, and matching packets
are sent to it.
.Pp
Thus, when
.Em dynamic pipes
are used, each flow will get the same bandwidth as defined by the pipe,
whereas when
.Em dynamic queues
are used, each flow will share the parent's pipe bandwidth evenly
with other flows generated by the same queue (note that other queues
with different weights might be connected to the same pipe).
.br
Available mask specifiers are a combination of one or more of the following:
.Pp
.Cm dst-ip Ar mask ,
.Cm dst-ip6 Ar mask ,
.Cm src-ip Ar mask ,
.Cm src-ip6 Ar mask ,
.Cm dst-port Ar mask ,
.Cm src-port Ar mask ,
.Cm flow-id Ar mask ,
.Cm proto Ar mask
or
.Cm all ,
.Pp
where the latter means all bits in all fields are significant.
.Pp
.It Cm noerror
When a packet is dropped by a
.Nm dummynet
queue or pipe, the error
is normally reported to the caller routine in the kernel, in the
same way as it happens when a device queue fills up.
Setting this
option reports the packet as successfully delivered, which can be
needed for some experimental setups where you want to simulate
loss or congestion at a remote router.
.Pp
.It Cm plr Ar packet-loss-rate
Packet loss rate.
Argument
.Ar packet-loss-rate
is a floating-point number between 0 and 1, with 0 meaning no
loss, 1 meaning 100% loss.
The loss rate is internally represented on 31 bits.
.Pp
.It Cm queue Brq Ar slots | size Ns Cm Kbytes
Queue size, in
.Ar slots
or
.Cm KBytes .
Default value is 50 slots, which
is the typical queue size for Ethernet devices.
Note that for slow speed links you should keep the queue
size short or your traffic might be affected by a significant
queueing delay.
E.g., 50 max-sized Ethernet packets (1500 bytes) mean 600Kbit
or 20s of queue on a 30Kbit/s pipe.
Even worse effects can result if you get packets from an
interface with a much larger MTU, e.g.\& the loopback interface
with its 16KB packets.
The
.Xr sysctl 8
variables
.Em net.inet.ip.dummynet.pipe_byte_limit
and
.Em net.inet.ip.dummynet.pipe_slot_limit
control the maximum lengths that can be specified.
.Pp
.It Cm red | gred Ar w_q Ns / Ns Ar min_th Ns / Ns Ar max_th Ns / Ns Ar max_p
[ecn]
Make use of the RED (Random Early Detection) queue management algorithm.
.Ar w_q
and
.Ar max_p
are floating
point numbers between 0 and 1 (inclusive), while
.Ar min_th
and
.Ar max_th
are integer numbers specifying thresholds for queue management
(thresholds are computed in bytes if the queue has been defined
in bytes, in slots otherwise).
The two parameters can also be of the same value if needed.
The
.Nm dummynet
also supports the gentle RED variant (gred) and ECN (Explicit Congestion
Notification) as optional.
Three
.Xr sysctl 8
variables can be used to control the RED behaviour:
.Bl -tag -width indent
.It Va net.inet.ip.dummynet.red_lookup_depth
specifies the accuracy in computing the average queue
when the link is idle (defaults to 256, must be greater than zero)
.It Va net.inet.ip.dummynet.red_avg_pkt_size
specifies the expected average packet size (defaults to 512, must be
greater than zero)
.It Va net.inet.ip.dummynet.red_max_pkt_size
specifies the expected maximum packet size, only used when queue
thresholds are in bytes (defaults to 1500, must be greater than zero).
.El
.Pp
.It Cm codel Oo Cm target Ar time Oc Oo Cm interval Ar time Oc Oo Cm ecn |
.Cm noecn Oc
Make use of the CoDel (Controlled-Delay) queue management algorithm.
.Ar time
is interpreted as milliseconds by default but seconds (s), milliseconds (ms) or
microseconds (us) can be specified instead.
CoDel drops or marks (ECN) packets
depending on packet sojourn time in the queue.
.Cm target
.Ar time
(5ms by default) is the minimum acceptable persistent queue delay that CoDel
allows.
CoDel does not drop packets directly after packets sojourn time becomes
higher than
.Cm target
.Ar time
but waits for
.Cm interval
.Ar time
(100ms default) before dropping.
.Cm interval
.Ar time
should be set to maximum RTT for all expected connections.
.Cm ecn
enables (disabled by default) packet marking (instead of dropping) for
ECN-enabled TCP flows when queue delay becomes high.
.Pp
Note that any token after
.Cm codel
is considered a parameter for CoDel.
So, ensure all pipe/queue
configuration options are written before
.Cm codel
token.
.Pp
The
.Xr sysctl 8
variables
.Va net.inet.ip.dummynet.codel.target
and
.Va net.inet.ip.dummynet.codel.interval
can be used to set CoDel default parameters.
.Pp
.It Cm pie Oo Cm target Ar time Oc Oo Cm tupdate Ar time Oc Oo
.Cm alpha Ar n Oc Oo Cm beta Ar n Oc Oo Cm max_burst Ar time Oc Oo
.Cm max_ecnth Ar n Oc Oo Cm ecn | Cm noecn Oc Oo Cm capdrop |
.Cm nocapdrop Oc Oo Cm drand | Cm nodrand Oc Oo Cm onoff
.Oc Oo Cm dre | Cm ts Oc
Make use of the PIE (Proportional Integral controller Enhanced) queue management
algorithm.
PIE drops or marks packets depending on a calculated drop probability during
en-queue process, with the aim of achieving high throughput while keeping queue
delay low.
At regular time intervals of
.Cm tupdate
.Ar time
(15ms by default) a background process (re)calculates the probability based on queue delay
deviations from
.Cm target
.Ar time
(15ms by default) and queue delay trends.
PIE approximates current queue
delay by using a departure rate estimation method, or (optionally) by using a
packet timestamp method similar to CoDel.
.Ar time
is interpreted as milliseconds by default but seconds (s), milliseconds (ms) or
microseconds (us) can be specified instead.
The other PIE parameters and options are as follows:
.Bl -tag -width indent
.It Cm alpha Ar n
.Ar n
is a floating point number between 0 and 7 which specifies the weight of queue
delay deviations that is used in drop probability calculation.
0.125 is the default.
.It Cm beta Ar n
.Ar n
is a floating point number between 0 and 7 which specifies is the weight of queue
delay trend that is used in drop probability calculation.
1.25 is the default.
.It Cm max_burst Ar time
The maximum period of time that PIE does not drop/mark packets.
150ms is the
default and 10s is the maximum value.
.It Cm max_ecnth Ar n
Even when ECN is enabled, PIE drops packets instead of marking them when drop
probability becomes higher than ECN probability threshold
.Cm max_ecnth Ar n
, the default is 0.1 (i.e 10%) and 1 is the maximum value.
.It Cm ecn | noecn
enable or disable ECN marking for ECN-enabled TCP flows.
Disabled by default.
.It Cm capdrop | nocapdrop
enable or disable cap drop adjustment.
Cap drop adjustment is enabled by default.
.It Cm drand | nodrand
enable or disable drop probability de-randomisation.
De-randomisation eliminates
the problem of dropping packets too close or too far.
De-randomisation is enabled by default.
.It Cm onoff
enable turning PIE on and off depending on queue load.
If this option is enabled,
PIE turns on when over 1/3 of queue becomes full.
This option is disabled by
default.
.It Cm dre | ts
Calculate queue delay using departure rate estimation
.Cm dre
or timestamps
.Cm ts .
.Cm dre
is used by default.
.El
.Pp
Note that any token after
.Cm pie
is considered a parameter for PIE.
So ensure all pipe/queue
the configuration options are written before
.Cm pie
token.
.Xr sysctl 8
variables can be used to control the
.Cm pie
default parameters.
See the
.Sx SYSCTL VARIABLES
section for more details.
.El
.Pp
When used with IPv6 data,
.Nm dummynet
currently has several limitations.
Information necessary to route link-local packets to an
interface is not available after processing by
.Nm dummynet
so those packets are dropped in the output path.
Care should be taken to ensure that link-local packets are not passed to
.Nm dummynet .
.Sh CHECKLIST
Here are some important points to consider when designing your
rules:
.Bl -bullet
.It
Remember that you filter both packets going
.Cm in
and
.Cm out .
Most connections need packets going in both directions.
.It
Remember to test very carefully.
It is a good idea to be near the console when doing this.
If you cannot be near the console,
use an auto-recovery script such as the one in
.Pa /usr/share/examples/ipfw/change_rules.sh .
