Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright (c) 2016, 2019 by Delphix. All rights reserved.
 */

#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/txg.h>
#include <sys/vdev_impl.h>
#include <sys/metaslab_impl.h>
#include <sys/dsl_synctask.h>
#include <sys/zap.h>
#include <sys/dmu_tx.h>
#include <sys/vdev_initialize.h>

/*
 * Value that is written to disk during initialization.
 */
#ifdef _ILP32
unsigned long zfs_initialize_value = 0xdeadbeefUL;
#else
unsigned long zfs_initialize_value = 0xdeadbeefdeadbeeeULL;
#endif

/* maximum number of I/Os outstanding per leaf vdev */
int zfs_initialize_limit = 1;

/* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
unsigned long zfs_initialize_chunk_size = 1024 * 1024;

static boolean_t
vdev_initialize_should_stop(vdev_t *vd)
{
	return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
	    vd->vdev_detached || vd->vdev_top->vdev_removing);
}

static void
vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
{
	/*
	 * We pass in the guid instead of the vdev_t since the vdev may
	 * have been freed prior to the sync task being processed. This
	 * happens when a vdev is detached as we call spa_config_vdev_exit(),
	 * stop the initializing thread, schedule the sync task, and free
	 * the vdev. Later when the scheduled sync task is invoked, it would
	 * find that the vdev has been freed.
	 */
	uint64_t guid = *(uint64_t *)arg;
	uint64_t txg = dmu_tx_get_txg(tx);
	kmem_free(arg, sizeof (uint64_t));

	vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
	if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
		return;

	uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
	vd->vdev_initialize_offset[txg & TXG_MASK] = 0;

	VERIFY(vd->vdev_leaf_zap != 0);

	objset_t *mos = vd->vdev_spa->spa_meta_objset;

	if (last_offset > 0) {
		vd->vdev_initialize_last_offset = last_offset;
		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
		    VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
		    sizeof (last_offset), 1, &last_offset, tx));
	}
	if (vd->vdev_initialize_action_time > 0) {
		uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
		VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
		    VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
		    1, &val, tx));
	}

	uint64_t initialize_state = vd->vdev_initialize_state;
	VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
	    VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
	    &initialize_state, tx));
}

static void
vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
{
	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
	spa_t *spa = vd->vdev_spa;

	if (new_state == vd->vdev_initialize_state)
		return;

	/*
	 * Copy the vd's guid, this will be freed by the sync task.
	 */
	uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
	*guid = vd->vdev_guid;

	/*
	 * If we're suspending, then preserving the original start time.
	 */
	if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
		vd->vdev_initialize_action_time = gethrestime_sec();
	}
	vd->vdev_initialize_state = new_state;

	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
	dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync,
	    guid, tx);

	switch (new_state) {
	case VDEV_INITIALIZE_ACTIVE:
		spa_history_log_internal(spa, "initialize", tx,
		    "vdev=%s activated", vd->vdev_path);
		break;
	case VDEV_INITIALIZE_SUSPENDED:
		spa_history_log_internal(spa, "initialize", tx,
		    "vdev=%s suspended", vd->vdev_path);
		break;
	case VDEV_INITIALIZE_CANCELED:
		spa_history_log_internal(spa, "initialize", tx,
		    "vdev=%s canceled", vd->vdev_path);
		break;
	case VDEV_INITIALIZE_COMPLETE:
		spa_history_log_internal(spa, "initialize", tx,
		    "vdev=%s complete", vd->vdev_path);
		break;
	default:
		panic("invalid state %llu", (unsigned long long)new_state);
	}

	dmu_tx_commit(tx);

	if (new_state != VDEV_INITIALIZE_ACTIVE)
		spa_notify_waiters(spa);
}

static void
vdev_initialize_cb(zio_t *zio)
{
	vdev_t *vd = zio->io_vd;
	mutex_enter(&vd->vdev_initialize_io_lock);
	if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
		/*
		 * The I/O failed because the vdev was unavailable; roll the
		 * last offset back. (This works because spa_sync waits on
		 * spa_txg_zio before it runs sync tasks.)
		 */
		uint64_t *off =
		    &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
		*off = MIN(*off, zio->io_offset);
	} else {
		/*
		 * Since initializing is best-effort, we ignore I/O errors and
		 * rely on vdev_probe to determine if the errors are more
		 * critical.
		 */
		if (zio->io_error != 0)
			vd->vdev_stat.vs_initialize_errors++;

		vd->vdev_initialize_bytes_done += zio->io_orig_size;
	}
	ASSERT3U(vd->vdev_initialize_inflight, >, 0);
	vd->vdev_initialize_inflight--;
	cv_broadcast(&vd->vdev_initialize_io_cv);
	mutex_exit(&vd->vdev_initialize_io_lock);

