Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
 */

#include <sys/zfs_context.h>
#include <modes/modes.h>
#include <sys/crypto/common.h>
#include <sys/crypto/icp.h>
#include <sys/crypto/impl.h>
#include <sys/byteorder.h>
#include <sys/simd.h>
#include <modes/gcm_impl.h>
#ifdef CAN_USE_GCM_ASM
#include <aes/aes_impl.h>
#endif

#define	GHASH(c, d, t, o) \
	xor_block((uint8_t *)(d), (uint8_t *)(c)->gcm_ghash); \
	(o)->mul((uint64_t *)(void *)(c)->gcm_ghash, (c)->gcm_H, \
	(uint64_t *)(void *)(t));

/* Select GCM implementation */
#define	IMPL_FASTEST	(UINT32_MAX)
#define	IMPL_CYCLE	(UINT32_MAX-1)
#ifdef CAN_USE_GCM_ASM
#define	IMPL_AVX	(UINT32_MAX-2)
#endif
#define	GCM_IMPL_READ(i) (*(volatile uint32_t *) &(i))
static uint32_t icp_gcm_impl = IMPL_FASTEST;
static uint32_t user_sel_impl = IMPL_FASTEST;

#ifdef CAN_USE_GCM_ASM
/* Does the architecture we run on support the MOVBE instruction? */
boolean_t gcm_avx_can_use_movbe = B_FALSE;
/*
 * Whether to use the optimized openssl gcm and ghash implementations.
 * Set to true if module parameter icp_gcm_impl == "avx".
 */
static boolean_t gcm_use_avx = B_FALSE;
#define	GCM_IMPL_USE_AVX	(*(volatile boolean_t *)&gcm_use_avx)

static inline boolean_t gcm_avx_will_work(void);
static inline void gcm_set_avx(boolean_t);
static inline boolean_t gcm_toggle_avx(void);
extern boolean_t atomic_toggle_boolean_nv(volatile boolean_t *);

static int gcm_mode_encrypt_contiguous_blocks_avx(gcm_ctx_t *, char *, size_t,
    crypto_data_t *, size_t);

static int gcm_encrypt_final_avx(gcm_ctx_t *, crypto_data_t *, size_t);
static int gcm_decrypt_final_avx(gcm_ctx_t *, crypto_data_t *, size_t);
static int gcm_init_avx(gcm_ctx_t *, unsigned char *, size_t, unsigned char *,
    size_t, size_t);
#endif /* ifdef CAN_USE_GCM_ASM */

/*
 * Encrypt multiple blocks of data in GCM mode.  Decrypt for GCM mode
 * is done in another function.
 */
int
gcm_mode_encrypt_contiguous_blocks(gcm_ctx_t *ctx, char *data, size_t length,
    crypto_data_t *out, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
#ifdef CAN_USE_GCM_ASM
	if (ctx->gcm_use_avx == B_TRUE)
		return (gcm_mode_encrypt_contiguous_blocks_avx(
		    ctx, data, length, out, block_size));
#endif

	const gcm_impl_ops_t *gops;
	size_t remainder = length;
	size_t need = 0;
	uint8_t *datap = (uint8_t *)data;
	uint8_t *blockp;
	uint8_t *lastp;
	void *iov_or_mp;
	offset_t offset;
	uint8_t *out_data_1;
	uint8_t *out_data_2;
	size_t out_data_1_len;
	uint64_t counter;
	uint64_t counter_mask = ntohll(0x00000000ffffffffULL);

	if (length + ctx->gcm_remainder_len < block_size) {
		/* accumulate bytes here and return */
		bcopy(datap,
		    (uint8_t *)ctx->gcm_remainder + ctx->gcm_remainder_len,
		    length);
		ctx->gcm_remainder_len += length;
		if (ctx->gcm_copy_to == NULL) {
			ctx->gcm_copy_to = datap;
		}
		return (CRYPTO_SUCCESS);
	}

	lastp = (uint8_t *)ctx->gcm_cb;
	crypto_init_ptrs(out, &iov_or_mp, &offset);

	gops = gcm_impl_get_ops();
	do {
		/* Unprocessed data from last call. */
		if (ctx->gcm_remainder_len > 0) {
			need = block_size - ctx->gcm_remainder_len;

			if (need > remainder)
				return (CRYPTO_DATA_LEN_RANGE);

			bcopy(datap, &((uint8_t *)ctx->gcm_remainder)
			    [ctx->gcm_remainder_len], need);

			blockp = (uint8_t *)ctx->gcm_remainder;
		} else {
			blockp = datap;
		}

		/*
		 * Increment counter. Counter bits are confined
		 * to the bottom 32 bits of the counter block.
		 */
		counter = ntohll(ctx->gcm_cb[1] & counter_mask);
		counter = htonll(counter + 1);
		counter &= counter_mask;
		ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;

		encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb,
		    (uint8_t *)ctx->gcm_tmp);
		xor_block(blockp, (uint8_t *)ctx->gcm_tmp);

		lastp = (uint8_t *)ctx->gcm_tmp;

		ctx->gcm_processed_data_len += block_size;

		crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
		    &out_data_1_len, &out_data_2, block_size);

		/* copy block to where it belongs */
		if (out_data_1_len == block_size) {
			copy_block(lastp, out_data_1);
		} else {
			bcopy(lastp, out_data_1, out_data_1_len);
			if (out_data_2 != NULL) {
				bcopy(lastp + out_data_1_len,
				    out_data_2,
				    block_size - out_data_1_len);
			}
		}
		/* update offset */
		out->cd_offset += block_size;

		/* add ciphertext to the hash */
		GHASH(ctx, ctx->gcm_tmp, ctx->gcm_ghash, gops);

		/* Update pointer to next block of data to be processed. */
		if (ctx->gcm_remainder_len != 0) {
			datap += need;
			ctx->gcm_remainder_len = 0;
		} else {
			datap += block_size;
		}

		remainder = (size_t)&data[length] - (size_t)datap;

		/* Incomplete last block. */
		if (remainder > 0 && remainder < block_size) {
			bcopy(datap, ctx->gcm_remainder, remainder);
			ctx->gcm_remainder_len = remainder;
			ctx->gcm_copy_to = datap;
			goto out;
		}
		ctx->gcm_copy_to = NULL;

	} while (remainder > 0);
out:
	return (CRYPTO_SUCCESS);
}

/* ARGSUSED */
int
gcm_encrypt_final(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
#ifdef CAN_USE_GCM_ASM
	if (ctx->gcm_use_avx == B_TRUE)
		return (gcm_encrypt_final_avx(ctx, out, block_size));
#endif

	const gcm_impl_ops_t *gops;
	uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
	uint8_t *ghash, *macp = NULL;
	int i, rv;

	if (out->cd_length <
	    (ctx->gcm_remainder_len + ctx->gcm_tag_len)) {
		return (CRYPTO_DATA_LEN_RANGE);
	}

	gops = gcm_impl_get_ops();
	ghash = (uint8_t *)ctx->gcm_ghash;

	if (ctx->gcm_remainder_len > 0) {
		uint64_t counter;
		uint8_t *tmpp = (uint8_t *)ctx->gcm_tmp;

