/*
* Copyright (c) 2017-2018 Cavium, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* File : ecore_init_fw_funcs.c
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "bcm_osal.h"
#include "ecore_hw.h"
#include "ecore_init_ops.h"
#include "reg_addr.h"
#include "ecore_rt_defs.h"
#include "ecore_hsi_common.h"
#include "ecore_hsi_init_func.h"
#include "ecore_hsi_eth.h"
#include "ecore_hsi_init_tool.h"
#include "ecore_iro.h"
#include "ecore_init_fw_funcs.h"
#define CDU_VALIDATION_DEFAULT_CFG 61
static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES_E4] = {
{ 400, 336, 352, 304, 304, 384, 416, 352}, /* region 3 offsets */
{ 528, 496, 416, 448, 448, 512, 544, 480}, /* region 4 offsets */
{ 608, 544, 496, 512, 576, 592, 624, 560} /* region 5 offsets */
};
static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES_E4] = {
{ 240, 240, 112, 0, 0, 0, 0, 96} /* region 1 offsets */
};
/* General constants */
#define QM_PQ_MEM_4KB(pq_size) (pq_size ? DIV_ROUND_UP((pq_size + 1) * QM_PQ_ELEMENT_SIZE, 0x1000) : 0)
#define QM_PQ_SIZE_256B(pq_size) (pq_size ? DIV_ROUND_UP(pq_size, 0x100) - 1 : 0)
#define QM_INVALID_PQ_ID 0xffff
/* Feature enable */
#define QM_BYPASS_EN 1
#define QM_BYTE_CRD_EN 1
/* Other PQ constants */
#define QM_OTHER_PQS_PER_PF 4
/* VOQ constants */
#define QM_E5_NUM_EXT_VOQ (MAX_NUM_PORTS_E5 * NUM_OF_TCS)
/* WFQ constants: */
/* Upper bound in MB, 10 * burst size of 1ms in 50Gbps */
#define QM_WFQ_UPPER_BOUND 62500000
/* Bit of VOQ in WFQ VP PQ map */
#define QM_WFQ_VP_PQ_VOQ_SHIFT 0
/* Bit of PF in WFQ VP PQ map */
#define QM_WFQ_VP_PQ_PF_E4_SHIFT 5
#define QM_WFQ_VP_PQ_PF_E5_SHIFT 6
/* 0x9000 = 4*9*1024 */
#define QM_WFQ_INC_VAL(weight) ((weight) * 0x9000)
/* Max WFQ increment value is 0.7 * upper bound */
#define QM_WFQ_MAX_INC_VAL ((QM_WFQ_UPPER_BOUND * 7) / 10)
/* Number of VOQs in E5 QmWfqCrd register */
#define QM_WFQ_CRD_E5_NUM_VOQS 16
/* RL constants: */
/* Period in us */
#define QM_RL_PERIOD 5
/* Period in 25MHz cycles */
#define QM_RL_PERIOD_CLK_25M (25 * QM_RL_PERIOD)
/* RL increment value - rate is specified in mbps. the factor of 1.01 was
* added after seeing only 99% factor reached in a 25Gbps port with DPDK RFC
* 2544 test. In this scenario the PF RL was reducing the line rate to 99%
* although the credit increment value was the correct one and FW calculated
* correct packet sizes. The reason for the inaccuracy of the RL is unknown at
* this point.
*/
#define QM_RL_INC_VAL(rate) OSAL_MAX_T(u32, (u32)(((rate ? rate : 100000) * QM_RL_PERIOD * 101) / (8 * 100)), 1)
/* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
#define QM_PF_RL_UPPER_BOUND 62500000
/* Max PF RL increment value is 0.7 * upper bound */
#define QM_PF_RL_MAX_INC_VAL ((QM_PF_RL_UPPER_BOUND * 7) / 10)
/* Vport RL Upper bound, link speed is in Mpbs */
#define QM_VP_RL_UPPER_BOUND(speed) ((u32)OSAL_MAX_T(u32, QM_RL_INC_VAL(speed), 9700 + 1000))
/* Max Vport RL increment value is the Vport RL upper bound */
#define QM_VP_RL_MAX_INC_VAL(speed) QM_VP_RL_UPPER_BOUND(speed)
/* Vport RL credit threshold in case of QM bypass */
#define QM_VP_RL_BYPASS_THRESH_SPEED (QM_VP_RL_UPPER_BOUND(10000) - 1)
/* AFullOprtnstcCrdMask constants */
#define QM_OPPOR_LINE_VOQ_DEF 1
#define QM_OPPOR_FW_STOP_DEF 0
#define QM_OPPOR_PQ_EMPTY_DEF 1
/* Command Queue constants: */
/* Pure LB CmdQ lines (+spare) */
#define PBF_CMDQ_PURE_LB_LINES 150
#define PBF_CMDQ_LINES_E5_RSVD_RATIO 8
#define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) (PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + ext_voq * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
#define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) (PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + ext_voq * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
#define QM_VOQ_LINE_CRD(pbf_cmd_lines) ((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
/* BTB: blocks constants (block size = 256B) */
/* 256B blocks in 9700B packet */
#define BTB_JUMBO_PKT_BLOCKS 38
/* Headroom per-port */
#define BTB_HEADROOM_BLOCKS BTB_JUMBO_PKT_BLOCKS
#define BTB_PURE_LB_FACTOR 10
/* Factored (hence really 0.7) */
#define BTB_PURE_LB_RATIO 7
/* QM stop command constants */
#define QM_STOP_PQ_MASK_WIDTH 32
#define QM_STOP_CMD_ADDR 2
#define QM_STOP_CMD_STRUCT_SIZE 2
#define QM_STOP_CMD_PAUSE_MASK_OFFSET 0
#define QM_STOP_CMD_PAUSE_MASK_SHIFT 0
#define QM_STOP_CMD_PAUSE_MASK_MASK -1
#define QM_STOP_CMD_GROUP_ID_OFFSET 1
#define QM_STOP_CMD_GROUP_ID_SHIFT 16
#define QM_STOP_CMD_GROUP_ID_MASK 15
#define QM_STOP_CMD_PQ_TYPE_OFFSET 1
#define QM_STOP_CMD_PQ_TYPE_SHIFT 24
#define QM_STOP_CMD_PQ_TYPE_MASK 1
#define QM_STOP_CMD_MAX_POLL_COUNT 100
#define QM_STOP_CMD_POLL_PERIOD_US 500
/* QM command macros */
#define QM_CMD_STRUCT_SIZE(cmd) cmd##_STRUCT_SIZE
#define QM_CMD_SET_FIELD(var, cmd, field, value) SET_FIELD(var[cmd##_##field##_OFFSET], cmd##_##field, value)
#define QM_INIT_TX_PQ_MAP(p_hwfn, map, chip, pq_id, rl_valid, vp_pq_id, rl_id, ext_voq, wrr) OSAL_MEMSET(&map, 0, sizeof(map)); SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_PQ_VALID, 1); SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_RL_VALID, rl_valid); SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_VP_PQ_ID, vp_pq_id); SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_RL_ID, rl_id); SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_VOQ, ext_voq); SET_FIELD(map.reg, QM_RF_PQ_MAP_##chip##_WRR_WEIGHT_GROUP, wrr); STORE_RT_REG(p_hwfn, QM_REG_TXPQMAP_RT_OFFSET + pq_id, *((u32 *)&map))
#define WRITE_PQ_INFO_TO_RAM 1
#define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) (((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | ((rl_valid) << 22) | ((rl) << 24))
#define PQ_INFO_RAM_GRC_ADDRESS(pq_id) XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 21776 + (pq_id) * 4
/******************** INTERNAL IMPLEMENTATION *********************/
/* Returns the external VOQ number */
static u8 ecore_get_ext_voq(struct ecore_hwfn *p_hwfn,
u8 port_id,
u8 tc,
u8 max_phys_tcs_per_port)
{
if (tc == PURE_LB_TC)
return NUM_OF_PHYS_TCS * (ECORE_IS_E5(p_hwfn->p_dev) ? MAX_NUM_PORTS_E5 : MAX_NUM_PORTS_BB) + port_id;
else
return port_id * (ECORE_IS_E5(p_hwfn->p_dev) ? NUM_OF_PHYS_TCS : max_phys_tcs_per_port) + tc;
}
/* Prepare PF RL enable/disable runtime init values */
static void ecore_enable_pf_rl(struct ecore_hwfn *p_hwfn,
bool pf_rl_en)
{
STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
if (pf_rl_en) {
u8 num_ext_voqs = ECORE_IS_E5(p_hwfn->p_dev) ? QM_E5_NUM_EXT_VOQ : MAX_NUM_VOQS_E4;
u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
/* Enable RLs for all VOQs */
STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_RT_OFFSET, (u32)voq_bit_mask);
#ifdef QM_REG_RLPFVOQENABLE_MSB_RT_OFFSET
if (num_ext_voqs >= 32)
STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_MSB_RT_OFFSET, (u32)(voq_bit_mask >> 32));
#endif
/* Write RL period */
STORE_RT_REG(p_hwfn, QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
STORE_RT_REG(p_hwfn, QM_REG_RLPFPERIODTIMER_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
/* Set credit threshold for QM bypass flow */
if (QM_BYPASS_EN)
STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET, QM_PF_RL_UPPER_BOUND);
}
}
/* Prepare PF WFQ enable/disable runtime init values */
static void ecore_enable_pf_wfq(struct ecore_hwfn *p_hwfn,
bool pf_wfq_en)
{
STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
/* Set credit threshold for QM bypass flow */
if (pf_wfq_en && QM_BYPASS_EN)
STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET, QM_WFQ_UPPER_BOUND);
}
/* Prepare VPORT RL enable/disable runtime init values */
static void ecore_enable_vport_rl(struct ecore_hwfn *p_hwfn,
bool vport_rl_en)
{
STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET, vport_rl_en ? 1 : 0);
if (vport_rl_en) {
/* Write RL period (use timer 0 only) */
STORE_RT_REG(p_hwfn, QM_REG_RLGLBLPERIOD_0_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
STORE_RT_REG(p_hwfn, QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
/* Set credit threshold for QM bypass flow */
if (QM_BYPASS_EN)
STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET, QM_VP_RL_BYPASS_THRESH_SPEED);
}
}
/* Prepare VPORT WFQ enable/disable runtime init values */
static void ecore_enable_vport_wfq(struct ecore_hwfn *p_hwfn,
bool vport_wfq_en)
{
STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET, vport_wfq_en ? 1 : 0);
/* Set credit threshold for QM bypass flow */
if (vport_wfq_en && QM_BYPASS_EN)
STORE_RT_REG(p_hwfn, QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET, QM_WFQ_UPPER_BOUND);
}
/* Prepare runtime init values to allocate PBF command queue lines for
* the specified VOQ.
