/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2015-2019 Yandex LLC
* Copyright (c) 2015-2019 Andrey V. Elsukov <ae@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ipstealth.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/counter.h>
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/rmlock.h>
#include <sys/rwlock.h>
#include <sys/socket.h>
#include <sys/queue.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_pflog.h>
#include <net/pfil.h>
#include <net/netisr.h>
#include <net/route.h>
#include <net/route/nhop.h>
#include <netinet/in.h>
#include <netinet/in_fib.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/ip_fw.h>
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#include <netinet/ip_icmp.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <netinet6/in6_var.h>
#include <netinet6/in6_fib.h>
#include <netinet6/ip6_var.h>
#include <netinet6/ip_fw_nat64.h>
#include <netpfil/pf/pf.h>
#include <netpfil/ipfw/ip_fw_private.h>
#include <machine/in_cksum.h>
#include "ip_fw_nat64.h"
#include "nat64_translate.h"
typedef int (*nat64_output_t)(struct ifnet *, struct mbuf *,
struct sockaddr *, struct nat64_counters *, void *);
typedef int (*nat64_output_one_t)(struct mbuf *, struct nat64_counters *,
void *);
static struct nhop_object *nat64_find_route4(struct sockaddr_in *,
struct mbuf *);
static struct nhop_object *nat64_find_route6(struct sockaddr_in6 *,
struct mbuf *);
static int nat64_output_one(struct mbuf *, struct nat64_counters *, void *);
static int nat64_output(struct ifnet *, struct mbuf *, struct sockaddr *,
struct nat64_counters *, void *);
static int nat64_direct_output_one(struct mbuf *, struct nat64_counters *,
void *);
static int nat64_direct_output(struct ifnet *, struct mbuf *,
struct sockaddr *, struct nat64_counters *, void *);
struct nat64_methods {
nat64_output_t output;
nat64_output_one_t output_one;
};
static const struct nat64_methods nat64_netisr = {
.output = nat64_output,
.output_one = nat64_output_one
};
static const struct nat64_methods nat64_direct = {
.output = nat64_direct_output,
.output_one = nat64_direct_output_one
};
/* These variables should be initialized explicitly on module loading */
VNET_DEFINE_STATIC(const struct nat64_methods *, nat64out);
VNET_DEFINE_STATIC(const int *, nat64ipstealth);
VNET_DEFINE_STATIC(const int *, nat64ip6stealth);
#define V_nat64out VNET(nat64out)
#define V_nat64ipstealth VNET(nat64ipstealth)
#define V_nat64ip6stealth VNET(nat64ip6stealth)
static const int stealth_on = 1;
#ifndef IPSTEALTH
static const int stealth_off = 0;
#endif
void
nat64_set_output_method(int direct)
{
if (direct != 0) {
V_nat64out = &nat64_direct;
#ifdef IPSTEALTH
/* Honor corresponding variables, if IPSTEALTH is defined */
V_nat64ipstealth = &V_ipstealth;
V_nat64ip6stealth = &V_ip6stealth;
#else
/* otherwise we need to decrement HLIM/TTL for direct case */
V_nat64ipstealth = V_nat64ip6stealth = &stealth_off;
#endif
} else {
V_nat64out = &nat64_netisr;
/* Leave TTL/HLIM decrementing to forwarding code */
V_nat64ipstealth = V_nat64ip6stealth = &stealth_on;
}
}
int
nat64_get_output_method(void)
{
return (V_nat64out == &nat64_direct ? 1: 0);
}
static void
nat64_log(struct pfloghdr *logdata, struct mbuf *m, sa_family_t family)
{
logdata->dir = PF_OUT;
logdata->af = family;
ipfw_bpf_mtap2(logdata, PFLOG_HDRLEN, m);
}
static int
nat64_direct_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
struct nat64_counters *stats, void *logdata)
{
int error;
if (logdata != NULL)
nat64_log(logdata, m, dst->sa_family);
error = (*ifp->if_output)(ifp, m, dst, NULL);
if (error != 0)
NAT64STAT_INC(stats, oerrors);
return (error);
}
static int
nat64_direct_output_one(struct mbuf *m, struct nat64_counters *stats,
void *logdata)
{
struct nhop_object *nh4 = NULL;
struct nhop_object *nh6 = NULL;
struct sockaddr_in6 dst6;
struct sockaddr_in dst4;
struct sockaddr *dst;
struct ip6_hdr *ip6;
struct ip *ip4;
struct ifnet *ifp;
int error;
ip4 = mtod(m, struct ip *);
