.\" Copyright (C) Caldera International Inc. 2001-2002. All rights reserved.
.\"
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions are
.\" met:
.\"
.\" Redistributions of source code and documentation must retain the above
.\" copyright notice, this list of conditions and the following
.\" disclaimer.
.\"
.\" Redistributions in binary form must reproduce the above copyright
.\" notice, this list of conditions and the following disclaimer in the
.\" documentation and/or other materials provided with the distribution.
.\"
.\" All advertising materials mentioning features or use of this software
.\" must display the following acknowledgement:
.\"
.\" This product includes software developed or owned by Caldera
.\" International, Inc. Neither the name of Caldera International, Inc.
.\" nor the names of other contributors may be used to endorse or promote
.\" products derived from this software without specific prior written
.\" permission.
.\"
.\" USE OF THE SOFTWARE PROVIDED FOR UNDER THIS LICENSE BY CALDERA
.\" INTERNATIONAL, INC. AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR
.\" IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
.\" WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
.\" DISCLAIMED. IN NO EVENT SHALL CALDERA INTERNATIONAL, INC. BE LIABLE
.\" FOR ANY DIRECT, INDIRECT INCIDENTAL, SPECIAL, EXEMPLARY, OR
.\" CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
.\" SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
.\" BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
.\" WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
.\" OR OTHERWISE) RISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
.\" IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
.\"
.\" @(#)table2 8.1 (Berkeley) 8/14/93
.\"
.\" $FreeBSD$
.sp 100
.br
.de mx
.nf
.ft I
.ta .25iC .5i +.45i 3.25iC +.25i +.45i
Input Character Input Character
Char Name Name Char Name Name
.ft R
.sp .2
.nr cl 0
.mk
..
.br
.tr ~~
.nf
.ps 12
.vs 14p
.ft B
.ce
Table II
.sp
.ce 2
Input Naming Conventions for \', \`, and \-
and for Non-ASCII Special Characters
.sp .5i
.ft R
.ps 10
.vs 12p
.ft B
.bd I 3
Non-\s-1ASCII\s+1 characters and \fIminus\fP on the standard fonts.
.sp
.ft R
.de cl
.ie \\n+(cl<2 \{\
.po +3.0i
.rt
.\}
.el .sc
..
.de sc
.po 26i/27u
.nr cl 0
..
.nr cl 0 1
.de qq
\&' \' close quote
` \` open quote
\(em \e\|(em 3\(sl4 Em dash
- \- hyphen or
\(hy \e\|(hy hyphen
\- \e\- current font minus
\(bu \e\|(bu bullet
\(sq \e\|(sq square
\(ru \e\|(ru rule
\(14 \e\|(14 1\(sl4
\(12 \e\|(12 1\(sl2
\(34 \e\|(34 3\(sl4
\(fi \e\|(fi fi
\(fl \e\|(fl fl
\(ff \e\|(ff ff
\(Fi \e\|(Fi ffi
\(Fl \e\|(Fl ffl
\(de \e\|(de degree
\(dg \e\|(dg dagger
\(fm \e\|(fm foot mark
\(ct \e\|(ct cent sign
\(rg \e\|(rg registered
\(co \e\|(co copyright
..
.di zz
.lg 0
.qq
.di
.lg
.mx
.nr aa \n(dn/2
.ne \n(aau+1
.nr bb \n(nl+\n(aa
.wh \n(bbu cl
.qq
.sp |\n(bbu
.ch cl 12i
.fi
.sp 2
.ft B
.bd I
Non-\s-1ASCII\s+1 characters and \', \`, \_\|, \(pl, \(mi, \(eq, and \(** on the special font.
.sp .4
.ft R
.fi
.ps 10
The ASCII characters @, #, ", \', \`, <, >, \\, {, }, ~, ^, and \(ul exist
\fIonly\fR on the special font and are printed as a 1-em space if that font
is not mounted.
The following characters exist only on the special font except
for the upper case Greek letter names followed by \(dg which are mapped into
upper case English letters in
whatever font is mounted on font position one (default Times Roman).
The special math plus, minus, and equals are provided to
insulate the appearance of equations from the choice of standard fonts.