*/
static void ecore_cmdq_lines_voq_rt_init(struct ecore_hwfn *p_hwfn,
u8 ext_voq,
u16 cmdq_lines)
{
u32 qm_line_crd;
qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), (u32)cmdq_lines);
STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq, qm_line_crd);
STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq, qm_line_crd);
}
/* Prepare runtime init values to allocate PBF command queue lines. */
static void ecore_cmdq_lines_rt_init(struct ecore_hwfn *p_hwfn,
u8 max_ports_per_engine,
u8 max_phys_tcs_per_port,
struct init_qm_port_params port_params[MAX_NUM_PORTS])
{
u8 tc, ext_voq, port_id, num_tcs_in_port;
u8 num_ext_voqs = ECORE_IS_E5(p_hwfn->p_dev) ? QM_E5_NUM_EXT_VOQ : MAX_NUM_VOQS_E4;
/* Clear PBF lines of all VOQs */
for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
u16 phys_lines, phys_lines_per_tc;
if (!port_params[port_id].active)
continue;
/* Find number of command queue lines to divide between the
* active physical TCs. In E5, 1/8 of the lines are reserved.
* the lines for pure LB TC are subtracted.
*/
phys_lines = port_params[port_id].num_pbf_cmd_lines;
if (ECORE_IS_E5(p_hwfn->p_dev))
phys_lines -= DIV_ROUND_UP(phys_lines, PBF_CMDQ_LINES_E5_RSVD_RATIO);
phys_lines -= PBF_CMDQ_PURE_LB_LINES;
/* Find #lines per active physical TC */
num_tcs_in_port = 0;
for (tc = 0; tc < max_phys_tcs_per_port; tc++)
if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1)
num_tcs_in_port++;
phys_lines_per_tc = phys_lines / num_tcs_in_port;
/* Init registers per active TC */
for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
ext_voq = ecore_get_ext_voq(p_hwfn, port_id, tc, max_phys_tcs_per_port);
if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1)
ecore_cmdq_lines_voq_rt_init(p_hwfn, ext_voq, phys_lines_per_tc);
}
/* Init registers for pure LB TC */
ext_voq = ecore_get_ext_voq(p_hwfn, port_id, PURE_LB_TC, max_phys_tcs_per_port);
ecore_cmdq_lines_voq_rt_init(p_hwfn, ext_voq, PBF_CMDQ_PURE_LB_LINES);
}
}
/* Prepare runtime init values to allocate guaranteed BTB blocks for the
* specified port. The guaranteed BTB space is divided between the TCs as
* follows (shared space Is currently not used):
* 1. Parameters:
* B - BTB blocks for this port
* C - Number of physical TCs for this port
* 2. Calculation:
* a. 38 blocks (9700B jumbo frame) are allocated for global per port
* headroom.
* b. B = B - 38 (remainder after global headroom allocation).
* c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ.
* d. B = B – MAX(38, B/(C+0.7)) (remainder after pure LB allocation).
* e. B/C blocks are allocated for each physical TC.
* Assumptions:
* - MTU is up to 9700 bytes (38 blocks)
* - All TCs are considered symmetrical (same rate and packet size)
* - No optimization for lossy TC (all are considered lossless). Shared space
* is not enabled and allocated for each TC.
*/
static void ecore_btb_blocks_rt_init(struct ecore_hwfn *p_hwfn,
u8 max_ports_per_engine,
u8 max_phys_tcs_per_port,
struct init_qm_port_params port_params[MAX_NUM_PORTS])
{
u32 usable_blocks, pure_lb_blocks, phys_blocks;
u8 tc, ext_voq, port_id, num_tcs_in_port;
for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
if (!port_params[port_id].active)
continue;
/* Subtract headroom blocks */
usable_blocks = port_params[port_id].num_btb_blocks - BTB_HEADROOM_BLOCKS;
/* Find blocks per physical TC. use factor to avoid floating
* arithmethic.