		/*
		 * Here is where we deal with data that is not a
		 * multiple of the block size.
		 */

		/*
		 * Increment counter.
		 */
		counter = ntohll(ctx->gcm_cb[1] & counter_mask);
		counter = htonll(counter + 1);
		counter &= counter_mask;
		ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;

		encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb,
		    (uint8_t *)ctx->gcm_tmp);

		macp = (uint8_t *)ctx->gcm_remainder;
		bzero(macp + ctx->gcm_remainder_len,
		    block_size - ctx->gcm_remainder_len);

		/* XOR with counter block */
		for (i = 0; i < ctx->gcm_remainder_len; i++) {
			macp[i] ^= tmpp[i];
		}

		/* add ciphertext to the hash */
		GHASH(ctx, macp, ghash, gops);

		ctx->gcm_processed_data_len += ctx->gcm_remainder_len;
	}

	ctx->gcm_len_a_len_c[1] =
	    htonll(CRYPTO_BYTES2BITS(ctx->gcm_processed_data_len));
	GHASH(ctx, ctx->gcm_len_a_len_c, ghash, gops);
	encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_J0,
	    (uint8_t *)ctx->gcm_J0);
	xor_block((uint8_t *)ctx->gcm_J0, ghash);

	if (ctx->gcm_remainder_len > 0) {
		rv = crypto_put_output_data(macp, out, ctx->gcm_remainder_len);
		if (rv != CRYPTO_SUCCESS)
			return (rv);
	}
	out->cd_offset += ctx->gcm_remainder_len;
	ctx->gcm_remainder_len = 0;
	rv = crypto_put_output_data(ghash, out, ctx->gcm_tag_len);
	if (rv != CRYPTO_SUCCESS)
		return (rv);
	out->cd_offset += ctx->gcm_tag_len;

	return (CRYPTO_SUCCESS);
}

/*
 * This will only deal with decrypting the last block of the input that
 * might not be a multiple of block length.
 */
static void
gcm_decrypt_incomplete_block(gcm_ctx_t *ctx, size_t block_size, size_t index,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	uint8_t *datap, *outp, *counterp;
	uint64_t counter;
	uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
	int i;

	/*
	 * Increment counter.
	 * Counter bits are confined to the bottom 32 bits
	 */
	counter = ntohll(ctx->gcm_cb[1] & counter_mask);
	counter = htonll(counter + 1);
	counter &= counter_mask;
	ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;

	datap = (uint8_t *)ctx->gcm_remainder;
	outp = &((ctx->gcm_pt_buf)[index]);
	counterp = (uint8_t *)ctx->gcm_tmp;

	/* authentication tag */
	bzero((uint8_t *)ctx->gcm_tmp, block_size);
	bcopy(datap, (uint8_t *)ctx->gcm_tmp, ctx->gcm_remainder_len);

	/* add ciphertext to the hash */
	GHASH(ctx, ctx->gcm_tmp, ctx->gcm_ghash, gcm_impl_get_ops());

	/* decrypt remaining ciphertext */
	encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, counterp);

	/* XOR with counter block */
	for (i = 0; i < ctx->gcm_remainder_len; i++) {
		outp[i] = datap[i] ^ counterp[i];
	}
}

/* ARGSUSED */
int
gcm_mode_decrypt_contiguous_blocks(gcm_ctx_t *ctx, char *data, size_t length,
    crypto_data_t *out, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	size_t new_len;
	uint8_t *new;

	/*
	 * Copy contiguous ciphertext input blocks to plaintext buffer.
	 * Ciphertext will be decrypted in the final.
	 */
	if (length > 0) {
		new_len = ctx->gcm_pt_buf_len + length;
		new = vmem_alloc(new_len, ctx->gcm_kmflag);
		if (new == NULL) {
			vmem_free(ctx->gcm_pt_buf, ctx->gcm_pt_buf_len);
			ctx->gcm_pt_buf = NULL;
			return (CRYPTO_HOST_MEMORY);
		}
		bcopy(ctx->gcm_pt_buf, new, ctx->gcm_pt_buf_len);
		vmem_free(ctx->gcm_pt_buf, ctx->gcm_pt_buf_len);
		ctx->gcm_pt_buf = new;
		ctx->gcm_pt_buf_len = new_len;
		bcopy(data, &ctx->gcm_pt_buf[ctx->gcm_processed_data_len],
		    length);
		ctx->gcm_processed_data_len += length;
	}

	ctx->gcm_remainder_len = 0;
	return (CRYPTO_SUCCESS);
}

int
gcm_decrypt_final(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
#ifdef CAN_USE_GCM_ASM
	if (ctx->gcm_use_avx == B_TRUE)
		return (gcm_decrypt_final_avx(ctx, out, block_size));
#endif

	const gcm_impl_ops_t *gops;
	size_t pt_len;
	size_t remainder;
	uint8_t *ghash;
	uint8_t *blockp;
	uint8_t *cbp;
	uint64_t counter;
	uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
	int processed = 0, rv;

	ASSERT(ctx->gcm_processed_data_len == ctx->gcm_pt_buf_len);

	gops = gcm_impl_get_ops();
	pt_len = ctx->gcm_processed_data_len - ctx->gcm_tag_len;
	ghash = (uint8_t *)ctx->gcm_ghash;
	blockp = ctx->gcm_pt_buf;
	remainder = pt_len;
	while (remainder > 0) {
		/* Incomplete last block */
		if (remainder < block_size) {
			bcopy(blockp, ctx->gcm_remainder, remainder);
			ctx->gcm_remainder_len = remainder;
			/*
			 * not expecting anymore ciphertext, just
			 * compute plaintext for the remaining input
			 */
			gcm_decrypt_incomplete_block(ctx, block_size,
			    processed, encrypt_block, xor_block);
			ctx->gcm_remainder_len = 0;
			goto out;
		}
		/* add ciphertext to the hash */
		GHASH(ctx, blockp, ghash, gops);

		/*
		 * Increment counter.
		 * Counter bits are confined to the bottom 32 bits
		 */
		counter = ntohll(ctx->gcm_cb[1] & counter_mask);
		counter = htonll(counter + 1);
		counter &= counter_mask;
		ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;

		cbp = (uint8_t *)ctx->gcm_tmp;
		encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, cbp);

		/* XOR with ciphertext */
		xor_block(cbp, blockp);

		processed += block_size;
		blockp += block_size;
		remainder -= block_size;
	}
out:
	ctx->gcm_len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(pt_len));
	GHASH(ctx, ctx->gcm_len_a_len_c, ghash, gops);
	encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_J0,
	    (uint8_t *)ctx->gcm_J0);
	xor_block((uint8_t *)ctx->gcm_J0, ghash);