error = 0;
switch (ip4->ip_v) {
case IPVERSION:
dst4.sin_addr = ip4->ip_dst;
nh4 = nat64_find_route4(&dst4, m);
if (nh4 == NULL) {
NAT64STAT_INC(stats, noroute4);
error = EHOSTUNREACH;
} else {
ifp = nh4->nh_ifp;
dst = (struct sockaddr *)&dst4;
}
break;
case (IPV6_VERSION >> 4):
ip6 = mtod(m, struct ip6_hdr *);
dst6.sin6_addr = ip6->ip6_dst;
nh6 = nat64_find_route6(&dst6, m);
if (nh6 == NULL) {
NAT64STAT_INC(stats, noroute6);
error = EHOSTUNREACH;
} else {
ifp = nh6->nh_ifp;
dst = (struct sockaddr *)&dst6;
}
break;
default:
m_freem(m);
NAT64STAT_INC(stats, dropped);
DPRINTF(DP_DROPS, "dropped due to unknown IP version");
return (EAFNOSUPPORT);
}
if (error != 0) {
m_freem(m);
return (EHOSTUNREACH);
}
if (logdata != NULL)
nat64_log(logdata, m, dst->sa_family);
error = (*ifp->if_output)(ifp, m, dst, NULL);
if (error != 0)
NAT64STAT_INC(stats, oerrors);
return (error);
}
static int
nat64_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst,
struct nat64_counters *stats, void *logdata)
{
struct ip *ip4;
int ret, af;
ip4 = mtod(m, struct ip *);
switch (ip4->ip_v) {
case IPVERSION:
af = AF_INET;
ret = NETISR_IP;
break;
case (IPV6_VERSION >> 4):
af = AF_INET6;
ret = NETISR_IPV6;
break;
default:
m_freem(m);
NAT64STAT_INC(stats, dropped);
DPRINTF(DP_DROPS, "unknown IP version");
return (EAFNOSUPPORT);
}
if (logdata != NULL)
nat64_log(logdata, m, af);
if (m->m_pkthdr.rcvif == NULL)
m->m_pkthdr.rcvif = V_loif;
ret = netisr_queue(ret, m);
if (ret != 0)
NAT64STAT_INC(stats, oerrors);
return (ret);
}
static int
nat64_output_one(struct mbuf *m, struct nat64_counters *stats, void *logdata)
{
return (nat64_output(NULL, m, NULL, stats, logdata));
}
/*
* Check the given IPv6 prefix and length according to RFC6052:
* The prefixes can only have one of the following lengths:
* 32, 40, 48, 56, 64, or 96 (The Well-Known Prefix is 96 bits long).
* Returns zero on success, otherwise EINVAL.
*/
int
nat64_check_prefixlen(int length)
{
switch (length) {
case 32:
case 40:
case 48:
case 56:
case 64:
case 96:
return (0);
}
return (EINVAL);
}
int
nat64_check_prefix6(const struct in6_addr *prefix, int length)
{
if (nat64_check_prefixlen(length) != 0)
return (EINVAL);
/* Well-known prefix has 96 prefix length */
if (IN6_IS_ADDR_WKPFX(prefix) && length != 96)
return (EINVAL);
/* Bits 64 to 71 must be set to zero */
if (prefix->__u6_addr.__u6_addr8[8] != 0)
return (EINVAL);
/* Some extra checks */
if (IN6_IS_ADDR_MULTICAST(prefix) ||
IN6_IS_ADDR_UNSPECIFIED(prefix) ||
IN6_IS_ADDR_LOOPBACK(prefix))
return (EINVAL);
return (0);
}
int
nat64_check_private_ip4(const struct nat64_config *cfg, in_addr_t ia)
{
if (cfg->flags & NAT64_ALLOW_PRIVATE)
return (0);
/* WKPFX must not be used to represent non-global IPv4 addresses */
if (cfg->flags & NAT64_WKPFX) {
/* IN_PRIVATE */
if ((ia & htonl(0xff000000)) == htonl(0x0a000000) ||
(ia & htonl(0xfff00000)) == htonl(0xac100000) ||
(ia & htonl(0xffff0000)) == htonl(0xc0a80000))
return (1);
/*
* RFC 5735:
* 192.0.0.0/24 - reserved for IETF protocol assignments
* 192.88.99.0/24 - for use as 6to4 relay anycast addresses
* 198.18.0.0/15 - for use in benchmark tests
* 192.0.2.0/24, 198.51.100.0/24, 203.0.113.0/24 - for use
* in documentation and example code
*/
if ((ia & htonl(0xffffff00)) == htonl(0xc0000000) ||
(ia & htonl(0xffffff00)) == htonl(0xc0586300) ||
(ia & htonl(0xfffffe00)) == htonl(0xc6120000) ||
(ia & htonl(0xffffff00)) == htonl(0xc0000200) ||
(ia & htonl(0xfffffe00)) == htonl(0xc6336400) ||
(ia & htonl(0xffffff00)) == htonl(0xcb007100))
return (1);
}
return (0);
}
/*
* Embed @ia IPv4 address into @ip6 IPv6 address.
* Place to embedding determined from prefix length @plen.
*/
void
nat64_embed_ip4(struct in6_addr *ip6, int plen, in_addr_t ia)
{
switch (plen) {
case 32:
case 96:
ip6->s6_addr32[plen / 32] = ia;
break;
case 40:
case 48:
case 56:
/*
* Preserve prefix bits.
* Since suffix bits should be zero and reserved for future
* use, we just overwrite the whole word, where they are.