*/
num_tcs_in_port = 0;
for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1)
num_tcs_in_port++;
pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) / (num_tcs_in_port * BTB_PURE_LB_FACTOR + BTB_PURE_LB_RATIO);
pure_lb_blocks = OSAL_MAX_T(u32, BTB_JUMBO_PKT_BLOCKS, pure_lb_blocks / BTB_PURE_LB_FACTOR);
phys_blocks = (usable_blocks - pure_lb_blocks) / num_tcs_in_port;
/* Init physical TCs */
for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
if (((port_params[port_id].active_phys_tcs >> tc) & 0x1) == 1) {
ext_voq = ecore_get_ext_voq(p_hwfn, port_id, tc, max_phys_tcs_per_port);
STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq), phys_blocks);
}
}
/* Init pure LB TC */
ext_voq = ecore_get_ext_voq(p_hwfn, port_id, PURE_LB_TC, max_phys_tcs_per_port);
STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq), pure_lb_blocks);
}
}
/* Prepare Tx PQ mapping runtime init values for the specified PF */
static void ecore_tx_pq_map_rt_init(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u8 port_id,
u8 pf_id,
u8 max_phys_tcs_per_port,
bool is_pf_loading,
u32 num_pf_cids,
u32 num_vf_cids,
u16 start_pq,
u16 num_pf_pqs,
u16 num_vf_pqs,
u8 start_vport,
u32 base_mem_addr_4kb,
struct init_qm_pq_params *pq_params,
struct init_qm_vport_params *vport_params)
{
/* A bit per Tx PQ indicating if the PQ is associated with a VF */
u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
num_pqs = num_pf_pqs + num_vf_pqs;
first_pq_group = start_pq / QM_PF_QUEUE_GROUP_SIZE;
last_pq_group = (start_pq + num_pqs - 1) / QM_PF_QUEUE_GROUP_SIZE;
pq_mem_4kb = QM_PQ_MEM_4KB(num_pf_cids);
vport_pq_mem_4kb = QM_PQ_MEM_4KB(num_vf_cids);
mem_addr_4kb = base_mem_addr_4kb;
/* Set mapping from PQ group to PF */
for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group, (u32)(pf_id));
/* Set PQ sizes */
STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET, QM_PQ_SIZE_256B(num_pf_cids));
STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET, QM_PQ_SIZE_256B(num_vf_cids));
/* Go over all Tx PQs */
for (i = 0, pq_id = start_pq; i < num_pqs; i++, pq_id++) {
u32 max_qm_global_rls = MAX_QM_GLOBAL_RLS;
u8 ext_voq, vport_id_in_pf;
bool is_vf_pq, rl_valid;
u16 first_tx_pq_id;
ext_voq = ecore_get_ext_voq(p_hwfn, port_id, pq_params[i].tc_id, max_phys_tcs_per_port);
is_vf_pq = (i >= num_pf_pqs);
rl_valid = pq_params[i].rl_valid && pq_params[i].vport_id < max_qm_global_rls;
/* Update first Tx PQ of VPORT/TC */
vport_id_in_pf = pq_params[i].vport_id - start_vport;
first_tx_pq_id = vport_params[vport_id_in_pf].first_tx_pq_id[pq_params[i].tc_id];
if (first_tx_pq_id == QM_INVALID_PQ_ID) {
u32 map_val = (ext_voq << QM_WFQ_VP_PQ_VOQ_SHIFT) | (pf_id << (ECORE_IS_E5(p_hwfn->p_dev) ? QM_WFQ_VP_PQ_PF_E5_SHIFT : QM_WFQ_VP_PQ_PF_E4_SHIFT));
/* Create new VP PQ */
vport_params[vport_id_in_pf].first_tx_pq_id[pq_params[i].tc_id] = pq_id;
first_tx_pq_id = pq_id;
/* Map VP PQ to VOQ and PF */
STORE_RT_REG(p_hwfn, QM_REG_WFQVPMAP_RT_OFFSET + first_tx_pq_id, map_val);
}
/* Check RL ID */
if (pq_params[i].rl_valid && pq_params[i].vport_id >= max_qm_global_rls)
DP_NOTICE(p_hwfn, true, "Invalid VPORT ID for rate limiter configuration\n");
/* Prepare PQ map entry */
if (ECORE_IS_E5(p_hwfn->p_dev)) {
struct qm_rf_pq_map_e5 tx_pq_map;
QM_INIT_TX_PQ_MAP(p_hwfn, tx_pq_map, E5, pq_id, rl_valid ? 1 : 0, first_tx_pq_id, rl_valid ? pq_params[i].vport_id : 0, ext_voq, pq_params[i].wrr_group);
}
else {
struct qm_rf_pq_map_e4 tx_pq_map;
QM_INIT_TX_PQ_MAP(p_hwfn, tx_pq_map, E4, pq_id, rl_valid ? 1 : 0, first_tx_pq_id, rl_valid ? pq_params[i].vport_id : 0, ext_voq, pq_params[i].wrr_group);
}
/* Set PQ base address */
STORE_RT_REG(p_hwfn, QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id, mem_addr_4kb);
/* Clear PQ pointer table entry (64 bit) */
if (is_pf_loading)
for (j = 0; j < 2; j++)
STORE_RT_REG(p_hwfn, QM_REG_PTRTBLTX_RT_OFFSET + (pq_id * 2) + j, 0);
/* Write PQ info to RAM */
if (WRITE_PQ_INFO_TO_RAM != 0)
{
u32 pq_info = 0;
pq_info = PQ_INFO_ELEMENT(first_tx_pq_id, pf_id, pq_params[i].tc_id, port_id, rl_valid ? 1 : 0, rl_valid ? pq_params[i].vport_id : 0);
ecore_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id), pq_info);
}
/* If VF PQ, add indication to PQ VF mask */
if (is_vf_pq) {
tx_pq_vf_mask[pq_id / QM_PF_QUEUE_GROUP_SIZE] |= (1 << (pq_id % QM_PF_QUEUE_GROUP_SIZE));
mem_addr_4kb += vport_pq_mem_4kb;
}
else {
mem_addr_4kb += pq_mem_4kb;
}
}
/* Store Tx PQ VF mask to size select register */
for (i = 0; i < num_tx_pq_vf_masks; i++)
if (tx_pq_vf_mask[i])
STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i, tx_pq_vf_mask[i]);
}
/* Prepare Other PQ mapping runtime init values for the specified PF */
static void ecore_other_pq_map_rt_init(struct ecore_hwfn *p_hwfn,
u8 pf_id,
bool is_pf_loading,
u32 num_pf_cids,
u32 num_tids,
u32 base_mem_addr_4kb)
{
u32 pq_size, pq_mem_4kb, mem_addr_4kb;
u16 i, j, pq_id, pq_group;
/* A single other PQ group is used in each PF, where PQ group i is used
* in PF i.
*/
pq_group = pf_id;
pq_size = num_pf_cids + num_tids;
pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
mem_addr_4kb = base_mem_addr_4kb;
/* Map PQ group to PF */
STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group, (u32)(pf_id));
/* Set PQ sizes */
STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET, QM_PQ_SIZE_256B(pq_size));
for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE; i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
/* Set PQ base address */
STORE_RT_REG(p_hwfn, QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id, mem_addr_4kb);
/* Clear PQ pointer table entry */
if (is_pf_loading)
for (j = 0; j < 2; j++)
STORE_RT_REG(p_hwfn, QM_REG_PTRTBLOTHER_RT_OFFSET + (pq_id * 2) + j, 0);
mem_addr_4kb += pq_mem_4kb;
}
}
/* Prepare PF WFQ runtime init values for the specified PF.
* Return -1 on error.
*/
static int ecore_pf_wfq_rt_init(struct ecore_hwfn *p_hwfn,
u8 port_id,
u8 pf_id,
u16 pf_wfq,
u8 max_phys_tcs_per_port,
u16 num_tx_pqs,
struct init_qm_pq_params *pq_params)
{
u32 inc_val, crd_reg_offset;
u8 ext_voq;
u16 i;
inc_val = QM_WFQ_INC_VAL(pf_wfq);
if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
DP_NOTICE(p_hwfn, true, "Invalid PF WFQ weight configuration\n");
return -1;
}
for (i = 0; i < num_tx_pqs; i++) {
ext_voq = ecore_get_ext_voq(p_hwfn, port_id, pq_params[i].tc_id, max_phys_tcs_per_port);
crd_reg_offset = ECORE_IS_E5(p_hwfn->p_dev) ?
(ext_voq < QM_WFQ_CRD_E5_NUM_VOQS ? QM_REG_WFQPFCRD_RT_OFFSET : QM_REG_WFQPFCRD_MSB_RT_OFFSET) + (ext_voq % QM_WFQ_CRD_E5_NUM_VOQS) * MAX_NUM_PFS_E5 + pf_id :
(pf_id < MAX_NUM_PFS_BB ? QM_REG_WFQPFCRD_RT_OFFSET : QM_REG_WFQPFCRD_MSB_RT_OFFSET) + ext_voq * MAX_NUM_PFS_BB + (pf_id % MAX_NUM_PFS_BB);
OVERWRITE_RT_REG(p_hwfn, crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
}
STORE_RT_REG(p_hwfn, QM_REG_WFQPFUPPERBOUND_RT_OFFSET + pf_id, QM_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + pf_id, inc_val);
return 0;
}
/* Prepare PF RL runtime init values for the specified PF.
* Return -1 on error.
*/
static int ecore_pf_rl_rt_init(struct ecore_hwfn *p_hwfn,
u8 pf_id,
u32 pf_rl)
{
u32 inc_val;
inc_val = QM_RL_INC_VAL(pf_rl);
if (inc_val > QM_PF_RL_MAX_INC_VAL) {
DP_NOTICE(p_hwfn, true, "Invalid PF rate limit configuration\n");
return -1;
}
STORE_RT_REG(p_hwfn, QM_REG_RLPFCRD_RT_OFFSET + pf_id, (u32)QM_RL_CRD_REG_SIGN_BIT);
STORE_RT_REG(p_hwfn, QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id, QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
return 0;
}
/* Prepare VPORT WFQ runtime init values for the specified VPORTs.
* Return -1 on error.