	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
}

/* Takes care of physical writing and limiting # of concurrent ZIOs. */
static int
vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
{
	spa_t *spa = vd->vdev_spa;

	/* Limit inflight initializing I/Os */
	mutex_enter(&vd->vdev_initialize_io_lock);
	while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
		cv_wait(&vd->vdev_initialize_io_cv,
		    &vd->vdev_initialize_io_lock);
	}
	vd->vdev_initialize_inflight++;
	mutex_exit(&vd->vdev_initialize_io_lock);

	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
	uint64_t txg = dmu_tx_get_txg(tx);

	spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
	mutex_enter(&vd->vdev_initialize_lock);

	if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
		uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
		*guid = vd->vdev_guid;

		/* This is the first write of this txg. */
		dsl_sync_task_nowait(spa_get_dsl(spa),
		    vdev_initialize_zap_update_sync, guid, tx);
	}

	/*
	 * We know the vdev struct will still be around since all
	 * consumers of vdev_free must stop the initialization first.
	 */
	if (vdev_initialize_should_stop(vd)) {
		mutex_enter(&vd->vdev_initialize_io_lock);
		ASSERT3U(vd->vdev_initialize_inflight, >, 0);
		vd->vdev_initialize_inflight--;
		mutex_exit(&vd->vdev_initialize_io_lock);
		spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
		mutex_exit(&vd->vdev_initialize_lock);
		dmu_tx_commit(tx);
		return (SET_ERROR(EINTR));
	}
	mutex_exit(&vd->vdev_initialize_lock);

	vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
	zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
	    size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
	    ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
	/* vdev_initialize_cb releases SCL_STATE_ALL */

	dmu_tx_commit(tx);

	return (0);
}

/*
 * Callback to fill each ABD chunk with zfs_initialize_value. len must be
 * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
 * allocation will guarantee these for us.
 */
/* ARGSUSED */
static int
vdev_initialize_block_fill(void *buf, size_t len, void *unused)
{
	ASSERT0(len % sizeof (uint64_t));
#ifdef _ILP32
	for (uint64_t i = 0; i < len; i += sizeof (uint32_t)) {
		*(uint32_t *)((char *)(buf) + i) = zfs_initialize_value;
	}
#else
	for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
		*(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
	}
#endif
	return (0);
}

static abd_t *
vdev_initialize_block_alloc(void)
{
	/* Allocate ABD for filler data */
	abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);

	ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
	(void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
	    vdev_initialize_block_fill, NULL);

	return (data);
}

static void
vdev_initialize_block_free(abd_t *data)
{
	abd_free(data);
}

static int
vdev_initialize_ranges(vdev_t *vd, abd_t *data)
{
	range_tree_t *rt = vd->vdev_initialize_tree;
	zfs_btree_t *bt = &rt->rt_root;
	zfs_btree_index_t where;

	for (range_seg_t *rs = zfs_btree_first(bt, &where); rs != NULL;
	    rs = zfs_btree_next(bt, &where, &where)) {
		uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);

		/* Split range into legally-sized physical chunks */
		uint64_t writes_required =
		    ((size - 1) / zfs_initialize_chunk_size) + 1;

		for (uint64_t w = 0; w < writes_required; w++) {
			int error;

			error = vdev_initialize_write(vd,
			    VDEV_LABEL_START_SIZE + rs_get_start(rs, rt) +
			    (w * zfs_initialize_chunk_size),
			    MIN(size - (w * zfs_initialize_chunk_size),
			    zfs_initialize_chunk_size), data);
			if (error != 0)
				return (error);
		}
	}
	return (0);
}

static void
vdev_initialize_calculate_progress(vdev_t *vd)
{
	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
	ASSERT(vd->vdev_leaf_zap != 0);

	vd->vdev_initialize_bytes_est = 0;
	vd->vdev_initialize_bytes_done = 0;

	for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
		mutex_enter(&msp->ms_lock);

		uint64_t ms_free = msp->ms_size -
		    metaslab_allocated_space(msp);

		if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
			ms_free /= vd->vdev_top->vdev_children;

