Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 *
 * Copyright (c) 2018, Intel Corporation.
 * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
 */

#include <sys/vdev_impl.h>
#include <sys/dsl_scan.h>
#include <sys/spa_impl.h>
#include <sys/metaslab_impl.h>
#include <sys/vdev_rebuild.h>
#include <sys/zio.h>
#include <sys/dmu_tx.h>
#include <sys/arc.h>
#include <sys/zap.h>

/*
 * This file contains the sequential reconstruction implementation for
 * resilvering.  This form of resilvering is internally referred to as device
 * rebuild to avoid conflating it with the traditional healing reconstruction
 * performed by the dsl scan code.
 *
 * When replacing a device, or scrubbing the pool, ZFS has historically used
 * a process called resilvering which is a form of healing reconstruction.
 * This approach has the advantage that as blocks are read from disk their
 * checksums can be immediately verified and the data repaired.  Unfortunately,
 * it also results in a random IO pattern to the disk even when extra care
 * is taken to sequentialize the IO as much as possible.  This substantially
 * increases the time required to resilver the pool and restore redundancy.
 *
 * For mirrored devices it's possible to implement an alternate sequential
 * reconstruction strategy when resilvering.  Sequential reconstruction
 * behaves like a traditional RAID rebuild and reconstructs a device in LBA
 * order without verifying the checksum.  After this phase completes a second
 * scrub phase is started to verify all of the checksums.  This two phase
 * process will take longer than the healing reconstruction described above.
 * However, it has that advantage that after the reconstruction first phase
 * completes redundancy has been restored.  At this point the pool can incur
 * another device failure without risking data loss.
 *
 * There are a few noteworthy limitations and other advantages of resilvering
 * using sequential reconstruction vs healing reconstruction.
 *
 * Limitations:
 *
 *   - Only supported for mirror vdev types.  Due to the variable stripe
 *     width used by raidz sequential reconstruction is not possible.
 *
 *   - Block checksums are not verified during sequential reconstuction.
 *     Similar to traditional RAID the parity/mirror data is reconstructed
 *     but cannot be immediately double checked.  For this reason when the
 *     last active resilver completes the pool is automatically scrubbed.
 *
 *   - Deferred resilvers using sequential reconstruction are not currently
 *     supported.  When adding another vdev to an active top-level resilver
 *     it must be restarted.
 *
 * Advantages:
 *
 *   - Sequential reconstuction is performed in LBA order which may be faster
 *     than healing reconstuction particularly when using using HDDs (or
 *     especially with SMR devices).  Only allocated capacity is resilvered.
 *
 *   - Sequential reconstruction is not constrained by ZFS block boundaries.
 *     This allows it to issue larger IOs to disk which span multiple blocks
 *     allowing all of these logical blocks to be repaired with a single IO.
 *
 *   - Unlike a healing resilver or scrub which are pool wide operations,
 *     sequential reconstruction is handled by the top-level mirror vdevs.
 *     This allows for it to be started or canceled on a top-level vdev
 *     without impacting any other top-level vdevs in the pool.
 *
 *   - Data only referenced by a pool checkpoint will be repaired because
 *     that space is reflected in the space maps.  This differs for a
 *     healing resilver or scrub which will not repair that data.
 */


/*
 * Maximum number of queued rebuild I/Os top-level vdev.  The number of
 * concurrent rebuild I/Os issued to the device is controlled by the
 * zfs_vdev_rebuild_min_active and zfs_vdev_rebuild_max_active module
 * options.
 */
unsigned int zfs_rebuild_queue_limit = 20;

/*
 * Size of rebuild reads; defaults to 1MiB and is capped at SPA_MAXBLOCKSIZE.
 */
unsigned long zfs_rebuild_max_segment = 1024 * 1024;

/*
 * For vdev_rebuild_initiate_sync() and vdev_rebuild_reset_sync().
 */
static void vdev_rebuild_thread(void *arg);

/*
 * Clear the per-vdev rebuild bytes value for a vdev tree.
 */
static void
clear_rebuild_bytes(vdev_t *vd)
{
	vdev_stat_t *vs = &vd->vdev_stat;

	for (uint64_t i = 0; i < vd->vdev_children; i++)
		clear_rebuild_bytes(vd->vdev_child[i]);

	mutex_enter(&vd->vdev_stat_lock);
	vs->vs_rebuild_processed = 0;
	mutex_exit(&vd->vdev_stat_lock);
}

/*
 * Determines whether a vdev_rebuild_thread() should be stopped.
 */
static boolean_t
vdev_rebuild_should_stop(vdev_t *vd)
{
	return (!vdev_writeable(vd) || vd->vdev_removing ||
	    vd->vdev_rebuild_exit_wanted ||
	    vd->vdev_rebuild_cancel_wanted ||
	    vd->vdev_rebuild_reset_wanted);
}