*/
ip6->s6_addr32[1] &= 0xffffffff << (32 - plen % 32);
#if BYTE_ORDER == BIG_ENDIAN
ip6->s6_addr32[1] |= ia >> (plen % 32);
ip6->s6_addr32[2] = ia << (24 - plen % 32);
#elif BYTE_ORDER == LITTLE_ENDIAN
ip6->s6_addr32[1] |= ia << (plen % 32);
ip6->s6_addr32[2] = ia >> (24 - plen % 32);
#endif
break;
case 64:
#if BYTE_ORDER == BIG_ENDIAN
ip6->s6_addr32[2] = ia >> 8;
ip6->s6_addr32[3] = ia << 24;
#elif BYTE_ORDER == LITTLE_ENDIAN
ip6->s6_addr32[2] = ia << 8;
ip6->s6_addr32[3] = ia >> 24;
#endif
break;
default:
panic("Wrong plen: %d", plen);
};
/*
* Bits 64 to 71 of the address are reserved for compatibility
* with the host identifier format defined in the IPv6 addressing
* architecture [RFC4291]. These bits MUST be set to zero.
*/
ip6->s6_addr8[8] = 0;
}
in_addr_t
nat64_extract_ip4(const struct in6_addr *ip6, int plen)
{
in_addr_t ia;
/*
* According to RFC 6052 p2.2:
* IPv4-embedded IPv6 addresses are composed of a variable-length
* prefix, the embedded IPv4 address, and a variable length suffix.
* The suffix bits are reserved for future extensions and SHOULD
* be set to zero.
*/
switch (plen) {
case 32:
if (ip6->s6_addr32[3] != 0 || ip6->s6_addr32[2] != 0)
goto badip6;
break;
case 40:
if (ip6->s6_addr32[3] != 0 ||
(ip6->s6_addr32[2] & htonl(0xff00ffff)) != 0)
goto badip6;
break;
case 48:
if (ip6->s6_addr32[3] != 0 ||
(ip6->s6_addr32[2] & htonl(0xff0000ff)) != 0)
goto badip6;
break;
case 56:
if (ip6->s6_addr32[3] != 0 || ip6->s6_addr8[8] != 0)
goto badip6;
break;
case 64:
if (ip6->s6_addr8[8] != 0 ||
(ip6->s6_addr32[3] & htonl(0x00ffffff)) != 0)
goto badip6;
};
switch (plen) {
case 32:
case 96:
ia = ip6->s6_addr32[plen / 32];
break;
case 40:
case 48:
case 56:
#if BYTE_ORDER == BIG_ENDIAN
ia = (ip6->s6_addr32[1] << (plen % 32)) |
(ip6->s6_addr32[2] >> (24 - plen % 32));
#elif BYTE_ORDER == LITTLE_ENDIAN
ia = (ip6->s6_addr32[1] >> (plen % 32)) |
(ip6->s6_addr32[2] << (24 - plen % 32));
#endif
break;
case 64:
#if BYTE_ORDER == BIG_ENDIAN
ia = (ip6->s6_addr32[2] << 8) | (ip6->s6_addr32[3] >> 24);
#elif BYTE_ORDER == LITTLE_ENDIAN
ia = (ip6->s6_addr32[2] >> 8) | (ip6->s6_addr32[3] << 24);
#endif
break;
default:
return (0);
};
if (nat64_check_ip4(ia) == 0)
return (ia);
DPRINTF(DP_GENERIC | DP_DROPS,
"invalid destination address: %08x", ia);
return (0);
badip6:
DPRINTF(DP_GENERIC | DP_DROPS, "invalid IPv4-embedded IPv6 address");
return (0);
}
/*
* According to RFC 1624 the equation for incremental checksum update is:
* HC' = ~(~HC + ~m + m') -- [Eqn. 3]
* HC' = HC - ~m - m' -- [Eqn. 4]
* So, when we are replacing IPv4 addresses to IPv6, we
* can assume, that new bytes previously were zeros, and vise versa -
* when we replacing IPv6 addresses to IPv4, now unused bytes become
* zeros. The payload length in pseudo header has bigger size, but one
* half of it should be zero. Using the equation 4 we get:
* HC' = HC - (~m0 + m0') -- m0 is first changed word
* HC' = (HC - (~m0 + m0')) - (~m1 + m1') -- m1 is second changed word
* HC' = HC - ~m0 - m0' - ~m1 - m1' - ... =
* = HC - sum(~m[i] + m'[i])
*
* The function result should be used as follows:
* IPv6 to IPv4: HC' = cksum_add(HC, result)
* IPv4 to IPv6: HC' = cksum_add(HC, ~result)
*/
static uint16_t
nat64_cksum_convert(struct ip6_hdr *ip6, struct ip *ip)
{
uint32_t sum;
uint16_t *p;
sum = ~ip->ip_src.s_addr >> 16;
sum += ~ip->ip_src.s_addr & 0xffff;
sum += ~ip->ip_dst.s_addr >> 16;
sum += ~ip->ip_dst.s_addr & 0xffff;
for (p = (uint16_t *)&ip6->ip6_src;
p < (uint16_t *)(&ip6->ip6_src + 2); p++)
sum += *p;
while (sum >> 16)
sum = (sum & 0xffff) + (sum >> 16);
return (sum);
}
static void
nat64_init_ip4hdr(const struct ip6_hdr *ip6, const struct ip6_frag *frag,
uint16_t plen, uint8_t proto, struct ip *ip)
{