		/*
		 * Convert the metaslab range to a physical range
		 * on our vdev. We use this to determine if we are
		 * in the middle of this metaslab range.
		 */
		range_seg64_t logical_rs, physical_rs;
		logical_rs.rs_start = msp->ms_start;
		logical_rs.rs_end = msp->ms_start + msp->ms_size;
		vdev_xlate(vd, &logical_rs, &physical_rs);

		if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
			vd->vdev_initialize_bytes_est += ms_free;
			mutex_exit(&msp->ms_lock);
			continue;
		} else if (vd->vdev_initialize_last_offset >
		    physical_rs.rs_end) {
			vd->vdev_initialize_bytes_done += ms_free;
			vd->vdev_initialize_bytes_est += ms_free;
			mutex_exit(&msp->ms_lock);
			continue;
		}

		/*
		 * If we get here, we're in the middle of initializing this
		 * metaslab. Load it and walk the free tree for more accurate
		 * progress estimation.
		 */
		VERIFY0(metaslab_load(msp));

		zfs_btree_index_t where;
		range_tree_t *rt = msp->ms_allocatable;
		for (range_seg_t *rs =
		    zfs_btree_first(&rt->rt_root, &where); rs;
		    rs = zfs_btree_next(&rt->rt_root, &where,
		    &where)) {
			logical_rs.rs_start = rs_get_start(rs, rt);
			logical_rs.rs_end = rs_get_end(rs, rt);
			vdev_xlate(vd, &logical_rs, &physical_rs);

			uint64_t size = physical_rs.rs_end -
			    physical_rs.rs_start;
			vd->vdev_initialize_bytes_est += size;
			if (vd->vdev_initialize_last_offset >
			    physical_rs.rs_end) {
				vd->vdev_initialize_bytes_done += size;
			} else if (vd->vdev_initialize_last_offset >
			    physical_rs.rs_start &&
			    vd->vdev_initialize_last_offset <
			    physical_rs.rs_end) {
				vd->vdev_initialize_bytes_done +=
				    vd->vdev_initialize_last_offset -
				    physical_rs.rs_start;
			}
		}
		mutex_exit(&msp->ms_lock);
	}
}

static int
vdev_initialize_load(vdev_t *vd)
{
	int err = 0;
	ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
	    spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
	ASSERT(vd->vdev_leaf_zap != 0);

	if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
	    vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
		    sizeof (vd->vdev_initialize_last_offset), 1,
		    &vd->vdev_initialize_last_offset);
		if (err == ENOENT) {
			vd->vdev_initialize_last_offset = 0;
			err = 0;
		}
	}

	vdev_initialize_calculate_progress(vd);
	return (err);
}

/*
 * Convert the logical range into a physical range and add it to our
 * avl tree.
 */
static void
vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
{
	vdev_t *vd = arg;
	range_seg64_t logical_rs, physical_rs;
	logical_rs.rs_start = start;
	logical_rs.rs_end = start + size;

	ASSERT(vd->vdev_ops->vdev_op_leaf);
	vdev_xlate(vd, &logical_rs, &physical_rs);

	IMPLY(vd->vdev_top == vd,
	    logical_rs.rs_start == physical_rs.rs_start);
	IMPLY(vd->vdev_top == vd,
	    logical_rs.rs_end == physical_rs.rs_end);

	/* Only add segments that we have not visited yet */
	if (physical_rs.rs_end <= vd->vdev_initialize_last_offset)
		return;

	/* Pick up where we left off mid-range. */
	if (vd->vdev_initialize_last_offset > physical_rs.rs_start) {
		zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
		    "(%llu, %llu)", vd->vdev_path,
		    (u_longlong_t)physical_rs.rs_start,
		    (u_longlong_t)physical_rs.rs_end,
		    (u_longlong_t)vd->vdev_initialize_last_offset,
		    (u_longlong_t)physical_rs.rs_end);
		ASSERT3U(physical_rs.rs_end, >,
		    vd->vdev_initialize_last_offset);
		physical_rs.rs_start = vd->vdev_initialize_last_offset;
	}
	ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);

	/*
	 * With raidz, it's possible that the logical range does not live on
	 * this leaf vdev. We only add the physical range to this vdev's if it
	 * has a length greater than 0.
	 */
	if (physical_rs.rs_end > physical_rs.rs_start) {
		range_tree_add(vd->vdev_initialize_tree, physical_rs.rs_start,
		    physical_rs.rs_end - physical_rs.rs_start);
	} else {
		ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
	}
}

static void
vdev_initialize_thread(void *arg)
{
	vdev_t *vd = arg;
	spa_t *spa = vd->vdev_spa;
	int error = 0;
	uint64_t ms_count = 0;