	/* compare the input authentication tag with what we calculated */
	if (bcmp(&ctx->gcm_pt_buf[pt_len], ghash, ctx->gcm_tag_len)) {
		/* They don't match */
		return (CRYPTO_INVALID_MAC);
	} else {
		rv = crypto_put_output_data(ctx->gcm_pt_buf, out, pt_len);
		if (rv != CRYPTO_SUCCESS)
			return (rv);
		out->cd_offset += pt_len;
	}
	return (CRYPTO_SUCCESS);
}

static int
gcm_validate_args(CK_AES_GCM_PARAMS *gcm_param)
{
	size_t tag_len;

	/*
	 * Check the length of the authentication tag (in bits).
	 */
	tag_len = gcm_param->ulTagBits;
	switch (tag_len) {
	case 32:
	case 64:
	case 96:
	case 104:
	case 112:
	case 120:
	case 128:
		break;
	default:
		return (CRYPTO_MECHANISM_PARAM_INVALID);
	}

	if (gcm_param->ulIvLen == 0)
		return (CRYPTO_MECHANISM_PARAM_INVALID);

	return (CRYPTO_SUCCESS);
}

static void
gcm_format_initial_blocks(uchar_t *iv, ulong_t iv_len,
    gcm_ctx_t *ctx, size_t block_size,
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	const gcm_impl_ops_t *gops;
	uint8_t *cb;
	ulong_t remainder = iv_len;
	ulong_t processed = 0;
	uint8_t *datap, *ghash;
	uint64_t len_a_len_c[2];

	gops = gcm_impl_get_ops();
	ghash = (uint8_t *)ctx->gcm_ghash;
	cb = (uint8_t *)ctx->gcm_cb;
	if (iv_len == 12) {
		bcopy(iv, cb, 12);
		cb[12] = 0;
		cb[13] = 0;
		cb[14] = 0;
		cb[15] = 1;
		/* J0 will be used again in the final */
		copy_block(cb, (uint8_t *)ctx->gcm_J0);
	} else {
		/* GHASH the IV */
		do {
			if (remainder < block_size) {
				bzero(cb, block_size);
				bcopy(&(iv[processed]), cb, remainder);
				datap = (uint8_t *)cb;
				remainder = 0;
			} else {
				datap = (uint8_t *)(&(iv[processed]));
				processed += block_size;
				remainder -= block_size;
			}
			GHASH(ctx, datap, ghash, gops);
		} while (remainder > 0);

		len_a_len_c[0] = 0;
		len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(iv_len));
		GHASH(ctx, len_a_len_c, ctx->gcm_J0, gops);

		/* J0 will be used again in the final */
		copy_block((uint8_t *)ctx->gcm_J0, (uint8_t *)cb);
	}
}

static int
gcm_init(gcm_ctx_t *ctx, unsigned char *iv, size_t iv_len,
    unsigned char *auth_data, size_t auth_data_len, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	const gcm_impl_ops_t *gops;
	uint8_t *ghash, *datap, *authp;
	size_t remainder, processed;

	/* encrypt zero block to get subkey H */
	bzero(ctx->gcm_H, sizeof (ctx->gcm_H));
	encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_H,
	    (uint8_t *)ctx->gcm_H);

	gcm_format_initial_blocks(iv, iv_len, ctx, block_size,
	    copy_block, xor_block);

	gops = gcm_impl_get_ops();
	authp = (uint8_t *)ctx->gcm_tmp;
	ghash = (uint8_t *)ctx->gcm_ghash;
	bzero(authp, block_size);
	bzero(ghash, block_size);

	processed = 0;
	remainder = auth_data_len;
	do {
		if (remainder < block_size) {
			/*
			 * There's not a block full of data, pad rest of
			 * buffer with zero
			 */
			bzero(authp, block_size);
			bcopy(&(auth_data[processed]), authp, remainder);
			datap = (uint8_t *)authp;
			remainder = 0;
		} else {
			datap = (uint8_t *)(&(auth_data[processed]));
			processed += block_size;
			remainder -= block_size;
		}

		/* add auth data to the hash */
		GHASH(ctx, datap, ghash, gops);

	} while (remainder > 0);

	return (CRYPTO_SUCCESS);
}

/*
 * The following function is called at encrypt or decrypt init time
 * for AES GCM mode.
 *
 * Init the GCM context struct. Handle the cycle and avx implementations here.
 */
int
gcm_init_ctx(gcm_ctx_t *gcm_ctx, char *param, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	int rv;
	CK_AES_GCM_PARAMS *gcm_param;

	if (param != NULL) {
		gcm_param = (CK_AES_GCM_PARAMS *)(void *)param;

		if ((rv = gcm_validate_args(gcm_param)) != 0) {
			return (rv);
		}

		gcm_ctx->gcm_tag_len = gcm_param->ulTagBits;
		gcm_ctx->gcm_tag_len >>= 3;
		gcm_ctx->gcm_processed_data_len = 0;

		/* these values are in bits */
		gcm_ctx->gcm_len_a_len_c[0]
		    = htonll(CRYPTO_BYTES2BITS(gcm_param->ulAADLen));

		rv = CRYPTO_SUCCESS;
		gcm_ctx->gcm_flags |= GCM_MODE;
	} else {
		return (CRYPTO_MECHANISM_PARAM_INVALID);
	}

#ifdef CAN_USE_GCM_ASM
	if (GCM_IMPL_READ(icp_gcm_impl) != IMPL_CYCLE) {
		gcm_ctx->gcm_use_avx = GCM_IMPL_USE_AVX;
	} else {
		/*
		 * Handle the "cycle" implementation by creating avx and
		 * non-avx contexts alternately.
		 */
		gcm_ctx->gcm_use_avx = gcm_toggle_avx();
		/*
		 * We don't handle byte swapped key schedules in the avx
		 * code path.
		 */
		aes_key_t *ks = (aes_key_t *)gcm_ctx->gcm_keysched;
		if (ks->ops->needs_byteswap == B_TRUE) {
			gcm_ctx->gcm_use_avx = B_FALSE;
		}
		/* Use the MOVBE and the BSWAP variants alternately. */
		if (gcm_ctx->gcm_use_avx == B_TRUE &&
		    zfs_movbe_available() == B_TRUE) {
			(void) atomic_toggle_boolean_nv(
			    (volatile boolean_t *)&gcm_avx_can_use_movbe);
		}
	}
	/* Avx and non avx context initialization differs from here on. */
	if (gcm_ctx->gcm_use_avx == B_FALSE) {
#endif /* ifdef CAN_USE_GCM_ASM */
		if (gcm_init(gcm_ctx, gcm_param->pIv, gcm_param->ulIvLen,
		    gcm_param->pAAD, gcm_param->ulAADLen, block_size,
		    encrypt_block, copy_block, xor_block) != 0) {
			rv = CRYPTO_MECHANISM_PARAM_INVALID;
		}
#ifdef CAN_USE_GCM_ASM
	} else {
		if (gcm_init_avx(gcm_ctx, gcm_param->pIv, gcm_param->ulIvLen,
		    gcm_param->pAAD, gcm_param->ulAADLen, block_size) != 0) {
			rv = CRYPTO_MECHANISM_PARAM_INVALID;
		}
	}
#endif /* ifdef CAN_USE_GCM_ASM */