/* assume addresses are already initialized */
ip->ip_v = IPVERSION;
ip->ip_hl = sizeof(*ip) >> 2;
ip->ip_tos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
ip->ip_len = htons(sizeof(*ip) + plen);
ip->ip_ttl = ip6->ip6_hlim;
if (*V_nat64ip6stealth == 0)
ip->ip_ttl -= IPV6_HLIMDEC;
ip->ip_sum = 0;
ip->ip_p = (proto == IPPROTO_ICMPV6) ? IPPROTO_ICMP: proto;
ip_fillid(ip);
if (frag != NULL) {
ip->ip_off = htons(ntohs(frag->ip6f_offlg) >> 3);
if (frag->ip6f_offlg & IP6F_MORE_FRAG)
ip->ip_off |= htons(IP_MF);
} else {
ip->ip_off = htons(IP_DF);
}
ip->ip_sum = in_cksum_hdr(ip);
}
#define FRAGSZ(mtu) ((mtu) - sizeof(struct ip6_hdr) - sizeof(struct ip6_frag))
static NAT64NOINLINE int
nat64_fragment6(struct nat64_counters *stats, struct ip6_hdr *ip6,
struct mbufq *mq, struct mbuf *m, uint32_t mtu, uint16_t ip_id,
uint16_t ip_off)
{
struct ip6_frag ip6f;
struct mbuf *n;
uint16_t hlen, len, offset;
int plen;
plen = ntohs(ip6->ip6_plen);
hlen = sizeof(struct ip6_hdr);
/* Fragmentation isn't needed */
if (ip_off == 0 && plen <= mtu - hlen) {
M_PREPEND(m, hlen, M_NOWAIT);
if (m == NULL) {
NAT64STAT_INC(stats, nomem);
return (ENOMEM);
}
bcopy(ip6, mtod(m, void *), hlen);
if (mbufq_enqueue(mq, m) != 0) {
m_freem(m);
NAT64STAT_INC(stats, dropped);
DPRINTF(DP_DROPS, "dropped due to mbufq overflow");
return (ENOBUFS);
}
return (0);
}
hlen += sizeof(struct ip6_frag);
ip6f.ip6f_reserved = 0;
ip6f.ip6f_nxt = ip6->ip6_nxt;
ip6->ip6_nxt = IPPROTO_FRAGMENT;
if (ip_off != 0) {
/*
* We have got an IPv4 fragment.
* Use offset value and ip_id from original fragment.
*/
ip6f.ip6f_ident = htonl(ntohs(ip_id));
offset = (ntohs(ip_off) & IP_OFFMASK) << 3;
NAT64STAT_INC(stats, ifrags);
} else {
/* The packet size exceeds interface MTU */
ip6f.ip6f_ident = htonl(ip6_randomid());
offset = 0; /* First fragment*/
}
while (plen > 0 && m != NULL) {
n = NULL;
len = FRAGSZ(mtu) & ~7;
if (len > plen)
len = plen;
ip6->ip6_plen = htons(len + sizeof(ip6f));
ip6f.ip6f_offlg = ntohs(offset);
if (len < plen || (ip_off & htons(IP_MF)) != 0)
ip6f.ip6f_offlg |= IP6F_MORE_FRAG;
offset += len;
plen -= len;
if (plen > 0) {
n = m_split(m, len, M_NOWAIT);
if (n == NULL)
goto fail;
}
M_PREPEND(m, hlen, M_NOWAIT);
if (m == NULL)
goto fail;
bcopy(ip6, mtod(m, void *), sizeof(struct ip6_hdr));
bcopy(&ip6f, mtodo(m, sizeof(struct ip6_hdr)),
sizeof(struct ip6_frag));
if (mbufq_enqueue(mq, m) != 0)
goto fail;
m = n;
}
NAT64STAT_ADD(stats, ofrags, mbufq_len(mq));
return (0);
fail:
if (m != NULL)
m_freem(m);
if (n != NULL)
m_freem(n);
mbufq_drain(mq);
NAT64STAT_INC(stats, nomem);
return (ENOMEM);
}
static struct nhop_object *
nat64_find_route6(struct sockaddr_in6 *dst, struct mbuf *m)
{
struct nhop_object *nh;
NET_EPOCH_ASSERT();
nh = fib6_lookup(M_GETFIB(m), &dst->sin6_addr, 0, 0, 0);
if (nh == NULL)
return NULL;
if (nh->nh_flags & (NHF_BLACKHOLE | NHF_REJECT))
return NULL;
/*
* XXX: we need to use destination address with embedded scope
* zone id, because LLTABLE uses such form of addresses for lookup.
*/
dst->sin6_family = AF_INET6;
dst->sin6_len = sizeof(*dst);
dst->sin6_addr = ifatoia6(nh->nh_ifa)->ia_addr.sin6_addr;
if (IN6_IS_SCOPE_LINKLOCAL(&dst->sin6_addr))
dst->sin6_addr.s6_addr16[1] =
htons(nh->nh_ifp->if_index & 0xffff);
dst->sin6_port = 0;
dst->sin6_scope_id = 0;
dst->sin6_flowinfo = 0;
return nh;
}
#define NAT64_ICMP6_PLEN 64
static NAT64NOINLINE void
nat64_icmp6_reflect(struct mbuf *m, uint8_t type, uint8_t code, uint32_t mtu,
struct nat64_counters *stats, void *logdata)
{
struct icmp6_hdr *icmp6;
struct ip6_hdr *ip6, *oip6;
struct mbuf *n;
int len, plen, proto;
len = 0;
proto = nat64_getlasthdr(m, &len);
if (proto < 0) {
DPRINTF(DP_DROPS, "mbuf isn't contigious");
goto freeit;
}
/*
* Do not send ICMPv6 in reply to ICMPv6 errors.