	ASSERT(vdev_is_concrete(vd));
	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);

	vd->vdev_initialize_last_offset = 0;
	VERIFY0(vdev_initialize_load(vd));

	abd_t *deadbeef = vdev_initialize_block_alloc();

	vd->vdev_initialize_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
	    0, 0);

	for (uint64_t i = 0; !vd->vdev_detached &&
	    i < vd->vdev_top->vdev_ms_count; i++) {
		metaslab_t *msp = vd->vdev_top->vdev_ms[i];
		boolean_t unload_when_done = B_FALSE;

		/*
		 * If we've expanded the top-level vdev or it's our
		 * first pass, calculate our progress.
		 */
		if (vd->vdev_top->vdev_ms_count != ms_count) {
			vdev_initialize_calculate_progress(vd);
			ms_count = vd->vdev_top->vdev_ms_count;
		}

		spa_config_exit(spa, SCL_CONFIG, FTAG);
		metaslab_disable(msp);
		mutex_enter(&msp->ms_lock);
		if (!msp->ms_loaded && !msp->ms_loading)
			unload_when_done = B_TRUE;
		VERIFY0(metaslab_load(msp));

		range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
		    vd);
		mutex_exit(&msp->ms_lock);

		error = vdev_initialize_ranges(vd, deadbeef);
		metaslab_enable(msp, B_TRUE, unload_when_done);
		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);

		range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
		if (error != 0)
			break;
	}

	spa_config_exit(spa, SCL_CONFIG, FTAG);
	mutex_enter(&vd->vdev_initialize_io_lock);
	while (vd->vdev_initialize_inflight > 0) {
		cv_wait(&vd->vdev_initialize_io_cv,
		    &vd->vdev_initialize_io_lock);
	}
	mutex_exit(&vd->vdev_initialize_io_lock);

	range_tree_destroy(vd->vdev_initialize_tree);
	vdev_initialize_block_free(deadbeef);
	vd->vdev_initialize_tree = NULL;

	mutex_enter(&vd->vdev_initialize_lock);
	if (!vd->vdev_initialize_exit_wanted && vdev_writeable(vd)) {
		vdev_initialize_change_state(vd, VDEV_INITIALIZE_COMPLETE);
	}
	ASSERT(vd->vdev_initialize_thread != NULL ||
	    vd->vdev_initialize_inflight == 0);

	/*
	 * Drop the vdev_initialize_lock while we sync out the
	 * txg since it's possible that a device might be trying to
	 * come online and must check to see if it needs to restart an
	 * initialization. That thread will be holding the spa_config_lock
	 * which would prevent the txg_wait_synced from completing.
	 */
	mutex_exit(&vd->vdev_initialize_lock);
	txg_wait_synced(spa_get_dsl(spa), 0);
	mutex_enter(&vd->vdev_initialize_lock);

	vd->vdev_initialize_thread = NULL;
	cv_broadcast(&vd->vdev_initialize_cv);
	mutex_exit(&vd->vdev_initialize_lock);

	thread_exit();
}

/*
 * Initiates a device. Caller must hold vdev_initialize_lock.
 * Device must be a leaf and not already be initializing.
 */
void
vdev_initialize(vdev_t *vd)
{
	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
	ASSERT(vd->vdev_ops->vdev_op_leaf);
	ASSERT(vdev_is_concrete(vd));
	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
	ASSERT(!vd->vdev_detached);
	ASSERT(!vd->vdev_initialize_exit_wanted);
	ASSERT(!vd->vdev_top->vdev_removing);

	vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
	vd->vdev_initialize_thread = thread_create(NULL, 0,
	    vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
}

/*
 * Wait for the initialize thread to be terminated (cancelled or stopped).
 */
static void
vdev_initialize_stop_wait_impl(vdev_t *vd)
{
	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));

	while (vd->vdev_initialize_thread != NULL)
		cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);

	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
	vd->vdev_initialize_exit_wanted = B_FALSE;
}

/*
 * Wait for vdev initialize threads which were either to cleanly exit.
 */
void
vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list)
{
	vdev_t *vd;

	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	while ((vd = list_remove_head(vd_list)) != NULL) {
		mutex_enter(&vd->vdev_initialize_lock);
		vdev_initialize_stop_wait_impl(vd);
		mutex_exit(&vd->vdev_initialize_lock);
	}
}