/*
 * Determine if the rebuild should be canceled.  This may happen when all
 * vdevs with MISSING DTLs are detached.
 */
static boolean_t
vdev_rebuild_should_cancel(vdev_t *vd)
{
	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;

	if (!vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg))
		return (B_TRUE);

	return (B_FALSE);
}

/*
 * The sync task for updating the on-disk state of a rebuild.  This is
 * scheduled by vdev_rebuild_range().
 */
static void
vdev_rebuild_update_sync(void *arg, dmu_tx_t *tx)
{
	int vdev_id = (uintptr_t)arg;
	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
	uint64_t txg = dmu_tx_get_txg(tx);

	mutex_enter(&vd->vdev_rebuild_lock);

	if (vr->vr_scan_offset[txg & TXG_MASK] > 0) {
		vrp->vrp_last_offset = vr->vr_scan_offset[txg & TXG_MASK];
		vr->vr_scan_offset[txg & TXG_MASK] = 0;
	}

	vrp->vrp_scan_time_ms = vr->vr_prev_scan_time_ms +
	    NSEC2MSEC(gethrtime() - vr->vr_pass_start_time);

	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
	    REBUILD_PHYS_ENTRIES, vrp, tx));

	mutex_exit(&vd->vdev_rebuild_lock);
}

/*
 * Initialize the on-disk state for a new rebuild, start the rebuild thread.
 */
static void
vdev_rebuild_initiate_sync(void *arg, dmu_tx_t *tx)
{
	int vdev_id = (uintptr_t)arg;
	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;

	ASSERT(vd->vdev_rebuilding);

	spa_feature_incr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);

	mutex_enter(&vd->vdev_rebuild_lock);
	bzero(vrp, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
	vrp->vrp_rebuild_state = VDEV_REBUILD_ACTIVE;
	vrp->vrp_min_txg = 0;
	vrp->vrp_max_txg = dmu_tx_get_txg(tx);
	vrp->vrp_start_time = gethrestime_sec();
	vrp->vrp_scan_time_ms = 0;
	vr->vr_prev_scan_time_ms = 0;

	/*
	 * Rebuilds are currently only used when replacing a device, in which
	 * case there must be DTL_MISSING entries.  In the future, we could
	 * allow rebuilds to be used in a way similar to a scrub.  This would
	 * be useful because it would allow us to rebuild the space used by
	 * pool checkpoints.
	 */
	VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));

	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
	    REBUILD_PHYS_ENTRIES, vrp, tx));

	spa_history_log_internal(spa, "rebuild", tx,
	    "vdev_id=%llu vdev_guid=%llu started",
	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);

	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
	vd->vdev_rebuild_thread = thread_create(NULL, 0,
	    vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);

	mutex_exit(&vd->vdev_rebuild_lock);
}

static void
vdev_rebuild_log_notify(spa_t *spa, vdev_t *vd, char *name)
{
	nvlist_t *aux = fnvlist_alloc();

	fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, "sequential");
	spa_event_notify(spa, vd, aux, name);
	nvlist_free(aux);
}

/*
 * Called to request that a new rebuild be started.  The feature will remain
 * active for the duration of the rebuild, then revert to the enabled state.
 */
static void
vdev_rebuild_initiate(vdev_t *vd)
{
	spa_t *spa = vd->vdev_spa;

	ASSERT(vd->vdev_top == vd);
	ASSERT(MUTEX_HELD(&vd->vdev_rebuild_lock));
	ASSERT(!vd->vdev_rebuilding);

	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));

	vd->vdev_rebuilding = B_TRUE;

	dsl_sync_task_nowait(spa_get_dsl(spa), vdev_rebuild_initiate_sync,
	    (void *)(uintptr_t)vd->vdev_id, tx);
	dmu_tx_commit(tx);

	vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_START);
}

/*
 * Update the on-disk state to completed when a rebuild finishes.
 */
static void
vdev_rebuild_complete_sync(void *arg, dmu_tx_t *tx)
{
	int vdev_id = (uintptr_t)arg;
	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;

	mutex_enter(&vd->vdev_rebuild_lock);
	vrp->vrp_rebuild_state = VDEV_REBUILD_COMPLETE;
	vrp->vrp_end_time = gethrestime_sec();

	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
	    REBUILD_PHYS_ENTRIES, vrp, tx));

	vdev_dtl_reassess(vd,  tx->tx_txg, vrp->vrp_max_txg, B_TRUE, B_TRUE);
	spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);

	spa_history_log_internal(spa, "rebuild",  tx,
	    "vdev_id=%llu vdev_guid=%llu complete",
	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
	vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);