*/
if (proto == IPPROTO_ICMPV6) {
if (m->m_len < len + sizeof(*icmp6)) {
DPRINTF(DP_DROPS, "mbuf isn't contigious");
goto freeit;
}
icmp6 = mtodo(m, len);
if (icmp6->icmp6_type < ICMP6_ECHO_REQUEST ||
icmp6->icmp6_type == ND_REDIRECT) {
DPRINTF(DP_DROPS, "do not send ICMPv6 in reply to "
"ICMPv6 errors");
goto freeit;
}
/*
* If there are extra headers between IPv6 and ICMPv6,
* strip off them.
*/
if (len > sizeof(struct ip6_hdr)) {
/*
* NOTE: ipfw_chk already did m_pullup() and it is
* expected that data is contigious from the start
* of IPv6 header up to the end of ICMPv6 header.
*/
bcopy(mtod(m, caddr_t),
mtodo(m, len - sizeof(struct ip6_hdr)),
sizeof(struct ip6_hdr));
m_adj(m, len - sizeof(struct ip6_hdr));
}
}
/*
if (icmp6_ratelimit(&ip6->ip6_src, type, code))
goto freeit;
*/
ip6 = mtod(m, struct ip6_hdr *);
switch (type) {
case ICMP6_DST_UNREACH:
case ICMP6_PACKET_TOO_BIG:
case ICMP6_TIME_EXCEEDED:
case ICMP6_PARAM_PROB:
break;
default:
goto freeit;
}
/* Calculate length of ICMPv6 payload */
len = (m->m_pkthdr.len > NAT64_ICMP6_PLEN) ? NAT64_ICMP6_PLEN:
m->m_pkthdr.len;
/* Create new ICMPv6 datagram */
plen = len + sizeof(struct icmp6_hdr);
n = m_get2(sizeof(struct ip6_hdr) + plen + max_hdr, M_NOWAIT,
MT_HEADER, M_PKTHDR);
if (n == NULL) {
NAT64STAT_INC(stats, nomem);
m_freem(m);
return;
}
/*
* Move pkthdr from original mbuf. We should have initialized some
* fields, because we can reinject this mbuf to netisr and it will
* go trough input path (it requires at least rcvif should be set).
* Also do M_ALIGN() to reduce chances of need to allocate new mbuf
* in the chain, when we will do M_PREPEND() or make some type of
* tunneling.
*/
m_move_pkthdr(n, m);
M_ALIGN(n, sizeof(struct ip6_hdr) + plen + max_hdr);
n->m_len = n->m_pkthdr.len = sizeof(struct ip6_hdr) + plen;
oip6 = mtod(n, struct ip6_hdr *);
/*
* Make IPv6 source address selection for reflected datagram.
* nat64_check_ip6() doesn't allow scoped addresses, therefore
* we use zero scopeid.
*/
if (in6_selectsrc_addr(M_GETFIB(n), &ip6->ip6_src, 0,
n->m_pkthdr.rcvif, &oip6->ip6_src, NULL) != 0) {
/*
* Failed to find proper source address, drop the packet.
*/
m_freem(n);
goto freeit;
}
oip6->ip6_dst = ip6->ip6_src;
oip6->ip6_nxt = IPPROTO_ICMPV6;
oip6->ip6_flow = 0;
oip6->ip6_vfc |= IPV6_VERSION;
oip6->ip6_hlim = V_ip6_defhlim;
oip6->ip6_plen = htons(plen);
icmp6 = mtodo(n, sizeof(struct ip6_hdr));
icmp6->icmp6_cksum = 0;
icmp6->icmp6_type = type;
icmp6->icmp6_code = code;
icmp6->icmp6_mtu = htonl(mtu);
m_copydata(m, 0, len, mtodo(n, sizeof(struct ip6_hdr) +
sizeof(struct icmp6_hdr)));
icmp6->icmp6_cksum = in6_cksum(n, IPPROTO_ICMPV6,
sizeof(struct ip6_hdr), plen);
m_freem(m);
V_nat64out->output_one(n, stats, logdata);
return;
freeit:
NAT64STAT_INC(stats, dropped);
m_freem(m);
}
static struct nhop_object *
nat64_find_route4(struct sockaddr_in *dst, struct mbuf *m)
{
struct nhop_object *nh;
NET_EPOCH_ASSERT();
nh = fib4_lookup(M_GETFIB(m), dst->sin_addr, 0, 0, 0);
if (nh == NULL)
return NULL;
if (nh->nh_flags & (NHF_BLACKHOLE | NHF_BROADCAST | NHF_REJECT))
return NULL;
dst->sin_family = AF_INET;
dst->sin_len = sizeof(*dst);
dst->sin_addr = IA_SIN(nh->nh_ifa)->sin_addr;
dst->sin_port = 0;
return nh;
}
#define NAT64_ICMP_PLEN 64
static NAT64NOINLINE void
nat64_icmp_reflect(struct mbuf *m, uint8_t type,
uint8_t code, uint16_t mtu, struct nat64_counters *stats, void *logdata)
{
struct icmp *icmp;
struct ip *ip, *oip;
struct mbuf *n;
int len, plen;
ip = mtod(m, struct ip *);