/*
 * Stop initializing a device, with the resultant initializing state being
 * tgt_state.  For blocking behavior pass NULL for vd_list.  Otherwise, when
 * a list_t is provided the stopping vdev is inserted in to the list.  Callers
 * are then required to call vdev_initialize_stop_wait() to block for all the
 * initialization threads to exit.  The caller must hold vdev_initialize_lock
 * and must not be writing to the spa config, as the initializing thread may
 * try to enter the config as a reader before exiting.
 */
void
vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state,
    list_t *vd_list)
{
	ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
	ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
	ASSERT(vd->vdev_ops->vdev_op_leaf);
	ASSERT(vdev_is_concrete(vd));

	/*
	 * Allow cancel requests to proceed even if the initialize thread
	 * has stopped.
	 */
	if (vd->vdev_initialize_thread == NULL &&
	    tgt_state != VDEV_INITIALIZE_CANCELED) {
		return;
	}

	vdev_initialize_change_state(vd, tgt_state);
	vd->vdev_initialize_exit_wanted = B_TRUE;

	if (vd_list == NULL) {
		vdev_initialize_stop_wait_impl(vd);
	} else {
		ASSERT(MUTEX_HELD(&spa_namespace_lock));
		list_insert_tail(vd_list, vd);
	}
}

static void
vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state,
    list_t *vd_list)
{
	if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
		mutex_enter(&vd->vdev_initialize_lock);
		vdev_initialize_stop(vd, tgt_state, vd_list);
		mutex_exit(&vd->vdev_initialize_lock);
		return;
	}

	for (uint64_t i = 0; i < vd->vdev_children; i++) {
		vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state,
		    vd_list);
	}
}

/*
 * Convenience function to stop initializing of a vdev tree and set all
 * initialize thread pointers to NULL.
 */
void
vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
{
	spa_t *spa = vd->vdev_spa;
	list_t vd_list;

	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	list_create(&vd_list, sizeof (vdev_t),
	    offsetof(vdev_t, vdev_initialize_node));

	vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list);
	vdev_initialize_stop_wait(spa, &vd_list);

	if (vd->vdev_spa->spa_sync_on) {
		/* Make sure that our state has been synced to disk */
		txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
	}

	list_destroy(&vd_list);
}

void
vdev_initialize_restart(vdev_t *vd)
{
	ASSERT(MUTEX_HELD(&spa_namespace_lock));
	ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));

	if (vd->vdev_leaf_zap != 0) {
		mutex_enter(&vd->vdev_initialize_lock);
		uint64_t initialize_state = VDEV_INITIALIZE_NONE;
		int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
		    sizeof (initialize_state), 1, &initialize_state);
		ASSERT(err == 0 || err == ENOENT);
		vd->vdev_initialize_state = initialize_state;

		uint64_t timestamp = 0;
		err = zap_lookup(vd->vdev_spa->spa_meta_objset,
		    vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
		    sizeof (timestamp), 1, &timestamp);
		ASSERT(err == 0 || err == ENOENT);
		vd->vdev_initialize_action_time = timestamp;

		if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
		    vd->vdev_offline) {
			/* load progress for reporting, but don't resume */
			VERIFY0(vdev_initialize_load(vd));
		} else if (vd->vdev_initialize_state ==
		    VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) &&
		    !vd->vdev_top->vdev_removing &&
		    vd->vdev_initialize_thread == NULL) {
			vdev_initialize(vd);
		}

		mutex_exit(&vd->vdev_initialize_lock);
	}

	for (uint64_t i = 0; i < vd->vdev_children; i++) {
		vdev_initialize_restart(vd->vdev_child[i]);
	}
}

EXPORT_SYMBOL(vdev_initialize);
EXPORT_SYMBOL(vdev_initialize_stop);
EXPORT_SYMBOL(vdev_initialize_stop_all);
EXPORT_SYMBOL(vdev_initialize_stop_wait);
EXPORT_SYMBOL(vdev_initialize_restart);

/* BEGIN CSTYLED */
ZFS_MODULE_PARAM(zfs, zfs_, initialize_value, ULONG, ZMOD_RW,
	"Value written during zpool initialize");

ZFS_MODULE_PARAM(zfs, zfs_, initialize_chunk_size, ULONG, ZMOD_RW,
	"Size in bytes of writes by zpool initialize");
/* END CSTYLED */