.It
Do not forget the loopback interface.
.El
.Sh FINE POINTS
.Bl -bullet
.It
There are circumstances where fragmented datagrams are unconditionally
dropped.
TCP packets are dropped if they do not contain at least 20 bytes of
TCP header, UDP packets are dropped if they do not contain a full 8
byte UDP header, and ICMP packets are dropped if they do not contain
4 bytes of ICMP header, enough to specify the ICMP type, code, and
checksum.
These packets are simply logged as
.Dq pullup failed
since there may not be enough good data in the packet to produce a
meaningful log entry.
.It
Another type of packet is unconditionally dropped, a TCP packet with a
fragment offset of one.
This is a valid packet, but it only has one use, to try
to circumvent firewalls.
When logging is enabled, these packets are
reported as being dropped by rule -1.
.It
If you are logged in over a network, loading the
.Xr kld 4
version of
.Nm
is probably not as straightforward as you would think.
The following command line is recommended:
.Bd -literal -offset indent
kldload ipfw && \e
ipfw add 32000 allow ip from any to any
.Ed
.Pp
Along the same lines, doing an
.Bd -literal -offset indent
ipfw flush
.Ed
.Pp
in similar surroundings is also a bad idea.
.It
The
.Nm
filter list may not be modified if the system security level
is set to 3 or higher
(see
.Xr init 8
for information on system security levels).
.El
.Sh PACKET DIVERSION
A
.Xr divert 4
socket bound to the specified port will receive all packets
diverted to that port.
If no socket is bound to the destination port, or if the divert module is
not loaded, or if the kernel was not compiled with divert socket support,
the packets are dropped.
.Sh NETWORK ADDRESS TRANSLATION (NAT)
.Nm
support in-kernel NAT using the kernel version of
.Xr libalias 3 .
The kernel module
.Cm ipfw_nat
should be loaded or kernel should have
.Cm options IPFIREWALL_NAT
to be able use NAT.
.Pp
The nat configuration command is the following:
.Bd -ragged -offset indent
.Bk -words
.Cm nat
.Ar nat_number
.Cm config
.Ar nat-configuration
.Ek
.Ed
.Pp
The following parameters can be configured:
.Bl -tag -width indent
.It Cm ip Ar ip_address
Define an ip address to use for aliasing.
.It Cm if Ar nic
Use ip address of NIC for aliasing, dynamically changing
it if NIC's ip address changes.
.It Cm log
Enable logging on this nat instance.
.It Cm deny_in
Deny any incoming connection from outside world.
.It Cm same_ports
Try to leave the alias port numbers unchanged from
the actual local port numbers.
.It Cm unreg_only
Traffic on the local network not originating from a RFC 1918
unregistered address spaces will be ignored.
.It Cm unreg_cgn
Like unreg_only, but includes the RFC 6598 (Carrier Grade NAT)
address range.
.It Cm reset
Reset table of the packet aliasing engine on address change.
.It Cm reverse
Reverse the way libalias handles aliasing.
.It Cm proxy_only
Obey transparent proxy rules only, packet aliasing is not performed.
.It Cm skip_global
Skip instance in case of global state lookup (see below).
.El
.Pp
Some specials value can be supplied instead of
.Va nat_number :
.Bl -tag -width indent
.It Cm global
Looks up translation state in all configured nat instances.
If an entry is found, packet is aliased according to that entry.
If no entry was found in any of the instances, packet is passed unchanged,
and no new entry will be created.
See section
.Sx MULTIPLE INSTANCES
in
.Xr natd 8
for more information.
.It Cm tablearg
Uses argument supplied in lookup table.
See
.Sx LOOKUP TABLES
section below for more information on lookup tables.
.El
.Pp
To let the packet continue after being (de)aliased, set the sysctl variable
.Va net.inet.ip.fw.one_pass
to 0.
For more information about aliasing modes, refer to
.Xr libalias 3 .
See Section
.Sx EXAMPLES
for some examples about nat usage.
.Ss REDIRECT AND LSNAT SUPPORT IN IPFW
Redirect and LSNAT support follow closely the syntax used in
.Xr natd 8 .
See Section
.Sx EXAMPLES
for some examples on how to do redirect and lsnat.
.Ss SCTP NAT SUPPORT
SCTP nat can be configured in a similar manner to TCP through the
.Nm
command line tool.
The main difference is that
.Nm sctp nat
does not do port translation.
Since the local and global side ports will be the same,
there is no need to specify both.
Ports are redirected as follows:
.Bd -ragged -offset indent
.Bk -words
.Cm nat
.Ar nat_number
.Cm config if
.Ar nic
.Cm redirect_port sctp
.Ar ip_address [,addr_list] {[port | port-port] [,ports]}
.Ek
.Ed
.Pp
Most
.Nm sctp nat
configuration can be done in real-time through the
.Xr sysctl 8
interface.
All may be changed dynamically, though the hash_table size will only
change for new
.Nm nat
instances.
See
.Sx SYSCTL VARIABLES
for more info.
.Sh IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION
.Ss Stateful translation
.Nm
supports in-kernel IPv6/IPv4 network address and protocol translation.
Stateful NAT64 translation allows IPv6-only clients to contact IPv4 servers
using unicast TCP, UDP or ICMP protocols.
One or more IPv4 addresses assigned to a stateful NAT64 translator are shared
among several IPv6-only clients.
When stateful NAT64 is used in conjunction with DNS64, no changes are usually
required in the IPv6 client or the IPv4 server.
The kernel module
.Cm ipfw_nat64
should be loaded or kernel should have
.Cm options IPFIREWALL_NAT64
to be able use stateful NAT64 translator.
.Pp
Stateful NAT64 uses a bunch of memory for several types of objects.
When IPv6 client initiates connection, NAT64 translator creates a host entry
in the states table.
Each host entry uses preallocated IPv4 alias entry.
Each alias entry has a number of ports group entries allocated on demand.
Ports group entries contains connection state entries.
There are several options to control limits and lifetime for these objects.
.Pp
NAT64 translator follows RFC7915 when does ICMPv6/ICMP translation,
unsupported message types will be silently dropped.
IPv6 needs several ICMPv6 message types to be explicitly allowed for correct
operation.
Make sure that ND6 neighbor solicitation (ICMPv6 type 135) and neighbor
advertisement (ICMPv6 type 136) messages will not be handled by translation
rules.
.Pp
After translation NAT64 translator by default sends packets through
corresponding netisr queue.
Thus translator host should be configured as IPv4 and IPv6 router.
Also this means, that a packet is handled by firewall twice.
First time an original packet is handled and consumed by translator,
and then it is handled again as translated packet.
This behavior can be changed by sysctl variable
.Va net.inet.ip.fw.nat64_direct_output .
Also translated packet can be tagged using
.Cm tag
rule action, and then matched by
.Cm tagged
opcode to avoid loops and extra overhead.
.Pp
The stateful NAT64 configuration command is the following:
.Bd -ragged -offset indent
.Bk -words
.Cm nat64lsn
.Ar name
.Cm create
.Ar create-options
.Ek
.Ed
.Pp
The following parameters can be configured:
.Bl -tag -width indent
.It Cm prefix4 Ar ipv4_prefix/plen
The IPv4 prefix with mask defines the pool of IPv4 addresses used as
source address after translation.
Stateful NAT64 module translates IPv6 source address of client to one
IPv4 address from this pool.
Note that incoming IPv4 packets that don't have corresponding state entry
in the states table will be dropped by translator.
Make sure that translation rules handle packets, destined to configured prefix.
.It Cm prefix6 Ar ipv6_prefix/length
The IPv6 prefix defines IPv4-embedded IPv6 addresses used by translator
to represent IPv4 addresses.
This IPv6 prefix should be configured in DNS64.
The translator implementation follows RFC6052, that restricts the length of
prefixes to one of following: 32, 40, 48, 56, 64, or 96.
The Well-Known IPv6 Prefix 64:ff9b:: must be 96 bits long.
The special
.Ar ::/length
prefix can be used to handle several IPv6 prefixes with one NAT64 instance.
The NAT64 instance will determine a destination IPv4 address from prefix
.Ar length .
.It Cm states_chunks Ar number
The number of states chunks in single ports group.
Each ports group by default can keep 64 state entries in single chunk.
The above value affects the maximum number of states that can be associated with single IPv4 alias address and port.
The value must be power of 2, and up to 128.