	/* Handles detaching of spares */
	spa_async_request(spa, SPA_ASYNC_REBUILD_DONE);
	vd->vdev_rebuilding = B_FALSE;
	mutex_exit(&vd->vdev_rebuild_lock);

	spa_notify_waiters(spa);
	cv_broadcast(&vd->vdev_rebuild_cv);
}

/*
 * Update the on-disk state to canceled when a rebuild finishes.
 */
static void
vdev_rebuild_cancel_sync(void *arg, dmu_tx_t *tx)
{
	int vdev_id = (uintptr_t)arg;
	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;

	mutex_enter(&vd->vdev_rebuild_lock);
	vrp->vrp_rebuild_state = VDEV_REBUILD_CANCELED;
	vrp->vrp_end_time = gethrestime_sec();

	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
	    REBUILD_PHYS_ENTRIES, vrp, tx));

	spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);

	spa_history_log_internal(spa, "rebuild",  tx,
	    "vdev_id=%llu vdev_guid=%llu canceled",
	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
	vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);

	vd->vdev_rebuild_cancel_wanted = B_FALSE;
	vd->vdev_rebuilding = B_FALSE;
	mutex_exit(&vd->vdev_rebuild_lock);

	spa_notify_waiters(spa);
	cv_broadcast(&vd->vdev_rebuild_cv);
}

/*
 * Resets the progress of a running rebuild.  This will occur when a new
 * vdev is added to rebuild.
 */
static void
vdev_rebuild_reset_sync(void *arg, dmu_tx_t *tx)
{
	int vdev_id = (uintptr_t)arg;
	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;

	mutex_enter(&vd->vdev_rebuild_lock);

	ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
	ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);

	vrp->vrp_last_offset = 0;
	vrp->vrp_min_txg = 0;
	vrp->vrp_max_txg = dmu_tx_get_txg(tx);
	vrp->vrp_bytes_scanned = 0;
	vrp->vrp_bytes_issued = 0;
	vrp->vrp_bytes_rebuilt = 0;
	vrp->vrp_bytes_est = 0;
	vrp->vrp_scan_time_ms = 0;
	vr->vr_prev_scan_time_ms = 0;

	/* See vdev_rebuild_initiate_sync comment */
	VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));

	VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
	    REBUILD_PHYS_ENTRIES, vrp, tx));

	spa_history_log_internal(spa, "rebuild",  tx,
	    "vdev_id=%llu vdev_guid=%llu reset",
	    (u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);

	vd->vdev_rebuild_reset_wanted = B_FALSE;
	ASSERT(vd->vdev_rebuilding);

	vd->vdev_rebuild_thread = thread_create(NULL, 0,
	    vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);

	mutex_exit(&vd->vdev_rebuild_lock);
}

/*
 * Clear the last rebuild status.
 */
void
vdev_rebuild_clear_sync(void *arg, dmu_tx_t *tx)
{
	int vdev_id = (uintptr_t)arg;
	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
	objset_t *mos = spa_meta_objset(spa);

	mutex_enter(&vd->vdev_rebuild_lock);

	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD) ||
	    vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE) {
		mutex_exit(&vd->vdev_rebuild_lock);
		return;
	}

	clear_rebuild_bytes(vd);
	bzero(vrp, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);

	if (vd->vdev_top_zap != 0 && zap_contains(mos, vd->vdev_top_zap,
	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS) == 0) {
		VERIFY0(zap_update(mos, vd->vdev_top_zap,
		    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
		    REBUILD_PHYS_ENTRIES, vrp, tx));
	}

	mutex_exit(&vd->vdev_rebuild_lock);
}

/*
 * The zio_done_func_t callback for each rebuild I/O issued.  It's responsible
 * for updating the rebuild stats and limiting the number of in flight I/Os.
 */
static void
vdev_rebuild_cb(zio_t *zio)
{
	vdev_rebuild_t *vr = zio->io_private;
	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
	vdev_t *vd = vr->vr_top_vdev;

	mutex_enter(&vd->vdev_rebuild_io_lock);
	if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
		/*
		 * The I/O failed because the top-level vdev was unavailable.
		 * Attempt to roll back to the last completed offset, in order
		 * resume from the correct location if the pool is resumed.
		 * (This works because spa_sync waits on spa_txg_zio before
		 * it runs sync tasks.)
		 */
		uint64_t *off = &vr->vr_scan_offset[zio->io_txg & TXG_MASK];
		*off = MIN(*off, zio->io_offset);
	} else if (zio->io_error) {
		vrp->vrp_errors++;
	}

	abd_free(zio->io_abd);