	return (rv);
}

int
gmac_init_ctx(gcm_ctx_t *gcm_ctx, char *param, size_t block_size,
    int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
    void (*copy_block)(uint8_t *, uint8_t *),
    void (*xor_block)(uint8_t *, uint8_t *))
{
	int rv;
	CK_AES_GMAC_PARAMS *gmac_param;

	if (param != NULL) {
		gmac_param = (CK_AES_GMAC_PARAMS *)(void *)param;

		gcm_ctx->gcm_tag_len = CRYPTO_BITS2BYTES(AES_GMAC_TAG_BITS);
		gcm_ctx->gcm_processed_data_len = 0;

		/* these values are in bits */
		gcm_ctx->gcm_len_a_len_c[0]
		    = htonll(CRYPTO_BYTES2BITS(gmac_param->ulAADLen));

		rv = CRYPTO_SUCCESS;
		gcm_ctx->gcm_flags |= GMAC_MODE;
	} else {
		return (CRYPTO_MECHANISM_PARAM_INVALID);
	}

#ifdef CAN_USE_GCM_ASM
	/*
	 * Handle the "cycle" implementation by creating avx and non avx
	 * contexts alternately.
	 */
	if (GCM_IMPL_READ(icp_gcm_impl) != IMPL_CYCLE) {
		gcm_ctx->gcm_use_avx = GCM_IMPL_USE_AVX;
	} else {
		gcm_ctx->gcm_use_avx = gcm_toggle_avx();
	}
	/* We don't handle byte swapped key schedules in the avx code path. */
	aes_key_t *ks = (aes_key_t *)gcm_ctx->gcm_keysched;
	if (ks->ops->needs_byteswap == B_TRUE) {
		gcm_ctx->gcm_use_avx = B_FALSE;
	}
	/* Avx and non avx context initialization differs from here on. */
	if (gcm_ctx->gcm_use_avx == B_FALSE) {
#endif	/* ifdef CAN_USE_GCM_ASM */
		if (gcm_init(gcm_ctx, gmac_param->pIv, AES_GMAC_IV_LEN,
		    gmac_param->pAAD, gmac_param->ulAADLen, block_size,
		    encrypt_block, copy_block, xor_block) != 0) {
			rv = CRYPTO_MECHANISM_PARAM_INVALID;
		}
#ifdef CAN_USE_GCM_ASM
	} else {
		if (gcm_init_avx(gcm_ctx, gmac_param->pIv, AES_GMAC_IV_LEN,
		    gmac_param->pAAD, gmac_param->ulAADLen, block_size) != 0) {
			rv = CRYPTO_MECHANISM_PARAM_INVALID;
		}
	}
#endif /* ifdef CAN_USE_GCM_ASM */

	return (rv);
}

void *
gcm_alloc_ctx(int kmflag)
{
	gcm_ctx_t *gcm_ctx;

	if ((gcm_ctx = kmem_zalloc(sizeof (gcm_ctx_t), kmflag)) == NULL)
		return (NULL);

	gcm_ctx->gcm_flags = GCM_MODE;
	return (gcm_ctx);
}

void *
gmac_alloc_ctx(int kmflag)
{
	gcm_ctx_t *gcm_ctx;

	if ((gcm_ctx = kmem_zalloc(sizeof (gcm_ctx_t), kmflag)) == NULL)
		return (NULL);

	gcm_ctx->gcm_flags = GMAC_MODE;
	return (gcm_ctx);
}

void
gcm_set_kmflag(gcm_ctx_t *ctx, int kmflag)
{
	ctx->gcm_kmflag = kmflag;
}

/* GCM implementation that contains the fastest methods */
static gcm_impl_ops_t gcm_fastest_impl = {
	.name = "fastest"
};

/* All compiled in implementations */
const gcm_impl_ops_t *gcm_all_impl[] = {
	&gcm_generic_impl,
#if defined(__x86_64) && defined(HAVE_PCLMULQDQ)
	&gcm_pclmulqdq_impl,
#endif
};

/* Indicate that benchmark has been completed */
static boolean_t gcm_impl_initialized = B_FALSE;

/* Hold all supported implementations */
static size_t gcm_supp_impl_cnt = 0;
static gcm_impl_ops_t *gcm_supp_impl[ARRAY_SIZE(gcm_all_impl)];

/*
 * Returns the GCM operations for encrypt/decrypt/key setup.  When a
 * SIMD implementation is not allowed in the current context, then
 * fallback to the fastest generic implementation.
 */
const gcm_impl_ops_t *
gcm_impl_get_ops()
{
	if (!kfpu_allowed())
		return (&gcm_generic_impl);

	const gcm_impl_ops_t *ops = NULL;
	const uint32_t impl = GCM_IMPL_READ(icp_gcm_impl);

	switch (impl) {
	case IMPL_FASTEST:
		ASSERT(gcm_impl_initialized);
		ops = &gcm_fastest_impl;
		break;
	case IMPL_CYCLE:
		/* Cycle through supported implementations */
		ASSERT(gcm_impl_initialized);
		ASSERT3U(gcm_supp_impl_cnt, >, 0);
		static size_t cycle_impl_idx = 0;
		size_t idx = (++cycle_impl_idx) % gcm_supp_impl_cnt;
		ops = gcm_supp_impl[idx];
		break;
#ifdef CAN_USE_GCM_ASM
	case IMPL_AVX:
		/*
		 * Make sure that we return a valid implementation while
		 * switching to the avx implementation since there still
		 * may be unfinished non-avx contexts around.
		 */
		ops = &gcm_generic_impl;
		break;
#endif
	default:
		ASSERT3U(impl, <, gcm_supp_impl_cnt);
		ASSERT3U(gcm_supp_impl_cnt, >, 0);
		if (impl < ARRAY_SIZE(gcm_all_impl))
			ops = gcm_supp_impl[impl];
		break;
	}

	ASSERT3P(ops, !=, NULL);

	return (ops);
}

/*
 * Initialize all supported implementations.
 */
void
gcm_impl_init(void)
{
	gcm_impl_ops_t *curr_impl;
	int i, c;

	/* Move supported implementations into gcm_supp_impls */
	for (i = 0, c = 0; i < ARRAY_SIZE(gcm_all_impl); i++) {
		curr_impl = (gcm_impl_ops_t *)gcm_all_impl[i];

		if (curr_impl->is_supported())
			gcm_supp_impl[c++] = (gcm_impl_ops_t *)curr_impl;
	}
	gcm_supp_impl_cnt = c;