.It Cm host_del_age Ar seconds
The number of seconds until the host entry for a IPv6 client will be deleted
and all its resources will be released due to inactivity.
Default value is
.Ar 3600 .
.It Cm pg_del_age Ar seconds
The number of seconds until a ports group with unused state entries will
be released.
Default value is
.Ar 900 .
.It Cm tcp_syn_age Ar seconds
The number of seconds while a state entry for TCP connection with only SYN
sent will be kept.
If TCP connection establishing will not be finished,
state entry will be deleted.
Default value is
.Ar 10 .
.It Cm tcp_est_age Ar seconds
The number of seconds while a state entry for established TCP connection
will be kept.
Default value is
.Ar 7200 .
.It Cm tcp_close_age Ar seconds
The number of seconds while a state entry for closed TCP connection
will be kept.
Keeping state entries for closed connections is needed, because IPv4 servers
typically keep closed connections in a TIME_WAIT state for a several minutes.
Since translator's IPv4 addresses are shared among all IPv6 clients,
new connections from the same addresses and ports may be rejected by server,
because these connections are still in a TIME_WAIT state.
Keeping them in translator's state table protects from such rejects.
Default value is
.Ar 180 .
.It Cm udp_age Ar seconds
The number of seconds while translator keeps state entry in a waiting for
reply to the sent UDP datagram.
Default value is
.Ar 120 .
.It Cm icmp_age Ar seconds
The number of seconds while translator keeps state entry in a waiting for
reply to the sent ICMP message.
Default value is
.Ar 60 .
.It Cm log
Turn on logging of all handled packets via BPF through
.Ar ipfwlog0
interface.
.Ar ipfwlog0
is a pseudo interface and can be created after a boot manually with
.Cm ifconfig
command.
Note that it has different purpose than
.Ar ipfw0
interface.
Translators sends to BPF an additional information with each packet.
With
.Cm tcpdump
you are able to see each handled packet before and after translation.
.It Cm -log
Turn off logging of all handled packets via BPF.
.It Cm allow_private
Turn on processing private IPv4 addresses.
By default IPv6 packets with destinations mapped to private address ranges
defined by RFC1918 are not processed.
.It Cm -allow_private
Turn off private address handling in
.Nm nat64
instance.
.El
.Pp
To inspect a states table of stateful NAT64 the following command can be used:
.Bd -ragged -offset indent
.Bk -words
.Cm nat64lsn
.Ar name
.Cm show Cm states
.Ek
.Ed
.Pp
Stateless NAT64 translator doesn't use a states table for translation
and converts IPv4 addresses to IPv6 and vice versa solely based on the
mappings taken from configured lookup tables.
Since a states table doesn't used by stateless translator,
it can be configured to pass IPv4 clients to IPv6-only servers.
.Pp
The stateless NAT64 configuration command is the following:
.Bd -ragged -offset indent
.Bk -words
.Cm nat64stl
.Ar name
.Cm create
.Ar create-options
.Ek
.Ed
.Pp
The following parameters can be configured:
.Bl -tag -width indent
.It Cm prefix6 Ar ipv6_prefix/length
The IPv6 prefix defines IPv4-embedded IPv6 addresses used by translator
to represent IPv4 addresses.
This IPv6 prefix should be configured in DNS64.
.It Cm table4 Ar table46
The lookup table
.Ar table46
contains mapping how IPv4 addresses should be translated to IPv6 addresses.
.It Cm table6 Ar table64
The lookup table
.Ar table64
contains mapping how IPv6 addresses should be translated to IPv4 addresses.
.It Cm log
Turn on logging of all handled packets via BPF through
.Ar ipfwlog0
interface.
.It Cm -log
Turn off logging of all handled packets via BPF.
.It Cm allow_private
Turn on processing private IPv4 addresses.
By default IPv6 packets with destinations mapped to private address ranges
defined by RFC1918 are not processed.
.It Cm -allow_private
Turn off private address handling in
.Nm nat64
instance.
.El
.Pp
Note that the behavior of stateless translator with respect to not matched
packets differs from stateful translator.
If corresponding addresses was not found in the lookup tables, the packet
will not be dropped and the search continues.
.Pp
.Ss XLAT464 CLAT translation
XLAT464 CLAT NAT64 translator implements client-side stateless translation as
defined in RFC6877 and is very similar to statless NAT64 translator
explained above.
Instead of lookup tables it uses one-to-one mapping between IPv4 and IPv6
addresses using configured prefixes.
This mode can be used as a replacement of DNS64 service for applications
that are not using it (e.g. VoIP) allowing them to access IPv4-only Internet
over IPv6-only networks with help of remote NAT64 translator.
.Pp
The CLAT NAT64 configuration command is the following:
.Bd -ragged -offset indent
.Bk -words
.Cm nat64clat
.Ar name
.Cm create
.Ar create-options
.Ek
.Ed
.Pp
The following parameters can be configured:
.Bl -tag -width indent
.It Cm clat_prefix Ar ipv6_prefix/length
The IPv6 prefix defines IPv4-embedded IPv6 addresses used by translator
to represent source IPv4 addresses.
.It Cm plat_prefix Ar ipv6_prefix/length
The IPv6 prefix defines IPv4-embedded IPv6 addresses used by translator
to represent destination IPv4 addresses.
This IPv6 prefix should be configured on a remote NAT64 translator.
.It Cm log
Turn on logging of all handled packets via BPF through
.Ar ipfwlog0
interface.
.It Cm -log
Turn off logging of all handled packets via BPF.
.It Cm allow_private
Turn on processing private IPv4 addresses.
By default
.Nm nat64clat
instance will not process IPv4 packets with destination address from private
ranges as defined in RFC1918.
.It Cm -allow_private
Turn off private address handling in
.Nm nat64clat
instance.
.El
.Pp
Note that the behavior of CLAT translator with respect to not matched
packets differs from stateful translator.
If corresponding addresses were not matched against prefixes configured,
the packet will not be dropped and the search continues.
.Sh IPv6-to-IPv6 NETWORK PREFIX TRANSLATION (NPTv6)
.Nm
supports in-kernel IPv6-to-IPv6 network prefix translation as described
in RFC6296.
The kernel module
.Cm ipfw_nptv6
should be loaded or kernel should has
.Cm options IPFIREWALL_NPTV6
to be able use NPTv6 translator.
.Pp
The NPTv6 configuration command is the following:
.Bd -ragged -offset indent
.Bk -words
.Cm nptv6
.Ar name
.Cm create
.Ar create-options
.Ek
.Ed
.Pp
The following parameters can be configured:
.Bl -tag -width indent
.It Cm int_prefix Ar ipv6_prefix
IPv6 prefix used in internal network.
NPTv6 module translates source address when it matches this prefix.
.It Cm ext_prefix Ar ipv6_prefix
IPv6 prefix used in external network.
NPTv6 module translates destination address when it matches this prefix.
.It Cm ext_if Ar nic
The NPTv6 module will use first global IPv6 address from interface
.Ar nic
as external prefix.
It can be useful when IPv6 prefix of external network is dynamically obtained.
.Cm ext_prefix
and
.Cm ext_if
options are mutually exclusive.
.It Cm prefixlen Ar length
The length of specified IPv6 prefixes.
It must be in range from 8 to 64.
.El
.Pp
Note that the prefix translation rules are silently ignored when IPv6 packet
forwarding is disabled.
To enable the packet forwarding, set the sysctl variable
.Va net.inet6.ip6.forwarding
to 1.
.Pp
To let the packet continue after being translated, set the sysctl variable
.Va net.inet.ip.fw.one_pass
to 0.
.Sh LOADER TUNABLES
Tunables can be set in
.Xr loader 8
prompt,
.Xr loader.conf 5
or
.Xr kenv 1
before ipfw module gets loaded.
.Bl -tag -width indent
.It Va net.inet.ip.fw.default_to_accept: No 0
Defines ipfw last rule behavior.
This value overrides
.Cd "options IPFW_DEFAULT_TO_(ACCEPT|DENY)"
from kernel configuration file.
.It Va net.inet.ip.fw.tables_max: No 128
Defines number of tables available in ipfw.
Number cannot exceed 65534.
.El
.Sh SYSCTL VARIABLES
A set of
.Xr sysctl 8
variables controls the behaviour of the firewall and
associated modules
.Pq Nm dummynet , bridge , sctp nat .