.bd I 3
.nf
.ps 10
.sp
.ch cl \nmu-\n(.vu-1u
.mx
.lg 0
\(pl \e\|(pl math plus
\(mi \e\|(mi math minus
\(eq \e\|(eq math equals
\(** \e\|(** math star
\(sc \e\|(sc section
\(aa \e\|(aa acute accent
\(ga \e\|(ga grave accent
\(ul \e\|(ul underrule
\(sl \e\|(sl slash (matching backslash)
\(*a \e\|(*a alpha
\(*b \e\|(*b beta
\(*g \e\|(*g gamma
\(*d \e\|(*d delta
\(*e \e\|(*e epsilon
\(*z \e\|(*z zeta
\(*y \e\|(*y eta
\(*h \e\|(*h theta
\(*i \e\|(*i iota
\(*k \e\|(*k kappa
\(*l \e\|(*l lambda
\(*m \e\|(*m mu
\(*n \e\|(*n nu
\(*c \e\|(*c xi
\(*o \e\|(*o omicron
\(*p \e\|(*p pi
\(*r \e\|(*r rho
\(*s \e\|(*s sigma
\(ts \e\|(ts terminal sigma
\(*t \e\|(*t tau
\(*u \e\|(*u upsilon
\(*f \e\|(*f phi
\(*x \e\|(*x chi
\(*q \e\|(*q psi
\(*w \e\|(*w omega
\(*A \e\|(*A Alpha\(dg
\(*B \e\|(*B Beta\(dg
\(*G \e\|(*G Gamma
\(*D \e\|(*D Delta
\(*E \e\|(*E Epsilon\(dg
\(*Z \e\|(*Z Zeta\(dg
\(*Y \e\|(*Y Eta\(dg
\(*H \e\|(*H Theta
\(*I \e\|(*I Iota\(dg
\(*K \e\|(*K Kappa\(dg
\(*L \e\|(*L Lambda
\(*M \e\|(*M Mu\(dg
\(*N \e\|(*N Nu\(dg
\(*C \e\|(*C Xi
\(*O \e\|(*O Omicron\(dg
\(*P \e\|(*P Pi
\(*R \e\|(*R Rho\(dg
\(*S \e\|(*S Sigma
\(*T \e\|(*T Tau\(dg
\(*U \e\|(*U Upsilon
\(*F \e\|(*F Phi
\(*X \e\|(*X Chi\(dg
\(*Q \e\|(*Q Psi
\(*W \e\|(*W Omega
\(sr \e\|(sr square root
\(rn \e\|(rn root en extender
\(>= \e\|(>= >=
\(<= \e\|(<= <=
\(== \e\|(== identically equal
\(~= \e\|(~= approx =
\(ap \e\|(ap approximates
\(!= \e\|(!= not equal
\(-> \e\|(\(mi> right arrow
\(<- \e\|(<\(mi left arrow
\(ua \e\|(ua up arrow
\(da \e\|(da down arrow
\(mu \e\|(mu multiply
\(di \e\|(di divide
\(+- \e\|(+\(mi plus-minus
\(cu \e\|(cu cup (union)
\(ca \e\|(ca cap (intersection)
\(sb \e\|(sb subset of
\(sp \e\|(sp superset of
\(ib \e\|(ib improper subset
\(ip \e\|(ip improper superset
\(if \e\|(if infinity
\(pd \e\|(pd partial derivative
\(gr \e\|(gr gradient
\(no \e\|(no not
\(is \e\|(is integral sign
\(pt \e\|(pt proportional to
\(es \e\|(es empty set
\(mo \e\|(mo member of
\(br \e\|(br box vertical rule
\(dd \e\|(dd double dagger
\(rh \e\|(rh right hand
\(lh \e\|(lh left hand
\(or \e\|(or or
\(ci \e\|(ci circle
\(lt \e\|(lt left top of big curly bracket
\(lb \e\|(lb left bottom
\(rt \e\|(rt right top
\(rb \e\|(rb right bot
\(lk \e\|(lk left center of big curly bracket
\(rk \e\|(rk right center of big curly bracket
\(bv \e\|(bv bold vertical
\(lf \e\|(lf left floor (left bottom of big
square bracket)
\(rf \e\|(rf right floor (right bottom)
\(lc \e\|(lc left ceiling (left top)
\(rc \e\|(rc right ceiling (right top)