	ASSERT3U(vd->vdev_rebuild_inflight, >, 0);
	vd->vdev_rebuild_inflight--;
	cv_broadcast(&vd->vdev_rebuild_io_cv);
	mutex_exit(&vd->vdev_rebuild_io_lock);

	spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
}

/*
 * Rebuild the data in this range by constructing a special dummy block
 * pointer for the given range.  It has no relation to any existing blocks
 * in the pool.  But by disabling checksum verification and issuing a scrub
 * I/O mirrored vdevs will replicate the block using any available mirror
 * leaf vdevs.
 */
static void
vdev_rebuild_rebuild_block(vdev_rebuild_t *vr, uint64_t start, uint64_t asize,
    uint64_t txg)
{
	vdev_t *vd = vr->vr_top_vdev;
	spa_t *spa = vd->vdev_spa;
	uint64_t psize = asize;

	ASSERT(vd->vdev_ops == &vdev_mirror_ops ||
	    vd->vdev_ops == &vdev_replacing_ops ||
	    vd->vdev_ops == &vdev_spare_ops);

	blkptr_t blk, *bp = &blk;
	BP_ZERO(bp);

	DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
	DVA_SET_OFFSET(&bp->blk_dva[0], start);
	DVA_SET_GANG(&bp->blk_dva[0], 0);
	DVA_SET_ASIZE(&bp->blk_dva[0], asize);

	BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
	BP_SET_LSIZE(bp, psize);
	BP_SET_PSIZE(bp, psize);
	BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
	BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
	BP_SET_TYPE(bp, DMU_OT_NONE);
	BP_SET_LEVEL(bp, 0);
	BP_SET_DEDUP(bp, 0);
	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);

	/*
	 * We increment the issued bytes by the asize rather than the psize
	 * so the scanned and issued bytes may be directly compared.  This
	 * is consistent with the scrub/resilver issued reporting.
	 */
	vr->vr_pass_bytes_issued += asize;
	vr->vr_rebuild_phys.vrp_bytes_issued += asize;

	zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa, bp,
	    abd_alloc(psize, B_FALSE), psize, vdev_rebuild_cb, vr,
	    ZIO_PRIORITY_REBUILD, ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL |
	    ZIO_FLAG_RESILVER, NULL));
}

/*
 * Issues a rebuild I/O and takes care of rate limiting the number of queued
 * rebuild I/Os.  The provided start and size must be properly aligned for the
 * top-level vdev type being rebuilt.
 */
static int
vdev_rebuild_range(vdev_rebuild_t *vr, uint64_t start, uint64_t size)
{
	uint64_t ms_id __maybe_unused = vr->vr_scan_msp->ms_id;
	vdev_t *vd = vr->vr_top_vdev;
	spa_t *spa = vd->vdev_spa;

	ASSERT3U(ms_id, ==, start >> vd->vdev_ms_shift);
	ASSERT3U(ms_id, ==, (start + size - 1) >> vd->vdev_ms_shift);

	vr->vr_pass_bytes_scanned += size;
	vr->vr_rebuild_phys.vrp_bytes_scanned += size;

	mutex_enter(&vd->vdev_rebuild_io_lock);

	/* Limit in flight rebuild I/Os */
	while (vd->vdev_rebuild_inflight >= zfs_rebuild_queue_limit)
		cv_wait(&vd->vdev_rebuild_io_cv, &vd->vdev_rebuild_io_lock);

	vd->vdev_rebuild_inflight++;
	mutex_exit(&vd->vdev_rebuild_io_lock);

	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
	uint64_t txg = dmu_tx_get_txg(tx);

	spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
	mutex_enter(&vd->vdev_rebuild_lock);

	/* This is the first I/O for this txg. */
	if (vr->vr_scan_offset[txg & TXG_MASK] == 0) {
		vr->vr_scan_offset[txg & TXG_MASK] = start;
		dsl_sync_task_nowait(spa_get_dsl(spa),
		    vdev_rebuild_update_sync,
		    (void *)(uintptr_t)vd->vdev_id, tx);
	}

	/* When exiting write out our progress. */
	if (vdev_rebuild_should_stop(vd)) {
		mutex_enter(&vd->vdev_rebuild_io_lock);
		vd->vdev_rebuild_inflight--;
		mutex_exit(&vd->vdev_rebuild_io_lock);
		spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
		mutex_exit(&vd->vdev_rebuild_lock);
		dmu_tx_commit(tx);
		return (SET_ERROR(EINTR));
	}
	mutex_exit(&vd->vdev_rebuild_lock);

	vr->vr_scan_offset[txg & TXG_MASK] = start + size;
	vdev_rebuild_rebuild_block(vr, start, size, txg);

	dmu_tx_commit(tx);

	return (0);
}

/*
 * Split range into legally-sized logical chunks given the constraints of the
 * top-level mirror vdev type.
 */
static uint64_t
vdev_rebuild_chunk_size(vdev_t *vd, uint64_t start, uint64_t size)
{
	uint64_t chunk_size, max_asize, max_segment;