These are shown below together with their default value
(but always check with the
.Xr sysctl 8
command what value is actually in use) and meaning:
.Bl -tag -width indent
.It Va net.inet.ip.alias.sctp.accept_global_ootb_addip: No 0
Defines how the
.Nm nat
responds to receipt of global OOTB ASCONF-AddIP:
.Bl -tag -width indent
.It Cm 0
No response (unless a partially matching association exists -
ports and vtags match but global address does not)
.It Cm 1
.Nm nat
will accept and process all OOTB global AddIP messages.
.El
.Pp
Option 1 should never be selected as this forms a security risk.
An attacker can
establish multiple fake associations by sending AddIP messages.
.It Va net.inet.ip.alias.sctp.chunk_proc_limit: No 5
Defines the maximum number of chunks in an SCTP packet that will be
parsed for a
packet that matches an existing association.
This value is enforced to be greater or equal than
.Cm net.inet.ip.alias.sctp.initialising_chunk_proc_limit .
A high value is
a DoS risk yet setting too low a value may result in
important control chunks in
the packet not being located and parsed.
.It Va net.inet.ip.alias.sctp.error_on_ootb: No 1
Defines when the
.Nm nat
responds to any Out-of-the-Blue (OOTB) packets with ErrorM packets.
An OOTB packet is a packet that arrives with no existing association
registered in the
.Nm nat
and is not an INIT or ASCONF-AddIP packet:
.Bl -tag -width indent
.It Cm 0
ErrorM is never sent in response to OOTB packets.
.It Cm 1
ErrorM is only sent to OOTB packets received on the local side.
.It Cm 2
ErrorM is sent to the local side and on the global side ONLY if there is a
partial match (ports and vtags match but the source global IP does not).
This value is only useful if the
.Nm nat
is tracking global IP addresses.
.It Cm 3
ErrorM is sent in response to all OOTB packets on both
the local and global side
(DoS risk).
.El
.Pp
At the moment the default is 0, since the ErrorM packet is not yet
supported by most SCTP stacks.
When it is supported, and if not tracking
global addresses, we recommend setting this value to 1 to allow
multi-homed local hosts to function with the
.Nm nat .
To track global addresses, we recommend setting this value to 2 to
allow global hosts to be informed when they need to (re)send an
ASCONF-AddIP.
Value 3 should never be chosen (except for debugging) as the
.Nm nat
will respond to all OOTB global packets (a DoS risk).
.It Va net.inet.ip.alias.sctp.hashtable_size: No 2003
Size of hash tables used for
.Nm nat
lookups (100 < prime_number > 1000001).
This value sets the
.Nm hash table
size for any future created
.Nm nat
instance and therefore must be set prior to creating a
.Nm nat
instance.
The table sizes may be changed to suit specific needs.
If there will be few
concurrent associations, and memory is scarce, you may make these smaller.
If there will be many thousands (or millions) of concurrent associations, you
should make these larger.
A prime number is best for the table size.
The sysctl
update function will adjust your input value to the next highest prime number.
.It Va net.inet.ip.alias.sctp.holddown_time:  No 0
Hold association in table for this many seconds after receiving a
SHUTDOWN-COMPLETE.
This allows endpoints to correct shutdown gracefully if a
shutdown_complete is lost and retransmissions are required.
.It Va net.inet.ip.alias.sctp.init_timer: No 15
Timeout value while waiting for (INIT-ACK|AddIP-ACK).
This value cannot be 0.
.It Va net.inet.ip.alias.sctp.initialising_chunk_proc_limit: No 2
Defines the maximum number of chunks in an SCTP packet that will be parsed when
no existing association exists that matches that packet.
Ideally this packet
will only be an INIT or ASCONF-AddIP packet.
A higher value may become a DoS
risk as malformed packets can consume processing resources.
.It Va net.inet.ip.alias.sctp.param_proc_limit: No 25
Defines the maximum number of parameters within a chunk that will be
parsed in a
packet.
As for other similar sysctl variables, larger values pose a DoS risk.
.It Va net.inet.ip.alias.sctp.log_level: No 0
Level of detail in the system log messages (0 \- minimal, 1 \- event,
2 \- info, 3 \- detail, 4 \- debug, 5 \- max debug).
May be a good
option in high loss environments.
.It Va net.inet.ip.alias.sctp.shutdown_time: No 15
Timeout value while waiting for SHUTDOWN-COMPLETE.
This value cannot be 0.
.It Va net.inet.ip.alias.sctp.track_global_addresses: No 0
Enables/disables global IP address tracking within the
.Nm nat
and places an
upper limit on the number of addresses tracked for each association:
.Bl -tag -width indent
.It Cm 0
Global tracking is disabled
.It Cm >1
Enables tracking, the maximum number of addresses tracked for each
association is limited to this value
.El
.Pp
This variable is fully dynamic, the new value will be adopted for all newly
arriving associations, existing associations are treated
as they were previously.
Global tracking will decrease the number of collisions within the
.Nm nat
at a cost
of increased processing load, memory usage, complexity, and possible
.Nm nat
state
problems in complex networks with multiple
.Nm nats .
We recommend not tracking
global IP addresses, this will still result in a fully functional
.Nm nat .
.It Va net.inet.ip.alias.sctp.up_timer: No 300
Timeout value to keep an association up with no traffic.
This value cannot be 0.
.It Va net.inet.ip.dummynet.codel.interval : No 100000
Default
.Cm codel
AQM interval in microseconds.
The value must be in the range 1..5000000.
.It Va net.inet.ip.dummynet.codel.target : No 5000
Default
.Cm codel
AQM target delay time in microseconds (the minimum acceptable persistent queue
delay).
The value must be in the range 1..5000000.
.It Va net.inet.ip.dummynet.expire : No 1
Lazily delete dynamic pipes/queue once they have no pending traffic.
You can disable this by setting the variable to 0, in which case
the pipes/queues will only be deleted when the threshold is reached.
.It Va net.inet.ip.dummynet.fqcodel.flows : No 1024
Defines the default total number of flow queues (sub-queues) that
.Cm fq_codel
creates and manages.
The value must be in the range 1..65536.
.It Va net.inet.ip.dummynet.fqcodel.interval : No 100000
Default
.Cm fq_codel
scheduler/AQM interval in microseconds.
The value must be in the range 1..5000000.
.It Va net.inet.ip.dummynet.fqcodel.limit : No 10240
The default hard size limit (in unit of packet) of all queues managed by an
instance of the
.Cm fq_codel
scheduler.
The value must be in the range 1..20480.
.It Va net.inet.ip.dummynet.fqcodel.quantum : No 1514
The default quantum (credit) of the
.Cm fq_codel
in unit of byte.
The value must be in the range 1..9000.
.It Va net.inet.ip.dummynet.fqcodel.target : No 5000
Default
.Cm fq_codel
scheduler/AQM target delay time in microseconds (the minimum acceptable
persistent queue delay).
The value must be in the range 1..5000000.
.It Va net.inet.ip.dummynet.fqpie.alpha : No 125
The default
.Ar alpha
parameter (scaled by 1000) for
.Cm fq_pie
scheduler/AQM.
The value must be in the range 1..7000.
.It Va net.inet.ip.dummynet.fqpie.beta : No 1250
The default
.Ar beta
parameter (scaled by 1000) for
.Cm fq_pie
scheduler/AQM.
The value must be in the range 1..7000.
.It Va net.inet.ip.dummynet.fqpie.flows : No 1024
Defines the default total number of flow queues (sub-queues) that
.Cm fq_pie
creates and manages.
The value must be in the range 1..65536.
.It Va net.inet.ip.dummynet.fqpie.limit : No 10240
The default hard size limit (in unit of packet) of all queues managed by an
instance of the
.Cm fq_pie
scheduler.
The value must be in the range 1..20480.
.It Va net.inet.ip.dummynet.fqpie.max_burst : No 150000
The default maximum period of microseconds that
.Cm fq_pie
scheduler/AQM does not drop/mark packets.
The value must be in the range 1..10000000.
.It Va net.inet.ip.dummynet.fqpie.max_ecnth : No 99
The default maximum ECN probability threshold (scaled by 1000) for
.Cm fq_pie
scheduler/AQM.
The value must be in the range 1..7000.
.It Va net.inet.ip.dummynet.fqpie.quantum : No 1514
The default quantum (credit) of the
.Cm fq_pie
in unit of byte.
The value must be in the range 1..9000.
.It Va net.inet.ip.dummynet.fqpie.target : No 15000
The default
.Cm target
delay of the
.Cm fq_pie
in unit of microsecond.
The value must be in the range 1..5000000.