*/
static int ecore_vp_wfq_rt_init(struct ecore_hwfn *p_hwfn,
u8 num_vports,
struct init_qm_vport_params *vport_params)
{
u16 vport_pq_id;
u32 inc_val;
u8 tc, i;
/* Go over all PF VPORTs */
for (i = 0; i < num_vports; i++) {
if (!vport_params[i].vport_wfq)
continue;
inc_val = QM_WFQ_INC_VAL(vport_params[i].vport_wfq);
if (inc_val > QM_WFQ_MAX_INC_VAL) {
DP_NOTICE(p_hwfn, true, "Invalid VPORT WFQ weight configuration\n");
return -1;
}
/* Each VPORT can have several VPORT PQ IDs for various TCs */
for (tc = 0; tc < NUM_OF_TCS; tc++) {
vport_pq_id = vport_params[i].first_tx_pq_id[tc];
if (vport_pq_id != QM_INVALID_PQ_ID) {
STORE_RT_REG(p_hwfn, QM_REG_WFQVPCRD_RT_OFFSET + vport_pq_id, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
STORE_RT_REG(p_hwfn, QM_REG_WFQVPWEIGHT_RT_OFFSET + vport_pq_id, inc_val);
}
}
}
return 0;
}
/* Prepare VPORT RL runtime init values for the specified VPORTs.
* Return -1 on error.
*/
static int ecore_vport_rl_rt_init(struct ecore_hwfn *p_hwfn,
u8 start_vport,
u8 num_vports,
u32 link_speed,
struct init_qm_vport_params *vport_params)
{
u8 i, vport_id;
u32 inc_val;
if (start_vport + num_vports >= MAX_QM_GLOBAL_RLS) {
DP_NOTICE(p_hwfn, true, "Invalid VPORT ID for rate limiter configuration\n");
return -1;
}
/* Go over all PF VPORTs */
for (i = 0, vport_id = start_vport; i < num_vports; i++, vport_id++) {
inc_val = QM_RL_INC_VAL(vport_params[i].vport_rl ? vport_params[i].vport_rl : link_speed);
if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) {
DP_NOTICE(p_hwfn, true, "Invalid VPORT rate-limit configuration\n");
return -1;
}
STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + vport_id, (u32)QM_RL_CRD_REG_SIGN_BIT);
STORE_RT_REG(p_hwfn, QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + vport_id, QM_VP_RL_UPPER_BOUND(link_speed) | (u32)QM_RL_CRD_REG_SIGN_BIT);
STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + vport_id, inc_val);
}
return 0;
}
static bool ecore_poll_on_qm_cmd_ready(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt)
{
u32 reg_val, i;
for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val; i++) {
OSAL_UDELAY(QM_STOP_CMD_POLL_PERIOD_US);
reg_val = ecore_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
}
/* Check if timeout while waiting for SDM command ready */
if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
DP_VERBOSE(p_hwfn, ECORE_MSG_DEBUG, "Timeout when waiting for QM SDM command ready signal\n");
return false;
}
return true;
}
static bool ecore_send_qm_cmd(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u32 cmd_addr,
u32 cmd_data_lsb,
u32 cmd_data_msb)
{
if (!ecore_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
return false;
ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
ecore_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
return ecore_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
}
/******************** INTERFACE IMPLEMENTATION *********************/
u32 ecore_qm_pf_mem_size(u32 num_pf_cids,
u32 num_vf_cids,
u32 num_tids,
u16 num_pf_pqs,
u16 num_vf_pqs)
{
return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
}
int ecore_qm_common_rt_init(struct ecore_hwfn *p_hwfn,
u8 max_ports_per_engine,
u8 max_phys_tcs_per_port,
bool pf_rl_en,
bool pf_wfq_en,
bool vport_rl_en,
bool vport_wfq_en,
struct init_qm_port_params port_params[MAX_NUM_PORTS])
{
u32 mask;
/* Init AFullOprtnstcCrdMask */
mask = (QM_OPPOR_LINE_VOQ_DEF << QM_RF_OPPORTUNISTIC_MASK_LINEVOQ_SHIFT) |
(QM_BYTE_CRD_EN << QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ_SHIFT) |
(pf_wfq_en << QM_RF_OPPORTUNISTIC_MASK_PFWFQ_SHIFT) |
(vport_wfq_en << QM_RF_OPPORTUNISTIC_MASK_VPWFQ_SHIFT) |
(pf_rl_en << QM_RF_OPPORTUNISTIC_MASK_PFRL_SHIFT) |
(vport_rl_en << QM_RF_OPPORTUNISTIC_MASK_VPQCNRL_SHIFT) |
(QM_OPPOR_FW_STOP_DEF << QM_RF_OPPORTUNISTIC_MASK_FWPAUSE_SHIFT) |
(QM_OPPOR_PQ_EMPTY_DEF << QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY_SHIFT);
STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
/* Enable/disable PF RL */
ecore_enable_pf_rl(p_hwfn, pf_rl_en);
/* Enable/disable PF WFQ */
ecore_enable_pf_wfq(p_hwfn, pf_wfq_en);
/* Enable/disable VPORT RL */
ecore_enable_vport_rl(p_hwfn, vport_rl_en);
/* Enable/disable VPORT WFQ */
ecore_enable_vport_wfq(p_hwfn, vport_wfq_en);
/* Init PBF CMDQ line credit */
ecore_cmdq_lines_rt_init(p_hwfn, max_ports_per_engine, max_phys_tcs_per_port, port_params);
/* Init BTB blocks in PBF */
ecore_btb_blocks_rt_init(p_hwfn, max_ports_per_engine, max_phys_tcs_per_port, port_params);
return 0;
}
int ecore_qm_pf_rt_init(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u8 port_id,
u8 pf_id,
u8 max_phys_tcs_per_port,
bool is_pf_loading,
u32 num_pf_cids,
u32 num_vf_cids,
u32 num_tids,
u16 start_pq,
u16 num_pf_pqs,
u16 num_vf_pqs,
u8 start_vport,
u8 num_vports,
u16 pf_wfq,
u32 pf_rl,
u32 link_speed,
struct init_qm_pq_params *pq_params,
struct init_qm_vport_params *vport_params)
{
u32 other_mem_size_4kb;
u8 tc, i;
other_mem_size_4kb = QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
/* Clear first Tx PQ ID array for each VPORT */
for(i = 0; i < num_vports; i++)
for(tc = 0; tc < NUM_OF_TCS; tc++)
vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
/* Map Other PQs (if any) */
#if QM_OTHER_PQS_PER_PF > 0
ecore_other_pq_map_rt_init(p_hwfn, pf_id, is_pf_loading, num_pf_cids, num_tids, 0);
#endif
/* Map Tx PQs */
ecore_tx_pq_map_rt_init(p_hwfn, p_ptt, port_id, pf_id, max_phys_tcs_per_port, is_pf_loading, num_pf_cids, num_vf_cids,
start_pq, num_pf_pqs, num_vf_pqs, start_vport, other_mem_size_4kb, pq_params, vport_params);
/* Init PF WFQ */
if (pf_wfq)
if (ecore_pf_wfq_rt_init(p_hwfn, port_id, pf_id, pf_wfq, max_phys_tcs_per_port, num_pf_pqs + num_vf_pqs, pq_params))
return -1;
/* Init PF RL */
if (ecore_pf_rl_rt_init(p_hwfn, pf_id, pf_rl))
return -1;
/* Set VPORT WFQ */
if (ecore_vp_wfq_rt_init(p_hwfn, num_vports, vport_params))
return -1;
/* Set VPORT RL */
if (ecore_vport_rl_rt_init(p_hwfn, start_vport, num_vports, link_speed, vport_params))
return -1;
return 0;
}
int ecore_init_pf_wfq(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u8 pf_id,
u16 pf_wfq)
{
u32 inc_val;
inc_val = QM_WFQ_INC_VAL(pf_wfq);
if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
DP_NOTICE(p_hwfn, true, "Invalid PF WFQ weight configuration\n");
return -1;
}
ecore_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
return 0;
}
int ecore_init_pf_rl(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u8 pf_id,
u32 pf_rl)
{
u32 inc_val;
inc_val = QM_RL_INC_VAL(pf_rl);