	/*
	 * Set the fastest implementation given the assumption that the
	 * hardware accelerated version is the fastest.
	 */
#if defined(__x86_64) && defined(HAVE_PCLMULQDQ)
	if (gcm_pclmulqdq_impl.is_supported()) {
		memcpy(&gcm_fastest_impl, &gcm_pclmulqdq_impl,
		    sizeof (gcm_fastest_impl));
	} else
#endif
	{
		memcpy(&gcm_fastest_impl, &gcm_generic_impl,
		    sizeof (gcm_fastest_impl));
	}

	strlcpy(gcm_fastest_impl.name, "fastest", GCM_IMPL_NAME_MAX);

#ifdef CAN_USE_GCM_ASM
	/*
	 * Use the avx implementation if it's available and the implementation
	 * hasn't changed from its default value of fastest on module load.
	 */
	if (gcm_avx_will_work()) {
#ifdef HAVE_MOVBE
		if (zfs_movbe_available() == B_TRUE) {
			atomic_swap_32(&gcm_avx_can_use_movbe, B_TRUE);
		}
#endif
		if (GCM_IMPL_READ(user_sel_impl) == IMPL_FASTEST) {
			gcm_set_avx(B_TRUE);
		}
	}
#endif
	/* Finish initialization */
	atomic_swap_32(&icp_gcm_impl, user_sel_impl);
	gcm_impl_initialized = B_TRUE;
}

static const struct {
	char *name;
	uint32_t sel;
} gcm_impl_opts[] = {
		{ "cycle",	IMPL_CYCLE },
		{ "fastest",	IMPL_FASTEST },
#ifdef CAN_USE_GCM_ASM
		{ "avx",	IMPL_AVX },
#endif
};

/*
 * Function sets desired gcm implementation.
 *
 * If we are called before init(), user preference will be saved in
 * user_sel_impl, and applied in later init() call. This occurs when module
 * parameter is specified on module load. Otherwise, directly update
 * icp_gcm_impl.
 *
 * @val		Name of gcm implementation to use
 * @param	Unused.
 */
int
gcm_impl_set(const char *val)
{
	int err = -EINVAL;
	char req_name[GCM_IMPL_NAME_MAX];
	uint32_t impl = GCM_IMPL_READ(user_sel_impl);
	size_t i;

	/* sanitize input */
	i = strnlen(val, GCM_IMPL_NAME_MAX);
	if (i == 0 || i >= GCM_IMPL_NAME_MAX)
		return (err);

	strlcpy(req_name, val, GCM_IMPL_NAME_MAX);
	while (i > 0 && isspace(req_name[i-1]))
		i--;
	req_name[i] = '\0';

	/* Check mandatory options */
	for (i = 0; i < ARRAY_SIZE(gcm_impl_opts); i++) {
#ifdef CAN_USE_GCM_ASM
		/* Ignore avx implementation if it won't work. */
		if (gcm_impl_opts[i].sel == IMPL_AVX && !gcm_avx_will_work()) {
			continue;
		}
#endif
		if (strcmp(req_name, gcm_impl_opts[i].name) == 0) {
			impl = gcm_impl_opts[i].sel;
			err = 0;
			break;
		}
	}

	/* check all supported impl if init() was already called */
	if (err != 0 && gcm_impl_initialized) {
		/* check all supported implementations */
		for (i = 0; i < gcm_supp_impl_cnt; i++) {
			if (strcmp(req_name, gcm_supp_impl[i]->name) == 0) {
				impl = i;
				err = 0;
				break;
			}
		}
	}
#ifdef CAN_USE_GCM_ASM
	/*
	 * Use the avx implementation if available and the requested one is
	 * avx or fastest.
	 */
	if (gcm_avx_will_work() == B_TRUE &&
	    (impl == IMPL_AVX || impl == IMPL_FASTEST)) {
		gcm_set_avx(B_TRUE);
	} else {
		gcm_set_avx(B_FALSE);
	}
#endif

	if (err == 0) {
		if (gcm_impl_initialized)
			atomic_swap_32(&icp_gcm_impl, impl);
		else
			atomic_swap_32(&user_sel_impl, impl);
	}

	return (err);
}

#if defined(_KERNEL) && defined(__linux__)

static int
icp_gcm_impl_set(const char *val, zfs_kernel_param_t *kp)
{
	return (gcm_impl_set(val));
}

static int
icp_gcm_impl_get(char *buffer, zfs_kernel_param_t *kp)
{
	int i, cnt = 0;
	char *fmt;
	const uint32_t impl = GCM_IMPL_READ(icp_gcm_impl);

	ASSERT(gcm_impl_initialized);

	/* list mandatory options */
	for (i = 0; i < ARRAY_SIZE(gcm_impl_opts); i++) {
#ifdef CAN_USE_GCM_ASM
		/* Ignore avx implementation if it won't work. */
		if (gcm_impl_opts[i].sel == IMPL_AVX && !gcm_avx_will_work()) {
			continue;
		}
#endif
		fmt = (impl == gcm_impl_opts[i].sel) ? "[%s] " : "%s ";
		cnt += sprintf(buffer + cnt, fmt, gcm_impl_opts[i].name);
	}

	/* list all supported implementations */
	for (i = 0; i < gcm_supp_impl_cnt; i++) {
		fmt = (i == impl) ? "[%s] " : "%s ";
		cnt += sprintf(buffer + cnt, fmt, gcm_supp_impl[i]->name);
	}

	return (cnt);
}

module_param_call(icp_gcm_impl, icp_gcm_impl_set, icp_gcm_impl_get,
    NULL, 0644);
MODULE_PARM_DESC(icp_gcm_impl, "Select gcm implementation.");
#endif /* defined(__KERNEL) */

#ifdef CAN_USE_GCM_ASM
#define	GCM_BLOCK_LEN 16
/*
 * The openssl asm routines are 6x aggregated and need that many bytes
 * at minimum.
 */
#define	GCM_AVX_MIN_DECRYPT_BYTES (GCM_BLOCK_LEN * 6)
#define	GCM_AVX_MIN_ENCRYPT_BYTES (GCM_BLOCK_LEN * 6 * 3)
/*
 * Ensure the chunk size is reasonable since we are allocating a
 * GCM_AVX_MAX_CHUNK_SIZEd buffer and disabling preemption and interrupts.
 */
#define	GCM_AVX_MAX_CHUNK_SIZE \
	(((128*1024)/GCM_AVX_MIN_DECRYPT_BYTES) * GCM_AVX_MIN_DECRYPT_BYTES)

/* Get the chunk size module parameter. */
#define	GCM_CHUNK_SIZE_READ *(volatile uint32_t *) &gcm_avx_chunk_size