.It Va net.inet.ip.dummynet.fqpie.tupdate : No 15000
The default
.Cm tupdate
of the
.Cm fq_pie
in unit of microsecond.
The value must be in the range 1..5000000.
.It Va net.inet.ip.dummynet.hash_size : No 64
Default size of the hash table used for dynamic pipes/queues.
This value is used when no
.Cm buckets
option is specified when configuring a pipe/queue.
.It Va net.inet.ip.dummynet.io_fast : No 0
If set to a non-zero value,
the
.Dq fast
mode of
.Nm dummynet
operation (see above) is enabled.
.It Va net.inet.ip.dummynet.io_pkt
Number of packets passed to
.Nm dummynet .
.It Va net.inet.ip.dummynet.io_pkt_drop
Number of packets dropped by
.Nm dummynet .
.It Va net.inet.ip.dummynet.io_pkt_fast
Number of packets bypassed by the
.Nm dummynet
scheduler.
.It Va net.inet.ip.dummynet.max_chain_len : No 16
Target value for the maximum number of pipes/queues in a hash bucket.
The product
.Cm max_chain_len*hash_size
is used to determine the threshold over which empty pipes/queues
will be expired even when
.Cm net.inet.ip.dummynet.expire=0 .
.It Va net.inet.ip.dummynet.red_lookup_depth : No 256
.It Va net.inet.ip.dummynet.red_avg_pkt_size : No 512
.It Va net.inet.ip.dummynet.red_max_pkt_size : No 1500
Parameters used in the computations of the drop probability
for the RED algorithm.
.It Va net.inet.ip.dummynet.pie.alpha : No 125
The default
.Ar alpha
parameter (scaled by 1000) for
.Cm pie
AQM.
The value must be in the range 1..7000.
.It Va net.inet.ip.dummynet.pie.beta : No 1250
The default
.Ar beta
parameter (scaled by 1000) for
.Cm pie
AQM.
The value must be in the range 1..7000.
.It Va net.inet.ip.dummynet.pie.max_burst : No 150000
The default maximum period of microseconds that
.Cm pie
AQM does not drop/mark packets.
The value must be in the range 1..10000000.
.It Va net.inet.ip.dummynet.pie.max_ecnth : No 99
The default maximum ECN probability threshold (scaled by 1000) for
.Cm pie
AQM.
The value must be in the range 1..7000.
.It Va net.inet.ip.dummynet.pie.target : No 15000
The default
.Cm target
delay of
.Cm pie
AQM in unit of microsecond.
The value must be in the range 1..5000000.
.It Va net.inet.ip.dummynet.pie.tupdate : No 15000
The default
.Cm tupdate
of
.Cm pie
AQM in unit of microsecond.
The value must be in the range 1..5000000.
.It Va net.inet.ip.dummynet.pipe_byte_limit : No 1048576
.It Va net.inet.ip.dummynet.pipe_slot_limit : No 100
The maximum queue size that can be specified in bytes or packets.
These limits prevent accidental exhaustion of resources such as mbufs.
If you raise these limits,
you should make sure the system is configured so that sufficient resources
are available.
.It Va net.inet.ip.fw.autoinc_step : No 100
Delta between rule numbers when auto-generating them.
The value must be in the range 1..1000.
.It Va net.inet.ip.fw.curr_dyn_buckets : Va net.inet.ip.fw.dyn_buckets
The current number of buckets in the hash table for dynamic rules
(readonly).
.It Va net.inet.ip.fw.debug : No 1
Controls debugging messages produced by
.Nm .
.It Va net.inet.ip.fw.default_rule : No 65535
The default rule number (read-only).
By the design of
.Nm , the default rule is the last one, so its number
can also serve as the highest number allowed for a rule.
.It Va net.inet.ip.fw.dyn_buckets : No 256
The number of buckets in the hash table for dynamic rules.
Must be a power of 2, up to 65536.
It only takes effect when all dynamic rules have expired, so you
are advised to use a
.Cm flush
command to make sure that the hash table is resized.
.It Va net.inet.ip.fw.dyn_count : No 3
Current number of dynamic rules
(read-only).
.It Va net.inet.ip.fw.dyn_keepalive : No 1
Enables generation of keepalive packets for
.Cm keep-state
rules on TCP sessions.
A keepalive is generated to both
sides of the connection every 5 seconds for the last 20
seconds of the lifetime of the rule.
.It Va net.inet.ip.fw.dyn_max : No 8192
Maximum number of dynamic rules.
When you hit this limit, no more dynamic rules can be
installed until old ones expire.
.It Va net.inet.ip.fw.dyn_ack_lifetime : No 300
.It Va net.inet.ip.fw.dyn_syn_lifetime : No 20
.It Va net.inet.ip.fw.dyn_fin_lifetime : No 1
.It Va net.inet.ip.fw.dyn_rst_lifetime : No 1
.It Va net.inet.ip.fw.dyn_udp_lifetime : No 5
.It Va net.inet.ip.fw.dyn_short_lifetime : No 30
These variables control the lifetime, in seconds, of dynamic
rules.
Upon the initial SYN exchange the lifetime is kept short,
then increased after both SYN have been seen, then decreased
again during the final FIN exchange or when a RST is received.
Both
.Em dyn_fin_lifetime
and
.Em dyn_rst_lifetime
must be strictly lower than 5 seconds, the period of
repetition of keepalives.
The firewall enforces that.
.It Va net.inet.ip.fw.dyn_keep_states: No 0
Keep dynamic states on rule/set deletion.
States are relinked to default rule (65535).
This can be handly for ruleset reload.
Turned off by default.
.It Va net.inet.ip.fw.enable : No 1
Enables the firewall.
Setting this variable to 0 lets you run your machine without
firewall even if compiled in.
.It Va net.inet6.ip6.fw.enable : No 1
provides the same functionality as above for the IPv6 case.
.It Va net.inet.ip.fw.one_pass : No 1
When set, the packet exiting from the
.Nm dummynet
pipe or from
.Xr ng_ipfw 4
node is not passed though the firewall again.
Otherwise, after an action, the packet is
reinjected into the firewall at the next rule.
.It Va net.inet.ip.fw.tables_max : No 128
Maximum number of tables.
.It Va net.inet.ip.fw.verbose : No 1
Enables verbose messages.
.It Va net.inet.ip.fw.verbose_limit : No 0
Limits the number of messages produced by a verbose firewall.
.It Va net.inet6.ip6.fw.deny_unknown_exthdrs : No 1
If enabled packets with unknown IPv6 Extension Headers will be denied.
.It Va net.link.ether.ipfw : No 0
Controls whether layer-2 packets are passed to
.Nm .
Default is no.
.It Va net.link.bridge.ipfw : No 0
Controls whether bridged packets are passed to
.Nm .
Default is no.
.It Va net.inet.ip.fw.nat64_debug : No 0
Controls debugging messages produced by
.Nm ipfw_nat64
module.
.It Va net.inet.ip.fw.nat64_direct_output : No 0
Controls the output method used by
.Nm ipfw_nat64
module:
.Bl -tag -width indent
.It Cm 0
A packet is handled by
.Nm ipfw
twice.
First time an original packet is handled by
.Nm ipfw
and consumed by
.Nm ipfw_nat64
translator.
Then translated packet is queued via netisr to input processing again.
.It Cm 1
A packet is handled by
.Nm ipfw
only once, and after translation it will be pushed directly to outgoing
interface.
.El
.El
.Sh INTERNAL DIAGNOSTICS
There are some commands that may be useful to understand current state
of certain subsystems inside kernel module.
These commands provide debugging output which may change without notice.
.Pp
Currently the following commands are available as
.Cm internal
sub-options:
.Bl -tag -width indent
.It Cm iflist
Lists all interface which are currently tracked by
.Nm
with their in-kernel status.
.It Cm talist
List all table lookup algorithms currently available.
.El
.Sh EXAMPLES
There are far too many possible uses of
.Nm
so this Section will only give a small set of examples.
.Pp
.Ss BASIC PACKET FILTERING
This command adds an entry which denies all tcp packets from
.Em cracker.evil.org
to the telnet port of
.Em wolf.tambov.su
from being forwarded by the host:
.Pp
.Dl "ipfw add deny tcp from cracker.evil.org to wolf.tambov.su telnet"
.Pp
This one disallows any connection from the entire cracker's
network to my host:
.Pp
.Dl "ipfw add deny ip from 123.45.67.0/24 to my.host.org"
.Pp
A first and efficient way to limit access (not using dynamic rules)
is the use of the following rules:
.Pp
.Dl "ipfw add allow tcp from any to any established"
.Dl "ipfw add allow tcp from net1 portlist1 to net2 portlist2 setup"
.Dl "ipfw add allow tcp from net3 portlist3 to net3 portlist3 setup"
.Dl "..."