	ASSERT(vd->vdev_ops == &vdev_mirror_ops ||
	    vd->vdev_ops == &vdev_replacing_ops ||
	    vd->vdev_ops == &vdev_spare_ops);

	max_segment = MIN(P2ROUNDUP(zfs_rebuild_max_segment,
	    1 << vd->vdev_ashift), SPA_MAXBLOCKSIZE);
	max_asize = vdev_psize_to_asize(vd, max_segment);
	chunk_size = MIN(size, max_asize);

	return (chunk_size);
}

/*
 * Issues rebuild I/Os for all ranges in the provided vr->vr_tree range tree.
 */
static int
vdev_rebuild_ranges(vdev_rebuild_t *vr)
{
	vdev_t *vd = vr->vr_top_vdev;
	zfs_btree_t *t = &vr->vr_scan_tree->rt_root;
	zfs_btree_index_t idx;
	int error;

	for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
	    rs = zfs_btree_next(t, &idx, &idx)) {
		uint64_t start = rs_get_start(rs, vr->vr_scan_tree);
		uint64_t size = rs_get_end(rs, vr->vr_scan_tree) - start;

		/*
		 * zfs_scan_suspend_progress can be set to disable rebuild
		 * progress for testing.  See comment in dsl_scan_sync().
		 */
		while (zfs_scan_suspend_progress &&
		    !vdev_rebuild_should_stop(vd)) {
			delay(hz);
		}

		while (size > 0) {
			uint64_t chunk_size;

			chunk_size = vdev_rebuild_chunk_size(vd, start, size);

			error = vdev_rebuild_range(vr, start, chunk_size);
			if (error != 0)
				return (error);

			size -= chunk_size;
			start += chunk_size;
		}
	}

	return (0);
}

/*
 * Calculates the estimated capacity which remains to be scanned.  Since
 * we traverse the pool in metaslab order only allocated capacity beyond
 * the vrp_last_offset need be considered.  All lower offsets must have
 * already been rebuilt and are thus already included in vrp_bytes_scanned.
 */
static void
vdev_rebuild_update_bytes_est(vdev_t *vd, uint64_t ms_id)
{
	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
	uint64_t bytes_est = vrp->vrp_bytes_scanned;

	if (vrp->vrp_last_offset < vd->vdev_ms[ms_id]->ms_start)
		return;

	for (uint64_t i = ms_id; i < vd->vdev_ms_count; i++) {
		metaslab_t *msp = vd->vdev_ms[i];

		mutex_enter(&msp->ms_lock);
		bytes_est += metaslab_allocated_space(msp);
		mutex_exit(&msp->ms_lock);
	}

	vrp->vrp_bytes_est = bytes_est;
}

/*
 * Load from disk the top-level vdev's rebuild information.
 */
int
vdev_rebuild_load(vdev_t *vd)
{
	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
	spa_t *spa = vd->vdev_spa;
	int err = 0;

	mutex_enter(&vd->vdev_rebuild_lock);
	vd->vdev_rebuilding = B_FALSE;

	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) {
		bzero(vrp, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
		mutex_exit(&vd->vdev_rebuild_lock);
		return (SET_ERROR(ENOTSUP));
	}

	ASSERT(vd->vdev_top == vd);

	err = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
	    VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
	    REBUILD_PHYS_ENTRIES, vrp);

	/*
	 * A missing or damaged VDEV_TOP_ZAP_VDEV_REBUILD_PHYS should
	 * not prevent a pool from being imported.  Clear the rebuild
	 * status allowing a new resilver/rebuild to be started.
	 */
	if (err == ENOENT || err == EOVERFLOW || err == ECKSUM) {
		bzero(vrp, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
	} else if (err) {
		mutex_exit(&vd->vdev_rebuild_lock);
		return (err);
	}

	vr->vr_prev_scan_time_ms = vrp->vrp_scan_time_ms;
	vr->vr_top_vdev = vd;

	mutex_exit(&vd->vdev_rebuild_lock);

	return (0);
}

/*
 * Each scan thread is responsible for rebuilding a top-level vdev.  The
 * rebuild progress in tracked on-disk in VDEV_TOP_ZAP_VDEV_REBUILD_PHYS.
 */
static void
vdev_rebuild_thread(void *arg)
{
	vdev_t *vd = arg;
	spa_t *spa = vd->vdev_spa;
	int error = 0;