if (inc_val > QM_PF_RL_MAX_INC_VAL) {
DP_NOTICE(p_hwfn, true, "Invalid PF rate limit configuration\n");
return -1;
}
ecore_wr(p_hwfn, p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
ecore_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
return 0;
}
int ecore_init_vport_wfq(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u16 first_tx_pq_id[NUM_OF_TCS],
u16 vport_wfq)
{
u16 vport_pq_id;
u32 inc_val;
u8 tc;
inc_val = QM_WFQ_INC_VAL(vport_wfq);
if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
DP_NOTICE(p_hwfn, true, "Invalid VPORT WFQ weight configuration\n");
return -1;
}
for (tc = 0; tc < NUM_OF_TCS; tc++) {
vport_pq_id = first_tx_pq_id[tc];
if (vport_pq_id != QM_INVALID_PQ_ID) {
ecore_wr(p_hwfn, p_ptt, QM_REG_WFQVPWEIGHT + vport_pq_id * 4, inc_val);
}
}
return 0;
}
int ecore_init_vport_rl(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u8 vport_id,
u32 vport_rl,
u32 link_speed)
{
u32 inc_val, max_qm_global_rls = MAX_QM_GLOBAL_RLS;
if (vport_id >= max_qm_global_rls) {
DP_NOTICE(p_hwfn, true, "Invalid VPORT ID for rate limiter configuration\n");
return -1;
}
inc_val = QM_RL_INC_VAL(vport_rl ? vport_rl : link_speed);
if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) {
DP_NOTICE(p_hwfn, true, "Invalid VPORT rate-limit configuration\n");
return -1;
}
ecore_wr(p_hwfn, p_ptt, QM_REG_RLGLBLCRD + vport_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
ecore_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + vport_id * 4, inc_val);
return 0;
}
bool ecore_send_qm_stop_cmd(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
bool is_release_cmd,
bool is_tx_pq,
u16 start_pq,
u16 num_pqs)
{
u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = {0};
u32 pq_mask = 0, last_pq, pq_id;
last_pq = start_pq + num_pqs - 1;
/* Set command's PQ type */
QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
/* Go over requested PQs */
for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
/* Set PQ bit in mask (stop command only) */
if (!is_release_cmd)
pq_mask |= (1 << (pq_id % QM_STOP_PQ_MASK_WIDTH));
/* If last PQ or end of PQ mask, write command */
if ((pq_id == last_pq) || (pq_id % QM_STOP_PQ_MASK_WIDTH == (QM_STOP_PQ_MASK_WIDTH - 1))) {
QM_CMD_SET_FIELD(cmd_arr, (u32)QM_STOP_CMD, PAUSE_MASK, pq_mask);
QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, GROUP_ID, pq_id / QM_STOP_PQ_MASK_WIDTH);
if (!ecore_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR, cmd_arr[0], cmd_arr[1]))
return false;
pq_mask = 0;
}
}
return true;
}
#ifndef UNUSED_HSI_FUNC
/* NIG: ETS configuration constants */
#define NIG_TX_ETS_CLIENT_OFFSET 4
#define NIG_LB_ETS_CLIENT_OFFSET 1
#define NIG_ETS_MIN_WFQ_BYTES 1600
/* NIG: ETS constants */
#define NIG_ETS_UP_BOUND(weight,mtu) (2 * ((weight) > (mtu) ? (weight) : (mtu)))
/* NIG: RL constants */
/* Byte base type value */
#define NIG_RL_BASE_TYPE 1
/* Period in us */
#define NIG_RL_PERIOD 1
/* Period in 25MHz cycles */
#define NIG_RL_PERIOD_CLK_25M (25 * NIG_RL_PERIOD)
/* Rate in mbps */
#define NIG_RL_INC_VAL(rate) (((rate) * NIG_RL_PERIOD) / 8)
#define NIG_RL_MAX_VAL(inc_val,mtu) (2 * ((inc_val) > (mtu) ? (inc_val) : (mtu)))
/* NIG: packet prioritry configuration constants */
#define NIG_PRIORITY_MAP_TC_BITS 4
void ecore_init_nig_ets(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
struct init_ets_req* req,
bool is_lb)
{
u32 min_weight, tc_weight_base_addr, tc_weight_addr_diff;
u32 tc_bound_base_addr, tc_bound_addr_diff;
u8 sp_tc_map = 0, wfq_tc_map = 0;
u8 tc, num_tc, tc_client_offset;
num_tc = is_lb ? NUM_OF_TCS : NUM_OF_PHYS_TCS;
tc_client_offset = is_lb ? NIG_LB_ETS_CLIENT_OFFSET : NIG_TX_ETS_CLIENT_OFFSET;
min_weight = 0xffffffff;
tc_weight_base_addr = is_lb ? NIG_REG_LB_ARB_CREDIT_WEIGHT_0 : NIG_REG_TX_ARB_CREDIT_WEIGHT_0;
tc_weight_addr_diff = is_lb ? NIG_REG_LB_ARB_CREDIT_WEIGHT_1 - NIG_REG_LB_ARB_CREDIT_WEIGHT_0 :
NIG_REG_TX_ARB_CREDIT_WEIGHT_1 - NIG_REG_TX_ARB_CREDIT_WEIGHT_0;
tc_bound_base_addr = is_lb ? NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_0 : NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_0;
tc_bound_addr_diff = is_lb ? NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_1 - NIG_REG_LB_ARB_CREDIT_UPPER_BOUND_0 :
NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_1 - NIG_REG_TX_ARB_CREDIT_UPPER_BOUND_0;
for (tc = 0; tc < num_tc; tc++) {
struct init_ets_tc_req *tc_req = &req->tc_req[tc];
/* Update SP map */
if (tc_req->use_sp)
sp_tc_map |= (1 << tc);
if (!tc_req->use_wfq)
continue;
/* Update WFQ map */
wfq_tc_map |= (1 << tc);
/* Find minimal weight */
if (tc_req->weight < min_weight)
min_weight = tc_req->weight;
}
/* Write SP map */
ecore_wr(p_hwfn, p_ptt, is_lb ? NIG_REG_LB_ARB_CLIENT_IS_STRICT : NIG_REG_TX_ARB_CLIENT_IS_STRICT, (sp_tc_map << tc_client_offset));
/* Write WFQ map */
ecore_wr(p_hwfn, p_ptt, is_lb ? NIG_REG_LB_ARB_CLIENT_IS_SUBJECT2WFQ : NIG_REG_TX_ARB_CLIENT_IS_SUBJECT2WFQ, (wfq_tc_map << tc_client_offset));
/* Write WFQ weights */
for (tc = 0; tc < num_tc; tc++, tc_client_offset++) {
struct init_ets_tc_req *tc_req = &req->tc_req[tc];
u32 byte_weight;
if (!tc_req->use_wfq)
continue;
/* Translate weight to bytes */
byte_weight = (NIG_ETS_MIN_WFQ_BYTES * tc_req->weight) / min_weight;
/* Write WFQ weight */
ecore_wr(p_hwfn, p_ptt, tc_weight_base_addr + tc_weight_addr_diff * tc_client_offset, byte_weight);
/* Write WFQ upper bound */
ecore_wr(p_hwfn, p_ptt, tc_bound_base_addr + tc_bound_addr_diff * tc_client_offset, NIG_ETS_UP_BOUND(byte_weight, req->mtu));
}
}
void ecore_init_nig_lb_rl(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
struct init_nig_lb_rl_req* req)
{
u32 ctrl, inc_val, reg_offset;
u8 tc;
/* Disable global MAC+LB RL */
ctrl = NIG_RL_BASE_TYPE << NIG_REG_TX_LB_GLBRATELIMIT_CTRL_TX_LB_GLBRATELIMIT_BASE_TYPE_SHIFT;
ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_CTRL, ctrl);
/* Configure and enable global MAC+LB RL */
if (req->lb_mac_rate) {
/* Configure */
ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_INC_PERIOD, NIG_RL_PERIOD_CLK_25M);
inc_val = NIG_RL_INC_VAL(req->lb_mac_rate);
ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_INC_VALUE, inc_val);
ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_MAX_VALUE, NIG_RL_MAX_VAL(inc_val, req->mtu));
/* Enable */
ctrl |= 1 << NIG_REG_TX_LB_GLBRATELIMIT_CTRL_TX_LB_GLBRATELIMIT_EN_SHIFT;
ecore_wr(p_hwfn, p_ptt, NIG_REG_TX_LB_GLBRATELIMIT_CTRL, ctrl);
}
/* Disable global LB-only RL */
ctrl = NIG_RL_BASE_TYPE << NIG_REG_LB_BRBRATELIMIT_CTRL_LB_BRBRATELIMIT_BASE_TYPE_SHIFT;
ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_CTRL, ctrl);
/* Configure and enable global LB-only RL */
if (req->lb_rate) {
/* Configure */
ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_INC_PERIOD, NIG_RL_PERIOD_CLK_25M);
inc_val = NIG_RL_INC_VAL(req->lb_rate);
ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_INC_VALUE, inc_val);
ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_MAX_VALUE, NIG_RL_MAX_VAL(inc_val, req->mtu));
/* Enable */
ctrl |= 1 << NIG_REG_LB_BRBRATELIMIT_CTRL_LB_BRBRATELIMIT_EN_SHIFT;
ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_BRBRATELIMIT_CTRL, ctrl);
}
/* Per-TC RLs */
for (tc = 0, reg_offset = 0; tc < NUM_OF_PHYS_TCS; tc++, reg_offset += 4) {
/* Disable TC RL */
ctrl = NIG_RL_BASE_TYPE << NIG_REG_LB_TCRATELIMIT_CTRL_0_LB_TCRATELIMIT_BASE_TYPE_0_SHIFT;
ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_CTRL_0 + reg_offset, ctrl);
/* Configure and enable TC RL */
if (!req->tc_rate[tc])
continue;
/* Configure */
ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_INC_PERIOD_0 + reg_offset, NIG_RL_PERIOD_CLK_25M);
inc_val = NIG_RL_INC_VAL(req->tc_rate[tc]);
ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_INC_VALUE_0 + reg_offset, inc_val);
ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_MAX_VALUE_0 + reg_offset, NIG_RL_MAX_VAL(inc_val, req->mtu));
/* Enable */
ctrl |= 1 << NIG_REG_LB_TCRATELIMIT_CTRL_0_LB_TCRATELIMIT_EN_0_SHIFT;
ecore_wr(p_hwfn, p_ptt, NIG_REG_LB_TCRATELIMIT_CTRL_0 + reg_offset, ctrl);
}
}
void ecore_init_nig_pri_tc_map(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
struct init_nig_pri_tc_map_req* req)
{
u8 tc_pri_mask[NUM_OF_PHYS_TCS] = { 0 };
u32 pri_tc_mask = 0;
u8 pri, tc;
for (pri = 0; pri < NUM_OF_VLAN_PRIORITIES; pri++) {
if (!req->pri[pri].valid)
continue;
pri_tc_mask |= (req->pri[pri].tc_id << (pri * NIG_PRIORITY_MAP_TC_BITS));
tc_pri_mask[req->pri[pri].tc_id] |= (1 << pri);
}
/* Write priority -> TC mask */
ecore_wr(p_hwfn, p_ptt, NIG_REG_PKT_PRIORITY_TO_TC, pri_tc_mask);
/* Write TC -> priority mask */
for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
ecore_wr(p_hwfn, p_ptt, NIG_REG_PRIORITY_FOR_TC_0 + tc * 4, tc_pri_mask[tc]);
ecore_wr(p_hwfn, p_ptt, NIG_REG_RX_TC0_PRIORITY_MASK + tc * 4, tc_pri_mask[tc]);
}
}
#endif /* UNUSED_HSI_FUNC */
#ifndef UNUSED_HSI_FUNC
/* PRS: ETS configuration constants */
#define PRS_ETS_MIN_WFQ_BYTES 1600
#define PRS_ETS_UP_BOUND(weight,mtu) (2 * ((weight) > (mtu) ? (weight) : (mtu)))
void ecore_init_prs_ets(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
struct init_ets_req* req)
{
u32 tc_weight_addr_diff, tc_bound_addr_diff, min_weight = 0xffffffff;
u8 tc, sp_tc_map = 0, wfq_tc_map = 0;
tc_weight_addr_diff = PRS_REG_ETS_ARB_CREDIT_WEIGHT_1 - PRS_REG_ETS_ARB_CREDIT_WEIGHT_0;
tc_bound_addr_diff = PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_1 - PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_0;
for (tc = 0; tc < NUM_OF_TCS; tc++) {
struct init_ets_tc_req *tc_req = &req->tc_req[tc];
/* Update SP map */
if (tc_req->use_sp)
sp_tc_map |= (1 << tc);
if (!tc_req->use_wfq)
continue;
/* Update WFQ map */
wfq_tc_map |= (1 << tc);
/* Find minimal weight */
if (tc_req->weight < min_weight)
min_weight = tc_req->weight;
}
/* Write SP map */
ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CLIENT_IS_STRICT, sp_tc_map);
/* Write WFQ map */
ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CLIENT_IS_SUBJECT2WFQ, wfq_tc_map);
/* Write WFQ weights */
for (tc = 0; tc < NUM_OF_TCS; tc++) {
struct init_ets_tc_req *tc_req = &req->tc_req[tc];
u32 byte_weight;
if (!tc_req->use_wfq)
continue;
/* Translate weight to bytes */
byte_weight = (PRS_ETS_MIN_WFQ_BYTES * tc_req->weight) / min_weight;
/* Write WFQ weight */
ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CREDIT_WEIGHT_0 + tc * tc_weight_addr_diff, byte_weight);
/* Write WFQ upper bound */
ecore_wr(p_hwfn, p_ptt, PRS_REG_ETS_ARB_CREDIT_UPPER_BOUND_0 + tc * tc_bound_addr_diff, PRS_ETS_UP_BOUND(byte_weight, req->mtu));
}
}
#endif /* UNUSED_HSI_FUNC */
#ifndef UNUSED_HSI_FUNC
/* BRB: RAM configuration constants */
#define BRB_TOTAL_RAM_BLOCKS_BB 4800
#define BRB_TOTAL_RAM_BLOCKS_K2 5632
#define BRB_BLOCK_SIZE 128
#define BRB_MIN_BLOCKS_PER_TC 9
#define BRB_HYST_BYTES 10240
#define BRB_HYST_BLOCKS (BRB_HYST_BYTES / BRB_BLOCK_SIZE)
/* Temporary big RAM allocation - should be updated */
void ecore_init_brb_ram(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
struct init_brb_ram_req* req)
{
u32 tc_headroom_blocks, min_pkt_size_blocks, total_blocks;
u32 active_port_blocks, reg_offset = 0;
u8 port, active_ports = 0;
tc_headroom_blocks = (u32)DIV_ROUND_UP(req->headroom_per_tc, BRB_BLOCK_SIZE);
min_pkt_size_blocks = (u32)DIV_ROUND_UP(req->min_pkt_size, BRB_BLOCK_SIZE);
total_blocks = ECORE_IS_K2(p_hwfn->p_dev) ? BRB_TOTAL_RAM_BLOCKS_K2 : BRB_TOTAL_RAM_BLOCKS_BB;
/* Find number of active ports */
for (port = 0; port < MAX_NUM_PORTS; port++)
if (req->num_active_tcs[port])
active_ports++;
active_port_blocks = (u32)(total_blocks / active_ports);
for (port = 0; port < req->max_ports_per_engine; port++) {
u32 port_blocks, port_shared_blocks, port_guaranteed_blocks;
u32 full_xoff_th, full_xon_th, pause_xoff_th, pause_xon_th;
u32 tc_guaranteed_blocks;
u8 tc;
/* Calculate per-port sizes */
tc_guaranteed_blocks = (u32)DIV_ROUND_UP(req->guranteed_per_tc, BRB_BLOCK_SIZE);
port_blocks = req->num_active_tcs[port] ? active_port_blocks : 0;
port_guaranteed_blocks = req->num_active_tcs[port] * tc_guaranteed_blocks;
port_shared_blocks = port_blocks - port_guaranteed_blocks;
full_xoff_th = req->num_active_tcs[port] * BRB_MIN_BLOCKS_PER_TC;
full_xon_th = full_xoff_th + min_pkt_size_blocks;
pause_xoff_th = tc_headroom_blocks;
pause_xon_th = pause_xoff_th + min_pkt_size_blocks;
/* Init total size per port */
ecore_wr(p_hwfn, p_ptt, BRB_REG_TOTAL_MAC_SIZE + port * 4, port_blocks);
/* Init shared size per port */
ecore_wr(p_hwfn, p_ptt, BRB_REG_SHARED_HR_AREA + port * 4, port_shared_blocks);
for (tc = 0; tc < NUM_OF_TCS; tc++, reg_offset += 4) {
/* Clear init values for non-active TCs */
if (tc == req->num_active_tcs[port]) {
tc_guaranteed_blocks = 0;
full_xoff_th = 0;
full_xon_th = 0;
pause_xoff_th = 0;
pause_xon_th = 0;
}
/* Init guaranteed size per TC */
ecore_wr(p_hwfn, p_ptt, BRB_REG_TC_GUARANTIED_0 + reg_offset, tc_guaranteed_blocks);
ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_GUARANTIED_HYST_0 + reg_offset, BRB_HYST_BLOCKS);
/* Init pause/full thresholds per physical TC - for
* loopback traffic.