.Dl "ipfw add deny tcp from any to any"
.Pp
The first rule will be a quick match for normal TCP packets,
but it will not match the initial SYN packet, which will be
matched by the
.Cm setup
rules only for selected source/destination pairs.
All other SYN packets will be rejected by the final
.Cm deny
rule.
.Pp
If you administer one or more subnets, you can take advantage
of the address sets and or-blocks and write extremely
compact rulesets which selectively enable services to blocks
of clients, as below:
.Pp
.Dl "goodguys=\*q{ 10.1.2.0/24{20,35,66,18} or 10.2.3.0/28{6,3,11} }\*q"
.Dl "badguys=\*q10.1.2.0/24{8,38,60}\*q"
.Dl ""
.Dl "ipfw add allow ip from ${goodguys} to any"
.Dl "ipfw add deny ip from ${badguys} to any"
.Dl "... normal policies ..."
.Pp
The
.Cm verrevpath
option could be used to do automated anti-spoofing by adding the
following to the top of a ruleset:
.Pp
.Dl "ipfw add deny ip from any to any not verrevpath in"
.Pp
This rule drops all incoming packets that appear to be coming to the
system on the wrong interface.
For example, a packet with a source
address belonging to a host on a protected internal network would be
dropped if it tried to enter the system from an external interface.
.Pp
The
.Cm antispoof
option could be used to do similar but more restricted anti-spoofing
by adding the following to the top of a ruleset:
.Pp
.Dl "ipfw add deny ip from any to any not antispoof in"
.Pp
This rule drops all incoming packets that appear to be coming from another
directly connected system but on the wrong interface.
For example, a packet with a source address of
.Li 192.168.0.0/24 ,
configured on
.Li fxp0 ,
but coming in on
.Li fxp1
would be dropped.
.Pp
The
.Cm setdscp
option could be used to (re)mark user traffic,
by adding the following to the appropriate place in ruleset:
.Pp
.Dl "ipfw add setdscp be ip from any to any dscp af11,af21"
.Ss SELECTIVE MIRRORING
If your network has network traffic analyzer
connected to your host directly via dedicated interface
or remotely via RSPAN vlan, you can selectively mirror
some Ethernet layer2 frames to the analyzer.
.Pp
First, make sure your firewall is already configured and runs.
Then, enable layer2 processing if not already enabled:
.Pp
.Dl "sysctl net.link.ether.ipfw=1"
.Pp
Next, load needed additional kernel modules:
.Pp
.Dl "kldload ng_ether ng_ipfw"
.Pp
Optionally, make system load these modules automatically
at startup:
.Pp
.Dl sysrc kld_list+="ng_ether ng_ipfw"
.Pp
Next, configure
.Xr ng_ipfw 4
kernel module to transmit mirrored copies of layer2 frames
out via vlan900 interface:
.Pp
.Dl "ngctl connect ipfw: vlan900: 1 lower"
.Pp
Think of "1" here as of "mirroring instance index" and vlan900 is its
destination.
You can have arbitrary number of instances.
Refer to
.Xr ng_ipfw 4
for details.
.Pp
At last, actually start mirroring of selected frames using "instance 1".
For frames incoming from em0 interface:
.Pp
.Dl "ipfw add ngtee 1 ip from any to 192.168.0.1 layer2 in recv em0"
.Pp
For frames outgoing to em0 interface:
.Pp
.Dl "ipfw add ngtee 1 ip from any to 192.168.0.1 layer2 out xmit em0"
.Pp
For both incoming and outgoing frames while flowing through em0:
.Pp
.Dl "ipfw add ngtee 1 ip from any to 192.168.0.1 layer2 via em0"
.Pp
Make sure you do not perform mirroring for already duplicated frames
or kernel may hang as there is no safety net.
.Ss DYNAMIC RULES
In order to protect a site from flood attacks involving fake
TCP packets, it is safer to use dynamic rules:
.Pp
.Dl "ipfw add check-state"
.Dl "ipfw add deny tcp from any to any established"
.Dl "ipfw add allow tcp from my-net to any setup keep-state"
.Pp
This will let the firewall install dynamic rules only for
those connection which start with a regular SYN packet coming
from the inside of our network.
Dynamic rules are checked when encountering the first
occurrence of a
.Cm check-state ,
.Cm keep-state
or
.Cm limit
rule.
A
.Cm check-state
rule should usually be placed near the beginning of the
ruleset to minimize the amount of work scanning the ruleset.
Your mileage may vary.
.Pp
For more complex scenarios with dynamic rules
.Cm record-state
and
.Cm defer-action
can be used to precisely control creation and checking of dynamic rules.
Example of usage of these options are provided in
.Sx NETWORK ADDRESS TRANSLATION (NAT)
Section.
.Pp
To limit the number of connections a user can open
you can use the following type of rules:
.Pp
.Dl "ipfw add allow tcp from my-net/24 to any setup limit src-addr 10"
.Dl "ipfw add allow tcp from any to me setup limit src-addr 4"
.Pp
The former (assuming it runs on a gateway) will allow each host
on a /24 network to open at most 10 TCP connections.
The latter can be placed on a server to make sure that a single
client does not use more than 4 simultaneous connections.
.Pp
.Em BEWARE :
stateful rules can be subject to denial-of-service attacks
by a SYN-flood which opens a huge number of dynamic rules.
The effects of such attacks can be partially limited by
acting on a set of
.Xr sysctl 8
variables which control the operation of the firewall.
.Pp
Here is a good usage of the
.Cm list
command to see accounting records and timestamp information:
.Pp
.Dl ipfw -at list
.Pp
or in short form without timestamps:
.Pp
.Dl ipfw -a list
.Pp
which is equivalent to:
.Pp
.Dl ipfw show
.Pp
Next rule diverts all incoming packets from 192.168.2.0/24
to divert port 5000:
.Pp
.Dl ipfw divert 5000 ip from 192.168.2.0/24 to any in
.Ss TRAFFIC SHAPING
The following rules show some of the applications of
.Nm
and
.Nm dummynet
for simulations and the like.
.Pp
This rule drops random incoming packets with a probability
of 5%:
.Pp
.Dl "ipfw add prob 0.05 deny ip from any to any in"
.Pp
A similar effect can be achieved making use of
.Nm dummynet
pipes:
.Pp
.Dl "ipfw add pipe 10 ip from any to any"
.Dl "ipfw pipe 10 config plr 0.05"
.Pp
We can use pipes to artificially limit bandwidth, e.g.\& on a
machine acting as a router, if we want to limit traffic from
local clients on 192.168.2.0/24 we do:
.Pp
.Dl "ipfw add pipe 1 ip from 192.168.2.0/24 to any out"
.Dl "ipfw pipe 1 config bw 300Kbit/s queue 50KBytes"
.Pp
note that we use the
.Cm out
modifier so that the rule is not used twice.
Remember in fact that
.Nm
rules are checked both on incoming and outgoing packets.
.Pp
Should we want to simulate a bidirectional link with bandwidth
limitations, the correct way is the following:
.Pp
.Dl "ipfw add pipe 1 ip from any to any out"
.Dl "ipfw add pipe 2 ip from any to any in"
.Dl "ipfw pipe 1 config bw 64Kbit/s queue 10Kbytes"
.Dl "ipfw pipe 2 config bw 64Kbit/s queue 10Kbytes"
.Pp
The above can be very useful, e.g.\& if you want to see how
your fancy Web page will look for a residential user who
is connected only through a slow link.
You should not use only one pipe for both directions, unless
you want to simulate a half-duplex medium (e.g.\& AppleTalk,
Ethernet, IRDA).
It is not necessary that both pipes have the same configuration,
so we can also simulate asymmetric links.
.Pp
Should we want to verify network performance with the RED queue
management algorithm:
.Pp
.Dl "ipfw add pipe 1 ip from any to any"
.Dl "ipfw pipe 1 config bw 500Kbit/s queue 100 red 0.002/30/80/0.1"
.Pp
Another typical application of the traffic shaper is to
introduce some delay in the communication.