	/*
	 * If there's a scrub in process request that it be stopped.  This
	 * is not required for a correct rebuild, but we do want rebuilds to
	 * emulate the resilver behavior as much as possible.
	 */
	dsl_pool_t *dsl = spa_get_dsl(spa);
	if (dsl_scan_scrubbing(dsl))
		dsl_scan_cancel(dsl);

	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
	mutex_enter(&vd->vdev_rebuild_lock);

	ASSERT3P(vd->vdev_top, ==, vd);
	ASSERT3P(vd->vdev_rebuild_thread, !=, NULL);
	ASSERT(vd->vdev_rebuilding);
	ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REBUILD));
	ASSERT3B(vd->vdev_rebuild_cancel_wanted, ==, B_FALSE);
	ASSERT3B(vd->vdev_rebuild_reset_wanted, ==, B_FALSE);

	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
	vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
	vr->vr_top_vdev = vd;
	vr->vr_scan_msp = NULL;
	vr->vr_scan_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
	vr->vr_pass_start_time = gethrtime();
	vr->vr_pass_bytes_scanned = 0;
	vr->vr_pass_bytes_issued = 0;

	uint64_t update_est_time = gethrtime();
	vdev_rebuild_update_bytes_est(vd, 0);

	clear_rebuild_bytes(vr->vr_top_vdev);

	mutex_exit(&vd->vdev_rebuild_lock);

	/*
	 * Systematically walk the metaslabs and issue rebuild I/Os for
	 * all ranges in the allocated space map.
	 */
	for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
		metaslab_t *msp = vd->vdev_ms[i];
		vr->vr_scan_msp = msp;

		/*
		 * Removal of vdevs from the vdev tree may eliminate the need
		 * for the rebuild, in which case it should be canceled.  The
		 * vdev_rebuild_cancel_wanted flag is set until the sync task
		 * completes.  This may be after the rebuild thread exits.
		 */
		if (vdev_rebuild_should_cancel(vd)) {
			vd->vdev_rebuild_cancel_wanted = B_TRUE;
			error = EINTR;
			break;
		}

		ASSERT0(range_tree_space(vr->vr_scan_tree));

		/*
		 * Disable any new allocations to this metaslab and wait
		 * for any writes inflight to complete.  This is needed to
		 * ensure all allocated ranges are rebuilt.
		 */
		metaslab_disable(msp);
		spa_config_exit(spa, SCL_CONFIG, FTAG);
		txg_wait_synced(dsl, 0);

		mutex_enter(&msp->ms_sync_lock);
		mutex_enter(&msp->ms_lock);

		/*
		 * When a metaslab has been allocated from read its allocated
		 * ranges from the space map object in to the vr_scan_tree.
		 * Then add inflight / unflushed ranges and remove inflight /
		 * unflushed frees.  This is the minimum range to be rebuilt.
		 */
		if (msp->ms_sm != NULL) {
			VERIFY0(space_map_load(msp->ms_sm,
			    vr->vr_scan_tree, SM_ALLOC));

			for (int i = 0; i < TXG_SIZE; i++) {
				ASSERT0(range_tree_space(
				    msp->ms_allocating[i]));
			}

			range_tree_walk(msp->ms_unflushed_allocs,
			    range_tree_add, vr->vr_scan_tree);
			range_tree_walk(msp->ms_unflushed_frees,
			    range_tree_remove, vr->vr_scan_tree);

			/*
			 * Remove ranges which have already been rebuilt based
			 * on the last offset.  This can happen when restarting
			 * a scan after exporting and re-importing the pool.
			 */
			range_tree_clear(vr->vr_scan_tree, 0,
			    vrp->vrp_last_offset);
		}

		mutex_exit(&msp->ms_lock);
		mutex_exit(&msp->ms_sync_lock);

		/*
		 * To provide an accurate estimate re-calculate the estimated
		 * size every 5 minutes to account for recent allocations and
		 * frees made space maps which have not yet been rebuilt.
		 */
		if (gethrtime() > update_est_time + SEC2NSEC(300)) {
			update_est_time = gethrtime();
			vdev_rebuild_update_bytes_est(vd, i);
		}

		/*
		 * Walk the allocated space map and issue the rebuild I/O.
		 */
		error = vdev_rebuild_ranges(vr);
		range_tree_vacate(vr->vr_scan_tree, NULL, NULL);

		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
		metaslab_enable(msp, B_FALSE, B_FALSE);

		if (error != 0)
			break;
	}

	range_tree_destroy(vr->vr_scan_tree);
	spa_config_exit(spa, SCL_CONFIG, FTAG);