*/
ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_FULL_XOFF_THRESHOLD_0 + reg_offset, full_xoff_th);
ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_FULL_XON_THRESHOLD_0 + reg_offset, full_xon_th);
ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_PAUSE_XOFF_THRESHOLD_0 + reg_offset, pause_xoff_th);
ecore_wr(p_hwfn, p_ptt, BRB_REG_LB_TC_PAUSE_XON_THRESHOLD_0 + reg_offset, pause_xon_th);
/* Init pause/full thresholds per physical TC - for
* main traffic.
*/
ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_FULL_XOFF_THRESHOLD_0 + reg_offset, full_xoff_th);
ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_FULL_XON_THRESHOLD_0 + reg_offset, full_xon_th);
ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_PAUSE_XOFF_THRESHOLD_0 + reg_offset, pause_xoff_th);
ecore_wr(p_hwfn, p_ptt, BRB_REG_MAIN_TC_PAUSE_XON_THRESHOLD_0 + reg_offset, pause_xon_th);
}
}
}
#endif /* UNUSED_HSI_FUNC */
#ifndef UNUSED_HSI_FUNC
/* In MF, should be called once per port to set EtherType of OuterTag */
void ecore_set_port_mf_ovlan_eth_type(struct ecore_hwfn *p_hwfn, u32 ethType)
{
/* Update DORQ register */
STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET, ethType);
}
#endif /* UNUSED_HSI_FUNC */
#define SET_TUNNEL_TYPE_ENABLE_BIT(var,offset,enable) var = ((var) & ~(1 << (offset))) | ( (enable) ? (1 << (offset)) : 0)
#define PRS_ETH_TUNN_OUTPUT_FORMAT -188897008
#define PRS_ETH_OUTPUT_FORMAT -46832
void ecore_set_vxlan_dest_port(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u16 dest_port)
{
/* Update PRS register */
ecore_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
/* Update NIG register */
ecore_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
/* Update PBF register */
ecore_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
}
void ecore_set_vxlan_enable(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
bool vxlan_enable)
{
u32 reg_val;
/* Update PRS register */
reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT, vxlan_enable);
ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
if (reg_val) /* TODO: handle E5 init */
{
reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
/* Update output only if tunnel blocks not included. */
if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
{
ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
}
}
/* Update NIG register */
reg_val = ecore_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT, vxlan_enable);
ecore_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
/* Update DORQ register */
ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
}
void ecore_set_gre_enable(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
bool eth_gre_enable,
bool ip_gre_enable)
{
u32 reg_val;
/* Update PRS register */
reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT, eth_gre_enable);
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT, ip_gre_enable);
ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
if (reg_val) /* TODO: handle E5 init */
{
reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
/* Update output only if tunnel blocks not included. */
if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
{
ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
}
}
/* Update NIG register */
reg_val = ecore_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT, eth_gre_enable);
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT, ip_gre_enable);
ecore_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
/* Update DORQ registers */
ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
}
void ecore_set_geneve_dest_port(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u16 dest_port)
{
/* Update PRS register */
ecore_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
/* Update NIG register */
ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
/* Update PBF register */
ecore_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
}
void ecore_set_geneve_enable(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
bool eth_geneve_enable,
bool ip_geneve_enable)
{
u32 reg_val;
/* Update PRS register */
reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT, eth_geneve_enable);
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT, ip_geneve_enable);
ecore_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
if (reg_val) /* TODO: handle E5 init */
{
reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
/* Update output only if tunnel blocks not included. */
if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
{
ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
}
}
/* Update NIG register */
ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE, eth_geneve_enable ? 1 : 0);
ecore_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
/* EDPM with geneve tunnel not supported in BB */
if (ECORE_IS_BB_B0(p_hwfn->p_dev))
return;
/* Update DORQ registers */
ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2_E5, eth_geneve_enable ? 1 : 0);
ecore_wr(p_hwfn, p_ptt, DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2_E5, ip_geneve_enable ? 1 : 0);
}
#define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET 4
#define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT -927094512
void ecore_set_vxlan_no_l2_enable(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
bool enable)
{
u32 reg_val, cfg_mask;
/* read PRS config register */
reg_val = ecore_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
/* set VXLAN_NO_L2_ENABLE mask */
cfg_mask = (1 << PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
if (enable)
{
/* set VXLAN_NO_L2_ENABLE flag */
reg_val |= cfg_mask;
/* update PRS FIC register */
ecore_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
}
else
{
/* clear VXLAN_NO_L2_ENABLE flag */
reg_val &= ~cfg_mask;
}
/* write PRS config register */
ecore_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
}
#ifndef UNUSED_HSI_FUNC
#define T_ETH_PACKET_ACTION_GFT_EVENTID 23
#define PARSER_ETH_CONN_GFT_ACTION_CM_HDR 272
#define T_ETH_PACKET_MATCH_RFS_EVENTID 25
#define PARSER_ETH_CONN_CM_HDR 0
#define CAM_LINE_SIZE sizeof(u32)
#define RAM_LINE_SIZE sizeof(u64)
#define REG_SIZE sizeof(u32)
void ecore_gft_disable(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u16 pf_id)
{
/* disable gft search for PF */
ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
/* Clean ram & cam for next gft session*/
/* Zero camline */
ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE*pf_id, 0);
/* Zero ramline */
ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id, 0);
ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id + REG_SIZE, 0);
}
void ecore_set_gft_event_id_cm_hdr (struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt)
{
u32 rfs_cm_hdr_event_id;
/* Set RFS event ID to be awakened i Tstorm By Prs */
rfs_cm_hdr_event_id = ecore_rd(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT);
rfs_cm_hdr_event_id |= T_ETH_PACKET_ACTION_GFT_EVENTID << PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
rfs_cm_hdr_event_id |= PARSER_ETH_CONN_GFT_ACTION_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
ecore_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, rfs_cm_hdr_event_id);
}
void ecore_gft_config(struct ecore_hwfn *p_hwfn,
struct ecore_ptt *p_ptt,
u16 pf_id,
bool tcp,
bool udp,
bool ipv4,
bool ipv6,
enum gft_profile_type profile_type)
{
u32 reg_val, cam_line, ram_line_lo, ram_line_hi;
if (!ipv6 && !ipv4)
DP_NOTICE(p_hwfn, true, "gft_config: must accept at least on of - ipv4 or ipv6'\n");
if (!tcp && !udp)
DP_NOTICE(p_hwfn, true, "gft_config: must accept at least on of - udp or tcp\n");
if (profile_type >= MAX_GFT_PROFILE_TYPE)
DP_NOTICE(p_hwfn, true, "gft_config: unsupported gft_profile_type\n");
/* Set RFS event ID to be awakened i Tstorm By Prs */
reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID << PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
ecore_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
/* Do not load context only cid in PRS on match. */
ecore_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
/* Do not use tenant ID exist bit for gft search*/
ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
/* Set Cam */
cam_line = 0;
SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
/* Filters are per PF!! */
SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID_MASK, GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
if (!(tcp && udp)) {
SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
if (tcp)
SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE, GFT_PROFILE_TCP_PROTOCOL);
else
SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE, GFT_PROFILE_UDP_PROTOCOL);
}
if (!(ipv4 && ipv6)) {
SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
if (ipv4)
SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION, GFT_PROFILE_IPV4);
else
SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION, GFT_PROFILE_IPV6);
}
/* Write characteristics to cam */
ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE*pf_id, cam_line);