/* Do not send ICMP error if packet is not the first fragment */
if (ip->ip_off & ~ntohs(IP_MF|IP_DF)) {
DPRINTF(DP_DROPS, "not first fragment");
goto freeit;
}
/* Do not send ICMP in reply to ICMP errors */
if (ip->ip_p == IPPROTO_ICMP) {
if (m->m_len < (ip->ip_hl << 2)) {
DPRINTF(DP_DROPS, "mbuf isn't contigious");
goto freeit;
}
icmp = mtodo(m, ip->ip_hl << 2);
if (!ICMP_INFOTYPE(icmp->icmp_type)) {
DPRINTF(DP_DROPS, "do not send ICMP in reply to "
"ICMP errors");
goto freeit;
}
}
switch (type) {
case ICMP_UNREACH:
case ICMP_TIMXCEED:
case ICMP_PARAMPROB:
break;
default:
goto freeit;
}
/* Calculate length of ICMP payload */
len = (m->m_pkthdr.len > NAT64_ICMP_PLEN) ? (ip->ip_hl << 2) + 8:
m->m_pkthdr.len;
/* Create new ICMPv4 datagram */
plen = len + sizeof(struct icmphdr) + sizeof(uint32_t);
n = m_get2(sizeof(struct ip) + plen + max_hdr, M_NOWAIT,
MT_HEADER, M_PKTHDR);
if (n == NULL) {
NAT64STAT_INC(stats, nomem);
m_freem(m);
return;
}
m_move_pkthdr(n, m);
M_ALIGN(n, sizeof(struct ip) + plen + max_hdr);
n->m_len = n->m_pkthdr.len = sizeof(struct ip) + plen;
oip = mtod(n, struct ip *);
oip->ip_v = IPVERSION;
oip->ip_hl = sizeof(struct ip) >> 2;
oip->ip_tos = 0;
oip->ip_len = htons(n->m_pkthdr.len);
oip->ip_ttl = V_ip_defttl;
oip->ip_p = IPPROTO_ICMP;
ip_fillid(oip);
oip->ip_off = htons(IP_DF);
oip->ip_src = ip->ip_dst;
oip->ip_dst = ip->ip_src;
oip->ip_sum = 0;
oip->ip_sum = in_cksum_hdr(oip);
icmp = mtodo(n, sizeof(struct ip));
icmp->icmp_type = type;
icmp->icmp_code = code;
icmp->icmp_cksum = 0;
icmp->icmp_pmvoid = 0;
icmp->icmp_nextmtu = htons(mtu);
m_copydata(m, 0, len, mtodo(n, sizeof(struct ip) +
sizeof(struct icmphdr) + sizeof(uint32_t)));
icmp->icmp_cksum = in_cksum_skip(n, sizeof(struct ip) + plen,
sizeof(struct ip));
m_freem(m);
V_nat64out->output_one(n, stats, logdata);
return;
freeit:
NAT64STAT_INC(stats, dropped);
m_freem(m);
}
/* Translate ICMP echo request/reply into ICMPv6 */
static void
nat64_icmp_handle_echo(struct ip6_hdr *ip6, struct icmp6_hdr *icmp6,
uint16_t id, uint8_t type)
{
uint16_t old;
old = *(uint16_t *)icmp6; /* save type+code in one word */
icmp6->icmp6_type = type;
/* Reflect ICMPv6 -> ICMPv4 type translation in the cksum */
icmp6->icmp6_cksum = cksum_adjust(icmp6->icmp6_cksum,
old, *(uint16_t *)icmp6);
if (id != 0) {
old = icmp6->icmp6_id;
icmp6->icmp6_id = id;
/* Reflect ICMP id translation in the cksum */
icmp6->icmp6_cksum = cksum_adjust(icmp6->icmp6_cksum,
old, id);
}
/* Reflect IPv6 pseudo header in the cksum */
icmp6->icmp6_cksum = ~in6_cksum_pseudo(ip6, ntohs(ip6->ip6_plen),
IPPROTO_ICMPV6, ~icmp6->icmp6_cksum);
}
static NAT64NOINLINE struct mbuf *
nat64_icmp_translate(struct mbuf *m, struct ip6_hdr *ip6, uint16_t icmpid,
int offset, struct nat64_config *cfg)
{
struct ip ip;
struct icmp *icmp;
struct tcphdr *tcp;
struct udphdr *udp;
struct ip6_hdr *eip6;
struct mbuf *n;
uint32_t mtu;
int len, hlen, plen;
uint8_t type, code;
if (m->m_len < offset + ICMP_MINLEN)
m = m_pullup(m, offset + ICMP_MINLEN);
if (m == NULL) {
NAT64STAT_INC(&cfg->stats, nomem);
return (m);
}
mtu = 0;
icmp = mtodo(m, offset);
/* RFC 7915 p4.2 */
switch (icmp->icmp_type) {
case ICMP_ECHOREPLY:
type = ICMP6_ECHO_REPLY;
code = 0;
break;
case ICMP_UNREACH:
type = ICMP6_DST_UNREACH;
switch (icmp->icmp_code) {
case ICMP_UNREACH_NET:
case ICMP_UNREACH_HOST:
case ICMP_UNREACH_SRCFAIL:
case ICMP_UNREACH_NET_UNKNOWN:
case ICMP_UNREACH_HOST_UNKNOWN:
case ICMP_UNREACH_TOSNET:
case ICMP_UNREACH_TOSHOST:
code = ICMP6_DST_UNREACH_NOROUTE;
break;
case ICMP_UNREACH_PROTOCOL:
type = ICMP6_PARAM_PROB;
code = ICMP6_PARAMPROB_NEXTHEADER;
break;
case ICMP_UNREACH_PORT:
code = ICMP6_DST_UNREACH_NOPORT;
break;
case ICMP_UNREACH_NEEDFRAG:
type = ICMP6_PACKET_TOO_BIG;
code = 0;
/* XXX: needs an additional look */
mtu = max(IPV6_MMTU, ntohs(icmp->icmp_nextmtu) + 20);
break;
case ICMP_UNREACH_NET_PROHIB:
case ICMP_UNREACH_HOST_PROHIB:
case ICMP_UNREACH_FILTER_PROHIB:
case ICMP_UNREACH_PRECEDENCE_CUTOFF:
code = ICMP6_DST_UNREACH_ADMIN;
break;
default:
DPRINTF(DP_DROPS, "Unsupported ICMP type %d, code %d",
icmp->icmp_type, icmp->icmp_code);
goto freeit;
}
break;
case ICMP_TIMXCEED:
type = ICMP6_TIME_EXCEEDED;
code = icmp->icmp_code;
break;
case ICMP_ECHO:
type = ICMP6_ECHO_REQUEST;
code = 0;
break;
case ICMP_PARAMPROB:
type = ICMP6_PARAM_PROB;
switch (icmp->icmp_code) {
case ICMP_PARAMPROB_ERRATPTR:
case ICMP_PARAMPROB_LENGTH:
code = ICMP6_PARAMPROB_HEADER;
switch (icmp->icmp_pptr) {
case 0: /* Version/IHL */
case 1: /* Type Of Service */
mtu = icmp->icmp_pptr;
break;
case 2: /* Total Length */
case 3: mtu = 4; /* Payload Length */
break;
case 8: /* Time to Live */
mtu = 7; /* Hop Limit */
break;
case 9: /* Protocol */
mtu = 6; /* Next Header */
break;
case 12: /* Source address */
case 13:
case 14:
case 15:
mtu = 8;
break;
case 16: /* Destination address */
case 17:
case 18:
case 19:
mtu = 24;
break;
default: /* Silently drop */
DPRINTF(DP_DROPS, "Unsupported ICMP type %d,"
" code %d, pptr %d", icmp->icmp_type,
icmp->icmp_code, icmp->icmp_pptr);
goto freeit;
}
break;
default:
DPRINTF(DP_DROPS, "Unsupported ICMP type %d,"
" code %d, pptr %d", icmp->icmp_type,
icmp->icmp_code, icmp->icmp_pptr);
goto freeit;
}
break;
default:
DPRINTF(DP_DROPS, "Unsupported ICMP type %d, code %d",
icmp->icmp_type, icmp->icmp_code);
goto freeit;
}
/*
* For echo request/reply we can use original payload,
* but we need adjust icmp_cksum, because ICMPv6 cksum covers
* IPv6 pseudo header and ICMPv6 types differs from ICMPv4.
*/
if (type == ICMP6_ECHO_REQUEST || type == ICMP6_ECHO_REPLY) {
nat64_icmp_handle_echo(ip6, ICMP6(icmp), icmpid, type);
return (m);
}
/*
* For other types of ICMP messages we need to translate inner
* IPv4 header to IPv6 header.
* Assume ICMP src is the same as payload dst
* E.g. we have ( GWsrc1 , NATIP1 ) in outer header
* and ( NATIP1, Hostdst1 ) in ICMP copy header.
* In that case, we already have map for NATIP1 and GWsrc1.
* The only thing we need is to copy IPv6 map prefix to
* Hostdst1.
*/
hlen = offset + ICMP_MINLEN;
if (m->m_pkthdr.len < hlen + sizeof(struct ip) + ICMP_MINLEN) {
DPRINTF(DP_DROPS, "Message is too short %d",
m->m_pkthdr.len);
goto freeit;
}
m_copydata(m, hlen, sizeof(struct ip), (char *)&ip);
if (ip.ip_v != IPVERSION) {
DPRINTF(DP_DROPS, "Wrong IP version %d", ip.ip_v);
goto freeit;
}
hlen += ip.ip_hl << 2; /* Skip inner IP header */
if (nat64_check_ip4(ip.ip_src.s_addr) != 0 ||
nat64_check_ip4(ip.ip_dst.s_addr) != 0 ||
nat64_check_private_ip4(cfg, ip.ip_src.s_addr) != 0 ||
nat64_check_private_ip4(cfg, ip.ip_dst.s_addr) != 0) {
DPRINTF(DP_DROPS, "IP addresses checks failed %04x -> %04x",
ntohl(ip.ip_src.s_addr), ntohl(ip.ip_dst.s_addr));
goto freeit;
}
if (m->m_pkthdr.len < hlen + ICMP_MINLEN) {
DPRINTF(DP_DROPS, "Message is too short %d",
m->m_pkthdr.len);
goto freeit;
}
#if 0
/*
* Check that inner source matches the outer destination.
* XXX: We need some method to convert IPv4 into IPv6 address here,
* and compare IPv6 addresses.