	/* Wait for any remaining rebuild I/O to complete */
	mutex_enter(&vd->vdev_rebuild_io_lock);
	while (vd->vdev_rebuild_inflight > 0)
		cv_wait(&vd->vdev_rebuild_io_cv, &vd->vdev_rebuild_io_lock);

	mutex_exit(&vd->vdev_rebuild_io_lock);

	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);

	dsl_pool_t *dp = spa_get_dsl(spa);
	dmu_tx_t *tx = dmu_tx_create_dd(dp->dp_mos_dir);
	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));

	mutex_enter(&vd->vdev_rebuild_lock);
	if (error == 0) {
		/*
		 * After a successful rebuild clear the DTLs of all ranges
		 * which were missing when the rebuild was started.  These
		 * ranges must have been rebuilt as a consequence of rebuilding
		 * all allocated space.  Note that unlike a scrub or resilver
		 * the rebuild operation will reconstruct data only referenced
		 * by a pool checkpoint.  See the dsl_scan_done() comments.
		 */
		dsl_sync_task_nowait(dp, vdev_rebuild_complete_sync,
		    (void *)(uintptr_t)vd->vdev_id, tx);
	} else if (vd->vdev_rebuild_cancel_wanted) {
		/*
		 * The rebuild operation was canceled.  This will occur when
		 * a device participating in the rebuild is detached.
		 */
		dsl_sync_task_nowait(dp, vdev_rebuild_cancel_sync,
		    (void *)(uintptr_t)vd->vdev_id, tx);
	} else if (vd->vdev_rebuild_reset_wanted) {
		/*
		 * Reset the running rebuild without canceling and restarting
		 * it.  This will occur when a new device is attached and must
		 * participate in the rebuild.
		 */
		dsl_sync_task_nowait(dp, vdev_rebuild_reset_sync,
		    (void *)(uintptr_t)vd->vdev_id, tx);
	} else {
		/*
		 * The rebuild operation should be suspended.  This may occur
		 * when detaching a child vdev or when exporting the pool.  The
		 * rebuild is left in the active state so it will be resumed.
		 */
		ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
		vd->vdev_rebuilding = B_FALSE;
	}

	dmu_tx_commit(tx);

	vd->vdev_rebuild_thread = NULL;
	mutex_exit(&vd->vdev_rebuild_lock);
	spa_config_exit(spa, SCL_CONFIG, FTAG);

	cv_broadcast(&vd->vdev_rebuild_cv);

	thread_exit();
}

/*
 * Returns B_TRUE if any top-level vdev are rebuilding.
 */
boolean_t
vdev_rebuild_active(vdev_t *vd)
{
	spa_t *spa = vd->vdev_spa;
	boolean_t ret = B_FALSE;

	if (vd == spa->spa_root_vdev) {
		for (uint64_t i = 0; i < vd->vdev_children; i++) {
			ret = vdev_rebuild_active(vd->vdev_child[i]);
			if (ret)
				return (ret);
		}
	} else if (vd->vdev_top_zap != 0) {
		vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;

		mutex_enter(&vd->vdev_rebuild_lock);
		ret = (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
		mutex_exit(&vd->vdev_rebuild_lock);
	}

	return (ret);
}

/*
 * Start a rebuild operation.  The rebuild may be restarted when the
 * top-level vdev is currently actively rebuilding.
 */
void
vdev_rebuild(vdev_t *vd)
{
	vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
	vdev_rebuild_phys_t *vrp __maybe_unused = &vr->vr_rebuild_phys;

	ASSERT(vd->vdev_top == vd);
	ASSERT(vdev_is_concrete(vd));
	ASSERT(!vd->vdev_removing);
	ASSERT(spa_feature_is_enabled(vd->vdev_spa,
	    SPA_FEATURE_DEVICE_REBUILD));

	mutex_enter(&vd->vdev_rebuild_lock);
	if (vd->vdev_rebuilding) {
		ASSERT3U(vrp->vrp_rebuild_state, ==, VDEV_REBUILD_ACTIVE);

		/*
		 * Signal a running rebuild operation that it should restart
		 * from the beginning because a new device was attached.  The
		 * vdev_rebuild_reset_wanted flag is set until the sync task
		 * completes.  This may be after the rebuild thread exits.
		 */
		if (!vd->vdev_rebuild_reset_wanted)
			vd->vdev_rebuild_reset_wanted = B_TRUE;
	} else {
		vdev_rebuild_initiate(vd);
	}
	mutex_exit(&vd->vdev_rebuild_lock);
}

static void
vdev_rebuild_restart_impl(vdev_t *vd)
{
	spa_t *spa = vd->vdev_spa;

	if (vd == spa->spa_root_vdev) {
		for (uint64_t i = 0; i < vd->vdev_children; i++)
			vdev_rebuild_restart_impl(vd->vdev_child[i]);