/* Clear the FPU registers since they hold sensitive internal state. */
#define	clear_fpu_regs() clear_fpu_regs_avx()
#define	GHASH_AVX(ctx, in, len) \
    gcm_ghash_avx((ctx)->gcm_ghash, (const uint64_t (*)[2])(ctx)->gcm_Htable, \
    in, len)

#define	gcm_incr_counter_block(ctx) gcm_incr_counter_block_by(ctx, 1)

/*
 * Module parameter: number of bytes to process at once while owning the FPU.
 * Rounded down to the next GCM_AVX_MIN_DECRYPT_BYTES byte boundary and is
 * ensured to be greater or equal than GCM_AVX_MIN_DECRYPT_BYTES.
 */
static uint32_t gcm_avx_chunk_size =
	((32 * 1024) / GCM_AVX_MIN_DECRYPT_BYTES) * GCM_AVX_MIN_DECRYPT_BYTES;

extern void clear_fpu_regs_avx(void);
extern void gcm_xor_avx(const uint8_t *src, uint8_t *dst);
extern void aes_encrypt_intel(const uint32_t rk[], int nr,
    const uint32_t pt[4], uint32_t ct[4]);

extern void gcm_init_htab_avx(uint64_t Htable[16][2], const uint64_t H[2]);
extern void gcm_ghash_avx(uint64_t ghash[2], const uint64_t Htable[16][2],
    const uint8_t *in, size_t len);

extern size_t aesni_gcm_encrypt(const uint8_t *, uint8_t *, size_t,
    const void *, uint64_t *, uint64_t *);

extern size_t aesni_gcm_decrypt(const uint8_t *, uint8_t *, size_t,
    const void *, uint64_t *, uint64_t *);

static inline boolean_t
gcm_avx_will_work(void)
{
	/* Avx should imply aes-ni and pclmulqdq, but make sure anyhow. */
	return (kfpu_allowed() &&
	    zfs_avx_available() && zfs_aes_available() &&
	    zfs_pclmulqdq_available());
}

static inline void
gcm_set_avx(boolean_t val)
{
	if (gcm_avx_will_work() == B_TRUE) {
		atomic_swap_32(&gcm_use_avx, val);
	}
}

static inline boolean_t
gcm_toggle_avx(void)
{
	if (gcm_avx_will_work() == B_TRUE) {
		return (atomic_toggle_boolean_nv(&GCM_IMPL_USE_AVX));
	} else {
		return (B_FALSE);
	}
}

/*
 * Clear sensitive data in the context.
 *
 * ctx->gcm_remainder may contain a plaintext remainder. ctx->gcm_H and
 * ctx->gcm_Htable contain the hash sub key which protects authentication.
 *
 * Although extremely unlikely, ctx->gcm_J0 and ctx->gcm_tmp could be used for
 * a known plaintext attack, they consists of the IV and the first and last
 * counter respectively. If they should be cleared is debatable.
 */
static inline void
gcm_clear_ctx(gcm_ctx_t *ctx)
{
	bzero(ctx->gcm_remainder, sizeof (ctx->gcm_remainder));
	bzero(ctx->gcm_H, sizeof (ctx->gcm_H));
	bzero(ctx->gcm_Htable, sizeof (ctx->gcm_Htable));
	bzero(ctx->gcm_J0, sizeof (ctx->gcm_J0));
	bzero(ctx->gcm_tmp, sizeof (ctx->gcm_tmp));
}

/* Increment the GCM counter block by n. */
static inline void
gcm_incr_counter_block_by(gcm_ctx_t *ctx, int n)
{
	uint64_t counter_mask = ntohll(0x00000000ffffffffULL);
	uint64_t counter = ntohll(ctx->gcm_cb[1] & counter_mask);

	counter = htonll(counter + n);
	counter &= counter_mask;
	ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter;
}

/*
 * Encrypt multiple blocks of data in GCM mode.
 * This is done in gcm_avx_chunk_size chunks, utilizing AVX assembler routines
 * if possible. While processing a chunk the FPU is "locked".
 */
static int
gcm_mode_encrypt_contiguous_blocks_avx(gcm_ctx_t *ctx, char *data,
    size_t length, crypto_data_t *out, size_t block_size)
{
	size_t bleft = length;
	size_t need = 0;
	size_t done = 0;
	uint8_t *datap = (uint8_t *)data;
	size_t chunk_size = (size_t)GCM_CHUNK_SIZE_READ;
	const aes_key_t *key = ((aes_key_t *)ctx->gcm_keysched);
	uint64_t *ghash = ctx->gcm_ghash;
	uint64_t *cb = ctx->gcm_cb;
	uint8_t *ct_buf = NULL;
	uint8_t *tmp = (uint8_t *)ctx->gcm_tmp;
	int rv = CRYPTO_SUCCESS;

	ASSERT(block_size == GCM_BLOCK_LEN);
	/*
	 * If the last call left an incomplete block, try to fill
	 * it first.
	 */
	if (ctx->gcm_remainder_len > 0) {
		need = block_size - ctx->gcm_remainder_len;
		if (length < need) {
			/* Accumulate bytes here and return. */
			bcopy(datap, (uint8_t *)ctx->gcm_remainder +
			    ctx->gcm_remainder_len, length);

			ctx->gcm_remainder_len += length;
			if (ctx->gcm_copy_to == NULL) {
				ctx->gcm_copy_to = datap;
			}
			return (CRYPTO_SUCCESS);
		} else {
			/* Complete incomplete block. */
			bcopy(datap, (uint8_t *)ctx->gcm_remainder +
			    ctx->gcm_remainder_len, need);

			ctx->gcm_copy_to = NULL;
		}
	}

	/* Allocate a buffer to encrypt to if there is enough input. */
	if (bleft >= GCM_AVX_MIN_ENCRYPT_BYTES) {
		ct_buf = vmem_alloc(chunk_size, ctx->gcm_kmflag);
		if (ct_buf == NULL) {
			return (CRYPTO_HOST_MEMORY);
		}
	}

	/* If we completed an incomplete block, encrypt and write it out. */
	if (ctx->gcm_remainder_len > 0) {
		kfpu_begin();
		aes_encrypt_intel(key->encr_ks.ks32, key->nr,
		    (const uint32_t *)cb, (uint32_t *)tmp);

		gcm_xor_avx((const uint8_t *) ctx->gcm_remainder, tmp);
		GHASH_AVX(ctx, tmp, block_size);
		clear_fpu_regs();
		kfpu_end();
		rv = crypto_put_output_data(tmp, out, block_size);
		out->cd_offset += block_size;
		gcm_incr_counter_block(ctx);
		ctx->gcm_processed_data_len += block_size;
		bleft -= need;
		datap += need;
		ctx->gcm_remainder_len = 0;
	}