This can significantly affect applications which do a lot of Remote
Procedure Calls, and where the round-trip-time of the
connection often becomes a limiting factor much more than
bandwidth:
.Pp
.Dl "ipfw add pipe 1 ip from any to any out"
.Dl "ipfw add pipe 2 ip from any to any in"
.Dl "ipfw pipe 1 config delay 250ms bw 1Mbit/s"
.Dl "ipfw pipe 2 config delay 250ms bw 1Mbit/s"
.Pp
Per-flow queueing can be useful for a variety of purposes.
A very simple one is counting traffic:
.Pp
.Dl "ipfw add pipe 1 tcp from any to any"
.Dl "ipfw add pipe 1 udp from any to any"
.Dl "ipfw add pipe 1 ip from any to any"
.Dl "ipfw pipe 1 config mask all"
.Pp
The above set of rules will create queues (and collect
statistics) for all traffic.
Because the pipes have no limitations, the only effect is
collecting statistics.
Note that we need 3 rules, not just the last one, because
when
.Nm
tries to match IP packets it will not consider ports, so we
would not see connections on separate ports as different
ones.
.Pp
A more sophisticated example is limiting the outbound traffic
on a net with per-host limits, rather than per-network limits:
.Pp
.Dl "ipfw add pipe 1 ip from 192.168.2.0/24 to any out"
.Dl "ipfw add pipe 2 ip from any to 192.168.2.0/24 in"
.Dl "ipfw pipe 1 config mask src-ip 0x000000ff bw 200Kbit/s queue 20Kbytes"
.Dl "ipfw pipe 2 config mask dst-ip 0x000000ff bw 200Kbit/s queue 20Kbytes"
.Ss LOOKUP TABLES
In the following example, we need to create several traffic bandwidth
classes and we need different hosts/networks to fall into different classes.
We create one pipe for each class and configure them accordingly.
Then we create a single table and fill it with IP subnets and addresses.
For each subnet/host we set the argument equal to the number of the pipe
that it should use.
Then we classify traffic using a single rule:
.Pp
.Dl "ipfw pipe 1 config bw 1000Kbyte/s"
.Dl "ipfw pipe 4 config bw 4000Kbyte/s"
.Dl "..."
.Dl "ipfw table T1 create type addr"
.Dl "ipfw table T1 add 192.168.2.0/24 1"
.Dl "ipfw table T1 add 192.168.0.0/27 4"
.Dl "ipfw table T1 add 192.168.0.2 1"
.Dl "..."
.Dl "ipfw add pipe tablearg ip from 'table(T1)' to any"
.Pp
Using the
.Cm fwd
action, the table entries may include hostnames and IP addresses.
.Pp
.Dl "ipfw table T2 create type addr ftype ip"
.Dl "ipfw table T2 add 192.168.2.0/24 10.23.2.1"
.Dl "ipfw table T21 add 192.168.0.0/27 router1.dmz"
.Dl "..."
.Dl "ipfw add 100 fwd tablearg ip from any to table(1)"
.Pp
In the following example per-interface firewall is created:
.Pp
.Dl "ipfw table IN create type iface valtype skipto,fib"
.Dl "ipfw table IN add vlan20 12000,12"
.Dl "ipfw table IN add vlan30 13000,13"
.Dl "ipfw table OUT create type iface valtype skipto"
.Dl "ipfw table OUT add vlan20 22000"
.Dl "ipfw table OUT add vlan30 23000"
.Dl ".."
.Dl "ipfw add 100 setfib tablearg ip from any to any recv 'table(IN)' in"
.Dl "ipfw add 200 skipto tablearg ip from any to any recv 'table(IN)' in"
.Dl "ipfw add 300 skipto tablearg ip from any to any xmit 'table(OUT)' out"
.Pp
The following example illustrate usage of flow tables:
.Pp
.Dl "ipfw table fl create type flow:src-ip,proto,dst-ip,dst-port"
.Dl "ipfw table fl add 2a02:6b8:77::88,tcp,2a02:6b8:77::99,80 11"
.Dl "ipfw table fl add 10.0.0.1,udp,10.0.0.2,53 12"
.Dl ".."
.Dl "ipfw add 100 allow ip from any to any flow 'table(fl,11)' recv ix0"
.Ss SETS OF RULES
To add a set of rules atomically, e.g.\& set 18:
.Pp
.Dl "ipfw set disable 18"
.Dl "ipfw add NN set 18 ...         # repeat as needed"
.Dl "ipfw set enable 18"
.Pp
To delete a set of rules atomically the command is simply:
.Pp
.Dl "ipfw delete set 18"
.Pp
To test a ruleset and disable it and regain control if something goes wrong:
.Pp
.Dl "ipfw set disable 18"
.Dl "ipfw add NN set 18 ...         # repeat as needed"
.Dl "ipfw set enable 18; echo done; sleep 30 && ipfw set disable 18"
.Pp
Here if everything goes well, you press control-C before the "sleep"
terminates, and your ruleset will be left active.
Otherwise, e.g.\& if
you cannot access your box, the ruleset will be disabled after
the sleep terminates thus restoring the previous situation.
.Pp
To show rules of the specific set:
.Pp
.Dl "ipfw set 18 show"
.Pp
To show rules of the disabled set:
.Pp
.Dl "ipfw -S set 18 show"
.Pp
To clear a specific rule counters of the specific set:
.Pp
.Dl "ipfw set 18 zero NN"
.Pp
To delete a specific rule of the specific set:
.Pp
.Dl "ipfw set 18 delete NN"
.Ss NAT, REDIRECT AND LSNAT
First redirect all the traffic to nat instance 123:
.Pp
.Dl "ipfw add nat 123 all from any to any"
.Pp
Then to configure nat instance 123 to alias all the outgoing traffic with ip
192.168.0.123, blocking all incoming connections, trying to keep
same ports on both sides, clearing aliasing table on address change
and keeping a log of traffic/link statistics:
.Pp
.Dl "ipfw nat 123 config ip 192.168.0.123 log deny_in reset same_ports"
.Pp
Or to change address of instance 123, aliasing table will be cleared (see
reset option):
.Pp
.Dl "ipfw nat 123 config ip 10.0.0.1"
.Pp
To see configuration of nat instance 123:
.Pp
.Dl "ipfw nat 123 show config"
.Pp
To show logs of all the instances in range 111-999:
.Pp
.Dl "ipfw nat 111-999 show"
.Pp
To see configurations of all instances:
.Pp
.Dl "ipfw nat show config"
.Pp
Or a redirect rule with mixed modes could looks like:
.Pp
.Dl "ipfw nat 123 config redirect_addr 10.0.0.1 10.0.0.66"
.Dl "			 redirect_port tcp 192.168.0.1:80 500"
.Dl "			 redirect_proto udp 192.168.1.43 192.168.1.1"
.Dl "			 redirect_addr 192.168.0.10,192.168.0.11"
.Dl "			 	    10.0.0.100	# LSNAT"
.Dl "			 redirect_port tcp 192.168.0.1:80,192.168.0.10:22"
.Dl "			 	    500		# LSNAT"
.Pp
or it could be split in:
.Pp
.Dl "ipfw nat 1 config redirect_addr 10.0.0.1 10.0.0.66"
.Dl "ipfw nat 2 config redirect_port tcp 192.168.0.1:80 500"
.Dl "ipfw nat 3 config redirect_proto udp 192.168.1.43 192.168.1.1"
.Dl "ipfw nat 4 config redirect_addr 192.168.0.10,192.168.0.11,192.168.0.12"
.Dl "				         10.0.0.100"
.Dl "ipfw nat 5 config redirect_port tcp"
.Dl "			192.168.0.1:80,192.168.0.10:22,192.168.0.20:25 500"
.Pp
Sometimes you may want to mix NAT and dynamic rules.
It could be achieved with
.Cm record-state
and
.Cm defer-action
options.
Problem is, you need to create dynamic rule before NAT and check it
after NAT actions (or vice versa) to have consistent addresses and ports.
Rule with
.Cm keep-state
option will trigger activation of existing dynamic state, and action of such
rule will be performed as soon as rule is matched.
In case of NAT and
.Cm allow
rule packet need to be passed to NAT, not allowed as soon is possible.
.Pp
There is example of set of rules to achieve this.
Bear in mind that this is example only and it is not very useful by itself.
.Pp
On way out, after all checks place this rules:
.Pp
.Dl "ipfw add allow record-state skip-action"
.Dl "ipfw add nat 1"
.Pp
And on way in there should be something like this:
.Pp
.Dl "ipfw add nat 1"
.Dl "ipfw add check-state"
.Pp
Please note, that first rule on way out doesn't allow packet and doesn't
execute existing dynamic rules.