cam_line = ecore_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE*pf_id);
/* Write line to RAM - compare to filter 4 tuple */
ram_line_lo = 0;
ram_line_hi = 0;
/* Tunnel type */
SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
if (profile_type == GFT_PROFILE_TYPE_4_TUPLE)
{
SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1);
SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1);
SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
SET_FIELD(ram_line_lo, GFT_RAM_LINE_SRC_PORT, 1);
SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1);
}
else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT)
{
SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1);
}
else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR)
{
SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1);
SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
}
else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR)
{
SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1);
SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
}
else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE)
{
SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
}
ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id, ram_line_lo);
ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*pf_id + REG_SIZE, ram_line_hi);
/* Set default profile so that no filter match will happen */
ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*PRS_GFT_CAM_LINES_NO_MATCH, 0xffffffff);
ecore_wr(p_hwfn, p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE*PRS_GFT_CAM_LINES_NO_MATCH + REG_SIZE, 0x3ff);
/* Enable gft search */
ecore_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
}
#endif /* UNUSED_HSI_FUNC */
/* Configure VF zone size mode*/
void ecore_config_vf_zone_size_mode(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt, u16 mode, bool runtime_init)
{
u32 msdm_vf_size_log = MSTORM_VF_ZONE_DEFAULT_SIZE_LOG;
u32 msdm_vf_offset_mask;
if (mode == VF_ZONE_SIZE_MODE_DOUBLE)
msdm_vf_size_log += 1;
else if (mode == VF_ZONE_SIZE_MODE_QUAD)
msdm_vf_size_log += 2;
msdm_vf_offset_mask = (1 << msdm_vf_size_log) - 1;
if (runtime_init) {
STORE_RT_REG(p_hwfn, PGLUE_REG_B_MSDM_VF_SHIFT_B_RT_OFFSET, msdm_vf_size_log);
STORE_RT_REG(p_hwfn, PGLUE_REG_B_MSDM_OFFSET_MASK_B_RT_OFFSET, msdm_vf_offset_mask);
}
else {
ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MSDM_VF_SHIFT_B, msdm_vf_size_log);
ecore_wr(p_hwfn, p_ptt, PGLUE_B_REG_MSDM_OFFSET_MASK_B, msdm_vf_offset_mask);
}
}
/* Get mstorm statistics for offset by VF zone size mode */
u32 ecore_get_mstorm_queue_stat_offset(struct ecore_hwfn *p_hwfn, u16 stat_cnt_id, u16 vf_zone_size_mode)
{
u32 offset = MSTORM_QUEUE_STAT_OFFSET(stat_cnt_id);
if ((vf_zone_size_mode != VF_ZONE_SIZE_MODE_DEFAULT) && (stat_cnt_id > MAX_NUM_PFS)) {
if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_DOUBLE)
offset += (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * (stat_cnt_id - MAX_NUM_PFS);
else if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_QUAD)
offset += 3 * (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * (stat_cnt_id - MAX_NUM_PFS);
}
return offset;
}
/* Get mstorm VF producer offset by VF zone size mode */
u32 ecore_get_mstorm_eth_vf_prods_offset(struct ecore_hwfn *p_hwfn, u8 vf_id, u8 vf_queue_id, u16 vf_zone_size_mode)
{
u32 offset = MSTORM_ETH_VF_PRODS_OFFSET(vf_id, vf_queue_id);
if (vf_zone_size_mode != VF_ZONE_SIZE_MODE_DEFAULT) {
if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_DOUBLE)
offset += (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * vf_id;
else if (vf_zone_size_mode == VF_ZONE_SIZE_MODE_QUAD)
offset += 3 * (1 << MSTORM_VF_ZONE_DEFAULT_SIZE_LOG) * vf_id;
}
return offset;
}
#ifndef LINUX_REMOVE
#define CRC8_INIT_VALUE 0xFF
#endif
static u8 cdu_crc8_table[CRC8_TABLE_SIZE];
/* Calculate and return CDU validation byte per connection type/region/cid */
static u8 ecore_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
{
const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
static u8 crc8_table_valid; /*automatically initialized to 0*/
u8 crc, validation_byte = 0;
u32 validation_string = 0;
u32 data_to_crc;
if (crc8_table_valid == 0) {
OSAL_CRC8_POPULATE(cdu_crc8_table, 0x07);
crc8_table_valid = 1;
}
/* The CRC is calculated on the String-to-compress:
* [31:8] = {CID[31:20],CID[11:0]}
* [7:4] = Region
* [3:0] = Type
*/
if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
validation_string |= ((region & 0xF) << 4);
if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
validation_string |= (conn_type & 0xF);
/* Convert to big-endian and calculate CRC8*/
data_to_crc = OSAL_BE32_TO_CPU(validation_string);
crc = OSAL_CRC8(cdu_crc8_table, (u8 *)&data_to_crc, sizeof(data_to_crc), CRC8_INIT_VALUE);
/* The validation byte [7:0] is composed:
* for type A validation
* [7] = active configuration bit
* [6:0] = crc[6:0]
*
* for type B validation
* [7] = active configuration bit
* [6:3] = connection_type[3:0]
* [2:0] = crc[2:0]
*/
validation_byte |= ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
else
validation_byte |= crc & 0x7F;
return validation_byte;
}
/* Calcualte and set validation bytes for session context */
void ecore_calc_session_ctx_validation(void *p_ctx_mem, u16 ctx_size, u8 ctx_type, u32 cid)
{
u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
p_ctx = (u8* const)p_ctx_mem;
x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
OSAL_MEMSET(p_ctx, 0, ctx_size);
*x_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 3, cid);
*t_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 4, cid);
*u_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 5, cid);
}
/* Calcualte and set validation bytes for task context */
void ecore_calc_task_ctx_validation(void *p_ctx_mem, u16 ctx_size, u8 ctx_type, u32 tid)
{
u8 *p_ctx, *region1_val_ptr;
p_ctx = (u8* const)p_ctx_mem;
region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
OSAL_MEMSET(p_ctx, 0, ctx_size);
*region1_val_ptr = ecore_calc_cdu_validation_byte(ctx_type, 1, tid);
}
/* Memset session context to 0 while preserving validation bytes */
void ecore_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
{
u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
u8 x_val, t_val, u_val;
p_ctx = (u8* const)p_ctx_mem;
x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
x_val = *x_val_ptr;
t_val = *t_val_ptr;
u_val = *u_val_ptr;
OSAL_MEMSET(p_ctx, 0, ctx_size);
*x_val_ptr = x_val;
*t_val_ptr = t_val;
*u_val_ptr = u_val;
}
/* Memset task context to 0 while preserving validation bytes */
void ecore_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
{
u8 *p_ctx, *region1_val_ptr;
u8 region1_val;
p_ctx = (u8* const)p_ctx_mem;
region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
region1_val = *region1_val_ptr;
OSAL_MEMSET(p_ctx, 0, ctx_size);
*region1_val_ptr = region1_val;
}
/* Enable and configure context validation */
void ecore_enable_context_validation(struct ecore_hwfn * p_hwfn, struct ecore_ptt *p_ptt)
{
u32 ctx_validation;
/* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
ecore_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
/* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
ecore_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
/* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
ecore_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
}
#define RSS_IND_TABLE_BASE_ADDR 4112
#define RSS_IND_TABLE_VPORT_SIZE 16
#define RSS_IND_TABLE_ENTRY_PER_LINE 8
/* Update RSS indirection table entry. */
void ecore_update_eth_rss_ind_table_entry(struct ecore_hwfn * p_hwfn,
struct ecore_ptt *p_ptt,
u8 rss_id,
u8 ind_table_index,
u16 ind_table_value)
{
u32 cnt, rss_addr;
u32 * reg_val;
u16 rss_ind_entry[RSS_IND_TABLE_ENTRY_PER_LINE];
u16 rss_ind_mask [RSS_IND_TABLE_ENTRY_PER_LINE];
/* get entry address */
rss_addr = RSS_IND_TABLE_BASE_ADDR +
RSS_IND_TABLE_VPORT_SIZE * rss_id +
ind_table_index/RSS_IND_TABLE_ENTRY_PER_LINE;
/* prepare update command */
ind_table_index %= RSS_IND_TABLE_ENTRY_PER_LINE;
for (cnt = 0; cnt < RSS_IND_TABLE_ENTRY_PER_LINE; cnt ++)
{
if (cnt == ind_table_index)
{
rss_ind_entry[cnt] = ind_table_value;
rss_ind_mask[cnt] = 0xFFFF;
}
else
{
rss_ind_entry[cnt] = 0;
rss_ind_mask[cnt] = 0;
}
}
/* Update entry in HW*/
ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_ADDR, rss_addr);
reg_val = (u32*)rss_ind_mask;
ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK, reg_val[0]);
ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK + 4, reg_val[1]);
ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK + 8, reg_val[2]);
ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_MASK + 12, reg_val[3]);
reg_val = (u32*)rss_ind_entry;
ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA, reg_val[0]);
ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA + 4, reg_val[1]);
ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA + 8, reg_val[2]);
ecore_wr(p_hwfn, p_ptt, RSS_REG_RSS_RAM_DATA + 12, reg_val[3]);
}