	} else if (vd->vdev_top_zap != 0) {
		vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;

		mutex_enter(&vd->vdev_rebuild_lock);
		if (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE &&
		    vdev_writeable(vd) && !vd->vdev_rebuilding) {
			ASSERT(spa_feature_is_active(spa,
			    SPA_FEATURE_DEVICE_REBUILD));
			vd->vdev_rebuilding = B_TRUE;
			vd->vdev_rebuild_thread = thread_create(NULL, 0,
			    vdev_rebuild_thread, vd, 0, &p0, TS_RUN,
			    maxclsyspri);
		}
		mutex_exit(&vd->vdev_rebuild_lock);
	}
}

/*
 * Conditionally restart all of the vdev_rebuild_thread's for a pool.  The
 * feature flag must be active and the rebuild in the active state.   This
 * cannot be used to start a new rebuild.
 */
void
vdev_rebuild_restart(spa_t *spa)
{
	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	vdev_rebuild_restart_impl(spa->spa_root_vdev);
}

/*
 * Stop and wait for all of the vdev_rebuild_thread's associated with the
 * vdev tree provide to be terminated (canceled or stopped).
 */
void
vdev_rebuild_stop_wait(vdev_t *vd)
{
	spa_t *spa = vd->vdev_spa;

	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	if (vd == spa->spa_root_vdev) {
		for (uint64_t i = 0; i < vd->vdev_children; i++)
			vdev_rebuild_stop_wait(vd->vdev_child[i]);

	} else if (vd->vdev_top_zap != 0) {
		ASSERT(vd == vd->vdev_top);

		mutex_enter(&vd->vdev_rebuild_lock);
		if (vd->vdev_rebuild_thread != NULL) {
			vd->vdev_rebuild_exit_wanted = B_TRUE;
			while (vd->vdev_rebuilding) {
				cv_wait(&vd->vdev_rebuild_cv,
				    &vd->vdev_rebuild_lock);
			}
			vd->vdev_rebuild_exit_wanted = B_FALSE;
		}
		mutex_exit(&vd->vdev_rebuild_lock);
	}
}

/*
 * Stop all rebuild operations but leave them in the active state so they
 * will be resumed when importing the pool.
 */
void
vdev_rebuild_stop_all(spa_t *spa)
{
	vdev_rebuild_stop_wait(spa->spa_root_vdev);
}

/*
 * Rebuild statistics reported per top-level vdev.
 */
int
vdev_rebuild_get_stats(vdev_t *tvd, vdev_rebuild_stat_t *vrs)
{
	spa_t *spa = tvd->vdev_spa;

	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
		return (SET_ERROR(ENOTSUP));

	if (tvd != tvd->vdev_top || tvd->vdev_top_zap == 0)
		return (SET_ERROR(EINVAL));

	int error = zap_contains(spa_meta_objset(spa),
	    tvd->vdev_top_zap, VDEV_TOP_ZAP_VDEV_REBUILD_PHYS);

	if (error == ENOENT) {
		bzero(vrs, sizeof (vdev_rebuild_stat_t));
		vrs->vrs_state = VDEV_REBUILD_NONE;
		error = 0;
	} else if (error == 0) {
		vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
		vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;

		mutex_enter(&tvd->vdev_rebuild_lock);
		vrs->vrs_state = vrp->vrp_rebuild_state;
		vrs->vrs_start_time = vrp->vrp_start_time;
		vrs->vrs_end_time = vrp->vrp_end_time;
		vrs->vrs_scan_time_ms = vrp->vrp_scan_time_ms;
		vrs->vrs_bytes_scanned = vrp->vrp_bytes_scanned;
		vrs->vrs_bytes_issued = vrp->vrp_bytes_issued;
		vrs->vrs_bytes_rebuilt = vrp->vrp_bytes_rebuilt;
		vrs->vrs_bytes_est = vrp->vrp_bytes_est;
		vrs->vrs_errors = vrp->vrp_errors;
		vrs->vrs_pass_time_ms = NSEC2MSEC(gethrtime() -
		    vr->vr_pass_start_time);
		vrs->vrs_pass_bytes_scanned = vr->vr_pass_bytes_scanned;
		vrs->vrs_pass_bytes_issued = vr->vr_pass_bytes_issued;
		mutex_exit(&tvd->vdev_rebuild_lock);
	}

	return (error);
}

/* BEGIN CSTYLED */
ZFS_MODULE_PARAM(zfs, zfs_, rebuild_max_segment, ULONG, ZMOD_RW,
        "Max segment size in bytes of rebuild reads");
/* END CSTYLED */