All it does, create new dynamic rule with
.Cm allow
action, if it is not created yet.
Later, this dynamic rule is used on way in by
.Cm check-state
rule.
.Ss CONFIGURING CODEL, PIE, FQ-CODEL and FQ-PIE AQM
.Cm codel
and
.Cm pie
AQM can be configured for
.Nm dummynet
.Cm pipe
or
.Cm queue .
.Pp
To configure a
.Cm pipe
with
.Cm codel
AQM using default configuration for traffic from 192.168.0.0/24 and 1Mbits/s
rate limit, we do:
.Pp
.Dl "ipfw pipe 1 config bw 1mbits/s codel"
.Dl "ipfw add 100 pipe 1 ip from 192.168.0.0/24 to any"
.Pp
To configure a
.Cm queue
with
.Cm codel
AQM using different configurations parameters for traffic from
192.168.0.0/24 and 1Mbits/s rate limit, we do:
.Pp
.Dl "ipfw pipe 1 config bw 1mbits/s"
.Dl "ipfw queue 1 config pipe 1 codel target 8ms interval 160ms ecn"
.Dl "ipfw add 100 queue 1 ip from 192.168.0.0/24 to any"
.Pp
To configure a
.Cm pipe
with
.Cm pie
AQM using default configuration for traffic from 192.168.0.0/24 and 1Mbits/s
rate limit, we do:
.Pp
.Dl "ipfw pipe 1 config bw 1mbits/s pie"
.Dl "ipfw add 100 pipe 1 ip from 192.168.0.0/24 to any"
.Pp
To configure a
.Cm queue
with
.Cm pie
AQM using different configuration parameters for traffic from
192.168.0.0/24 and 1Mbits/s rate limit, we do:
.Pp
.Dl "ipfw pipe 1 config bw 1mbits/s"
.Dl "ipfw queue 1 config pipe 1 pie target 20ms tupdate 30ms ecn"
.Dl "ipfw add 100 queue 1 ip from 192.168.0.0/24 to any"
.Pp
.Cm fq_codel
and
.Cm fq_pie
AQM can be configured for
.Nm dummynet
schedulers.
.Pp
To configure
.Cm fq_codel
scheduler using different configurations parameters for traffic from
192.168.0.0/24 and 1Mbits/s rate limit, we do:
.Pp
.Dl "ipfw pipe 1 config bw 1mbits/s"
.Dl "ipfw sched 1 config pipe 1 type fq_codel"
.Dl "ipfw queue 1 config sched 1"
.Dl "ipfw add 100 queue 1 ip from 192.168.0.0/24 to any"
.Pp
To change
.Cm fq_codel
default configuration for a
.Cm sched
such as disable ECN and change the
.Ar target
to 10ms, we do:
.Pp
.Dl "ipfw sched 1 config pipe 1 type fq_codel target 10ms noecn"
.Pp
Similar to
.Cm fq_codel ,
to configure
.Cm fq_pie
scheduler using different configurations parameters for traffic from
192.168.0.0/24 and 1Mbits/s rate limit, we do:
.Pp
.Dl "ipfw pipe 1 config bw 1mbits/s"
.Dl "ipfw sched 1 config pipe 1 type fq_pie"
.Dl "ipfw queue 1 config sched 1"
.Dl "ipfw add 100 queue 1 ip from 192.168.0.0/24 to any"
.Pp
The configurations of
.Cm fq_pie
.Cm sched
can be changed in a similar way as for
.Cm fq_codel
.Sh SEE ALSO
.Xr cpp 1 ,
.Xr m4 1 ,
.Xr altq 4 ,
.Xr divert 4 ,
.Xr dummynet 4 ,
.Xr if_bridge 4 ,
.Xr ip 4 ,
.Xr ipfirewall 4 ,
.Xr ng_ether 4 ,
.Xr ng_ipfw 4 ,
.Xr protocols 5 ,
.Xr services 5 ,
.Xr init 8 ,
.Xr kldload 8 ,
.Xr reboot 8 ,
.Xr sysctl 8 ,
.Xr sysrc 8 ,
.Xr syslogd 8
.Sh HISTORY
The
.Nm
utility first appeared in
.Fx 2.0 .
.Nm dummynet
was introduced in
.Fx 2.2.8 .
Stateful extensions were introduced in
.Fx 4.0 .
.Nm ipfw2
was introduced in Summer 2002.
.Sh AUTHORS
.An Ugen J. S. Antsilevich ,
.An Poul-Henning Kamp ,
.An Alex Nash ,
.An Archie Cobbs ,
.An Luigi Rizzo ,
.An Rasool Al-Saadi .
.Pp
.An -nosplit
API based upon code written by
.An Daniel Boulet
for BSDI.
.Pp
Dummynet has been introduced by Luigi Rizzo in 1997-1998.
.Pp
Some early work (1999-2000) on the
.Nm dummynet
traffic shaper supported by Akamba Corp.
.Pp
The ipfw core (ipfw2) has been completely redesigned and
reimplemented by Luigi Rizzo in summer 2002.
Further
actions and
options have been added by various developers over the years.
.Pp
.An -nosplit
In-kernel NAT support written by
.An Paolo Pisati Aq Mt piso@FreeBSD.org
as part of a Summer of Code 2005 project.
.Pp
SCTP
.Nm nat
support has been developed by
.An The Centre for Advanced Internet Architectures (CAIA) Aq http://www.caia.swin.edu.au .
The primary developers and maintainers are David Hayes and Jason But.
For further information visit:
.Aq http://www.caia.swin.edu.au/urp/SONATA
.Pp
Delay profiles have been developed by Alessandro Cerri and
Luigi Rizzo, supported by the
European Commission within Projects Onelab and Onelab2.
.Pp
CoDel, PIE, FQ-CoDel and FQ-PIE AQM for Dummynet have been implemented by
.An The Centre for Advanced Internet Architectures (CAIA)
in 2016, supported by The Comcast Innovation Fund.
The primary developer is
Rasool Al-Saadi.
.Sh BUGS
The syntax has grown over the years and sometimes it might be confusing.
Unfortunately, backward compatibility prevents cleaning up mistakes
made in the definition of the syntax.
.Pp
.Em !!! WARNING !!!
.Pp
Misconfiguring the firewall can put your computer in an unusable state,
possibly shutting down network services and requiring console access to
regain control of it.
.Pp
Incoming packet fragments diverted by
.Cm divert
are reassembled before delivery to the socket.
The action used on those packet is the one from the
rule which matches the first fragment of the packet.
.Pp
Packets diverted to userland, and then reinserted by a userland process
may lose various packet attributes.
The packet source interface name
will be preserved if it is shorter than 8 bytes and the userland process
saves and reuses the sockaddr_in
(as does
.Xr natd 8 ) ;
otherwise, it may be lost.
If a packet is reinserted in this manner, later rules may be incorrectly
applied, making the order of
.Cm divert
rules in the rule sequence very important.
.Pp
Dummynet drops all packets with IPv6 link-local addresses.
.Pp
Rules using
.Cm uid
or
.Cm gid
may not behave as expected.
In particular, incoming SYN packets may
have no uid or gid associated with them since they do not yet belong
to a TCP connection, and the uid/gid associated with a packet may not
be as expected if the associated process calls
.Xr setuid 2
or similar system calls.
.Pp
Rule syntax is subject to the command line environment and some patterns
may need to be escaped with the backslash character
or quoted appropriately.
.Pp
Due to the architecture of
.Xr libalias 3 ,
ipfw nat is not compatible with the TCP segmentation offloading (TSO).
Thus, to reliably nat your network traffic, please disable TSO
on your NICs using
.Xr ifconfig 8 .
.Pp
ICMP error messages are not implicitly matched by dynamic rules
for the respective conversations.
To avoid failures of network error detection and path MTU discovery,
ICMP error messages may need to be allowed explicitly through static
rules.
.Pp
Rules using
.Cm call
and
.Cm return
actions may lead to confusing behaviour if ruleset has mistakes,
and/or interaction with other subsystems (netgraph, dummynet, etc.) is used.
One possible case for this is packet leaving
.Nm
in subroutine on the input pass, while later on output encountering unpaired
.Cm return
first.
As the call stack is kept intact after input pass, packet will suddenly
return to the rule number used on input pass, not on output one.
Order of processing should be checked carefully to avoid such mistakes.