	/* Do the bulk encryption in chunk_size blocks. */
	for (; bleft >= chunk_size; bleft -= chunk_size) {
		kfpu_begin();
		done = aesni_gcm_encrypt(
		    datap, ct_buf, chunk_size, key, cb, ghash);

		clear_fpu_regs();
		kfpu_end();
		if (done != chunk_size) {
			rv = CRYPTO_FAILED;
			goto out_nofpu;
		}
		rv = crypto_put_output_data(ct_buf, out, chunk_size);
		if (rv != CRYPTO_SUCCESS) {
			goto out_nofpu;
		}
		out->cd_offset += chunk_size;
		datap += chunk_size;
		ctx->gcm_processed_data_len += chunk_size;
	}
	/* Check if we are already done. */
	if (bleft == 0) {
		goto out_nofpu;
	}
	/* Bulk encrypt the remaining data. */
	kfpu_begin();
	if (bleft >= GCM_AVX_MIN_ENCRYPT_BYTES) {
		done = aesni_gcm_encrypt(datap, ct_buf, bleft, key, cb, ghash);
		if (done == 0) {
			rv = CRYPTO_FAILED;
			goto out;
		}
		rv = crypto_put_output_data(ct_buf, out, done);
		if (rv != CRYPTO_SUCCESS) {
			goto out;
		}
		out->cd_offset += done;
		ctx->gcm_processed_data_len += done;
		datap += done;
		bleft -= done;

	}
	/* Less than GCM_AVX_MIN_ENCRYPT_BYTES remain, operate on blocks. */
	while (bleft > 0) {
		if (bleft < block_size) {
			bcopy(datap, ctx->gcm_remainder, bleft);
			ctx->gcm_remainder_len = bleft;
			ctx->gcm_copy_to = datap;
			goto out;
		}
		/* Encrypt, hash and write out. */
		aes_encrypt_intel(key->encr_ks.ks32, key->nr,
		    (const uint32_t *)cb, (uint32_t *)tmp);

		gcm_xor_avx(datap, tmp);
		GHASH_AVX(ctx, tmp, block_size);
		rv = crypto_put_output_data(tmp, out, block_size);
		if (rv != CRYPTO_SUCCESS) {
			goto out;
		}
		out->cd_offset += block_size;
		gcm_incr_counter_block(ctx);
		ctx->gcm_processed_data_len += block_size;
		datap += block_size;
		bleft -= block_size;
	}
out:
	clear_fpu_regs();
	kfpu_end();
out_nofpu:
	if (ct_buf != NULL) {
		vmem_free(ct_buf, chunk_size);
	}
	return (rv);
}

/*
 * Finalize the encryption: Zero fill, encrypt, hash and write out an eventual
 * incomplete last block. Encrypt the ICB. Calculate the tag and write it out.
 */
static int
gcm_encrypt_final_avx(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size)
{
	uint8_t *ghash = (uint8_t *)ctx->gcm_ghash;
	uint32_t *J0 = (uint32_t *)ctx->gcm_J0;
	uint8_t *remainder = (uint8_t *)ctx->gcm_remainder;
	size_t rem_len = ctx->gcm_remainder_len;
	const void *keysched = ((aes_key_t *)ctx->gcm_keysched)->encr_ks.ks32;
	int aes_rounds = ((aes_key_t *)keysched)->nr;
	int rv;

	ASSERT(block_size == GCM_BLOCK_LEN);

	if (out->cd_length < (rem_len + ctx->gcm_tag_len)) {
		return (CRYPTO_DATA_LEN_RANGE);
	}

	kfpu_begin();
	/* Pad last incomplete block with zeros, encrypt and hash. */
	if (rem_len > 0) {
		uint8_t *tmp = (uint8_t *)ctx->gcm_tmp;
		const uint32_t *cb = (uint32_t *)ctx->gcm_cb;

		aes_encrypt_intel(keysched, aes_rounds, cb, (uint32_t *)tmp);
		bzero(remainder + rem_len, block_size - rem_len);
		for (int i = 0; i < rem_len; i++) {
			remainder[i] ^= tmp[i];
		}
		GHASH_AVX(ctx, remainder, block_size);
		ctx->gcm_processed_data_len += rem_len;
		/* No need to increment counter_block, it's the last block. */
	}
	/* Finish tag. */
	ctx->gcm_len_a_len_c[1] =
	    htonll(CRYPTO_BYTES2BITS(ctx->gcm_processed_data_len));
	GHASH_AVX(ctx, (const uint8_t *)ctx->gcm_len_a_len_c, block_size);
	aes_encrypt_intel(keysched, aes_rounds, J0, J0);

	gcm_xor_avx((uint8_t *)J0, ghash);
	clear_fpu_regs();
	kfpu_end();

	/* Output remainder. */
	if (rem_len > 0) {
		rv = crypto_put_output_data(remainder, out, rem_len);
		if (rv != CRYPTO_SUCCESS)
			return (rv);
	}
	out->cd_offset += rem_len;
	ctx->gcm_remainder_len = 0;
	rv = crypto_put_output_data(ghash, out, ctx->gcm_tag_len);
	if (rv != CRYPTO_SUCCESS)
		return (rv);

	out->cd_offset += ctx->gcm_tag_len;
	/* Clear sensitive data in the context before returning. */
	gcm_clear_ctx(ctx);
	return (CRYPTO_SUCCESS);
}

/*
 * Finalize decryption: We just have accumulated crypto text, so now we
 * decrypt it here inplace.
 */
static int
gcm_decrypt_final_avx(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size)
{
	ASSERT3U(ctx->gcm_processed_data_len, ==, ctx->gcm_pt_buf_len);
	ASSERT3U(block_size, ==, 16);

	size_t chunk_size = (size_t)GCM_CHUNK_SIZE_READ;
	size_t pt_len = ctx->gcm_processed_data_len - ctx->gcm_tag_len;
	uint8_t *datap = ctx->gcm_pt_buf;
	const aes_key_t *key = ((aes_key_t *)ctx->gcm_keysched);
	uint32_t *cb = (uint32_t *)ctx->gcm_cb;
	uint64_t *ghash = ctx->gcm_ghash;
	uint32_t *tmp = (uint32_t *)ctx->gcm_tmp;
	int rv = CRYPTO_SUCCESS;
	size_t bleft, done;

	/*
	 * Decrypt in chunks of gcm_avx_chunk_size, which is asserted to be
	 * greater or equal than GCM_AVX_MIN_ENCRYPT_BYTES, and a multiple of
	 * GCM_AVX_MIN_DECRYPT_BYTES.
	 */
	for (bleft = pt_len; bleft >= chunk_size; bleft -= chunk_size) {
		kfpu_begin();
		done = aesni_gcm_decrypt(datap, datap, chunk_size,
		    (const void *)key, ctx->gcm_cb, ghash);
		clear_fpu_regs();
		kfpu_end();
		if (done != chunk_size) {
			return (CRYPTO_FAILED);
		}
		datap += done;
	}
	/* Decrypt remainder, which is less then chunk size, in one go. */
	kfpu_begin();
	if (bleft >= GCM_AVX_MIN_DECRYPT_BYTES) {
		done = aesni_gcm_decrypt(datap, datap, bleft,
		    (const void *)key, ctx->gcm_cb, ghash);
		if (done == 0) {
			clear_fpu_regs();
			kfpu_end();
			return (CRYPTO_FAILED);
		}
		datap += done;
		bleft -= done;
	}
	ASSERT(bleft < GCM_AVX_MIN_DECRYPT_BYTES);

	/*
	 * Now less then GCM_AVX_MIN_DECRYPT_BYTES bytes remain,
	 * decrypt them block by block.
	 */
	while (bleft > 0) {
		/* Incomplete last block. */
		if (bleft < block_size) {
			uint8_t *lastb = (uint8_t *)ctx->gcm_remainder;

			bzero(lastb, block_size);
			bcopy(datap, lastb, bleft);
			/* The GCM processing. */
			GHASH_AVX(ctx, lastb, block_size);
			aes_encrypt_intel(key->encr_ks.ks32, key->nr, cb, tmp);
			for (size_t i = 0; i < bleft; i++) {
				datap[i] = lastb[i] ^ ((uint8_t *)tmp)[i];
			}
			break;
		}
		/* The GCM processing. */
		GHASH_AVX(ctx, datap, block_size);
		aes_encrypt_intel(key->encr_ks.ks32, key->nr, cb, tmp);
		gcm_xor_avx((uint8_t *)tmp, datap);
		gcm_incr_counter_block(ctx);

		datap += block_size;
		bleft -= block_size;
	}
	if (rv != CRYPTO_SUCCESS) {
		clear_fpu_regs();
		kfpu_end();
		return (rv);
	}
	/* Decryption done, finish the tag. */
	ctx->gcm_len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(pt_len));
	GHASH_AVX(ctx, (uint8_t *)ctx->gcm_len_a_len_c, block_size);
	aes_encrypt_intel(key->encr_ks.ks32, key->nr, (uint32_t *)ctx->gcm_J0,
	    (uint32_t *)ctx->gcm_J0);

	gcm_xor_avx((uint8_t *)ctx->gcm_J0, (uint8_t *)ghash);

	/* We are done with the FPU, restore its state. */
	clear_fpu_regs();
	kfpu_end();

	/* Compare the input authentication tag with what we calculated. */
	if (bcmp(&ctx->gcm_pt_buf[pt_len], ghash, ctx->gcm_tag_len)) {
		/* They don't match. */
		return (CRYPTO_INVALID_MAC);
	}
	rv = crypto_put_output_data(ctx->gcm_pt_buf, out, pt_len);
	if (rv != CRYPTO_SUCCESS) {
		return (rv);
	}
	out->cd_offset += pt_len;
	gcm_clear_ctx(ctx);
	return (CRYPTO_SUCCESS);
}

/*
 * Initialize the GCM params H, Htabtle and the counter block. Save the
 * initial counter block.
 */
static int
gcm_init_avx(gcm_ctx_t *ctx, unsigned char *iv, size_t iv_len,
    unsigned char *auth_data, size_t auth_data_len, size_t block_size)
{
	uint8_t *cb = (uint8_t *)ctx->gcm_cb;
	uint64_t *H = ctx->gcm_H;
	const void *keysched = ((aes_key_t *)ctx->gcm_keysched)->encr_ks.ks32;
	int aes_rounds = ((aes_key_t *)ctx->gcm_keysched)->nr;
	uint8_t *datap = auth_data;
	size_t chunk_size = (size_t)GCM_CHUNK_SIZE_READ;
	size_t bleft;

	ASSERT(block_size == GCM_BLOCK_LEN);

	/* Init H (encrypt zero block) and create the initial counter block. */
	bzero(ctx->gcm_ghash, sizeof (ctx->gcm_ghash));
	bzero(H, sizeof (ctx->gcm_H));
	kfpu_begin();
	aes_encrypt_intel(keysched, aes_rounds,
	    (const uint32_t *)H, (uint32_t *)H);

	gcm_init_htab_avx(ctx->gcm_Htable, H);

	if (iv_len == 12) {
		bcopy(iv, cb, 12);
		cb[12] = 0;
		cb[13] = 0;
		cb[14] = 0;
		cb[15] = 1;
		/* We need the ICB later. */
		bcopy(cb, ctx->gcm_J0, sizeof (ctx->gcm_J0));
	} else {
		/*
		 * Most consumers use 12 byte IVs, so it's OK to use the
		 * original routines for other IV sizes, just avoid nesting
		 * kfpu_begin calls.
		 */
		clear_fpu_regs();
		kfpu_end();
		gcm_format_initial_blocks(iv, iv_len, ctx, block_size,
		    aes_copy_block, aes_xor_block);
		kfpu_begin();
	}

	/* Openssl post increments the counter, adjust for that. */
	gcm_incr_counter_block(ctx);

	/* Ghash AAD in chunk_size blocks. */
	for (bleft = auth_data_len; bleft >= chunk_size; bleft -= chunk_size) {
		GHASH_AVX(ctx, datap, chunk_size);
		datap += chunk_size;
		clear_fpu_regs();
		kfpu_end();
		kfpu_begin();
	}
	/* Ghash the remainder and handle possible incomplete GCM block. */
	if (bleft > 0) {
		size_t incomp = bleft % block_size;

		bleft -= incomp;
		if (bleft > 0) {
			GHASH_AVX(ctx, datap, bleft);
			datap += bleft;
		}
		if (incomp > 0) {
			/* Zero pad and hash incomplete last block. */
			uint8_t *authp = (uint8_t *)ctx->gcm_tmp;

			bzero(authp, block_size);
			bcopy(datap, authp, incomp);
			GHASH_AVX(ctx, authp, block_size);
		}
	}
	clear_fpu_regs();
	kfpu_end();
	return (CRYPTO_SUCCESS);
}

#if defined(_KERNEL)
static int
icp_gcm_avx_set_chunk_size(const char *buf, zfs_kernel_param_t *kp)
{
	unsigned long val;
	char val_rounded[16];
	int error = 0;

	error = kstrtoul(buf, 0, &val);
	if (error)
		return (error);

	val = (val / GCM_AVX_MIN_DECRYPT_BYTES) * GCM_AVX_MIN_DECRYPT_BYTES;

	if (val < GCM_AVX_MIN_ENCRYPT_BYTES || val > GCM_AVX_MAX_CHUNK_SIZE)
		return (-EINVAL);

	snprintf(val_rounded, 16, "%u", (uint32_t)val);
	error = param_set_uint(val_rounded, kp);
	return (error);
}

module_param_call(icp_gcm_avx_chunk_size, icp_gcm_avx_set_chunk_size,
    param_get_uint, &gcm_avx_chunk_size, 0644);

MODULE_PARM_DESC(icp_gcm_avx_chunk_size,
	"How many bytes to process while owning the FPU");

#endif /* defined(__KERNEL) */
#endif /* ifdef CAN_USE_GCM_ASM */