*/
if (ip.ip_src.s_addr != nat64_get_ip4(&ip6->ip6_dst)) {
DPRINTF(DP_GENERIC, "Inner source doesn't match destination ",
"%04x vs %04x", ip.ip_src.s_addr,
nat64_get_ip4(&ip6->ip6_dst));
goto freeit;
}
#endif
/*
* Create new mbuf for ICMPv6 datagram.
* NOTE: len is data length just after inner IP header.
*/
len = m->m_pkthdr.len - hlen;
if (sizeof(struct ip6_hdr) +
sizeof(struct icmp6_hdr) + len > NAT64_ICMP6_PLEN)
len = NAT64_ICMP6_PLEN - sizeof(struct icmp6_hdr) -
sizeof(struct ip6_hdr);
plen = sizeof(struct icmp6_hdr) + sizeof(struct ip6_hdr) + len;
n = m_get2(offset + plen + max_hdr, M_NOWAIT, MT_HEADER, M_PKTHDR);
if (n == NULL) {
NAT64STAT_INC(&cfg->stats, nomem);
m_freem(m);
return (NULL);
}
m_move_pkthdr(n, m);
M_ALIGN(n, offset + plen + max_hdr);
n->m_len = n->m_pkthdr.len = offset + plen;
/* Adjust ip6_plen in outer header */
ip6->ip6_plen = htons(plen);
/* Construct new inner IPv6 header */
eip6 = mtodo(n, offset + sizeof(struct icmp6_hdr));
eip6->ip6_src = ip6->ip6_dst;
/* Use the same prefix that we have in outer header */
eip6->ip6_dst = ip6->ip6_src;
MPASS(cfg->flags & NAT64_PLATPFX);
nat64_embed_ip4(&eip6->ip6_dst, cfg->plat_plen, ip.ip_dst.s_addr);
eip6->ip6_flow = htonl(ip.ip_tos << 20);
eip6->ip6_vfc |= IPV6_VERSION;
eip6->ip6_hlim = ip.ip_ttl;
eip6->ip6_plen = htons(ntohs(ip.ip_len) - (ip.ip_hl << 2));
eip6->ip6_nxt = (ip.ip_p == IPPROTO_ICMP) ? IPPROTO_ICMPV6: ip.ip_p;
m_copydata(m, hlen, len, (char *)(eip6 + 1));
/*
* We need to translate source port in the inner ULP header,
* and adjust ULP checksum.
*/
switch (ip.ip_p) {
case IPPROTO_TCP:
if (len < offsetof(struct tcphdr, th_sum))
break;
tcp = TCP(eip6 + 1);
if (icmpid != 0) {
tcp->th_sum = cksum_adjust(tcp->th_sum,
tcp->th_sport, icmpid);
tcp->th_sport = icmpid;
}
tcp->th_sum = cksum_add(tcp->th_sum,
~nat64_cksum_convert(eip6, &ip));
break;
case IPPROTO_UDP:
if (len < offsetof(struct udphdr, uh_sum))
break;
udp = UDP(eip6 + 1);
if (icmpid != 0) {
udp->uh_sum = cksum_adjust(udp->uh_sum,
udp->uh_sport, icmpid);
udp->uh_sport = icmpid;
}
udp->uh_sum = cksum_add(udp->uh_sum,
~nat64_cksum_convert(eip6, &ip));
break;
case IPPROTO_ICMP:
/*
* Check if this is an ICMP error message for echo request
* that we sent. I.e. ULP in the data containing invoking
* packet is IPPROTO_ICMP and its type is ICMP_ECHO.
*/
icmp = (struct icmp *)(eip6 + 1);
if (icmp->icmp_type != ICMP_ECHO) {
m_freem(n);
goto freeit;
}
/*
* For our client this original datagram should looks
* like it was ICMPv6 datagram with type ICMP6_ECHO_REQUEST.
* Thus we need adjust icmp_cksum and convert type from
* ICMP_ECHO to ICMP6_ECHO_REQUEST.
*/
nat64_icmp_handle_echo(eip6, ICMP6(icmp), icmpid,
ICMP6_ECHO_REQUEST);
}
m_freem(m);
/* Convert ICMPv4 into ICMPv6 header */
icmp = mtodo(n, offset);
ICMP6(icmp)->icmp6_type = type;
ICMP6(icmp)->icmp6_code = code;
ICMP6(icmp)->icmp6_mtu = htonl(mtu);
ICMP6(icmp)->icmp6_cksum = 0;
ICMP6(icmp)->icmp6_cksum = cksum_add(
~in6_cksum_pseudo(ip6, plen, IPPROTO_ICMPV6, 0),
in_cksum_skip(n, n->m_pkthdr.len, offset));
return (n);
freeit:
m_freem(m);
NAT64STAT_INC(&cfg->stats, dropped);
return (NULL);
}
int
nat64_getlasthdr(struct mbuf *m, int *offset)
{
struct ip6_hdr *ip6;
struct ip6_hbh *hbh;
int proto, hlen;
if (offset != NULL)
hlen = *offset;
else
hlen = 0;
if (m->m_len < hlen + sizeof(*ip6))
return (-1);
ip6 = mtodo(m, hlen);
hlen += sizeof(*ip6);
proto = ip6->ip6_nxt;
/* Skip extension headers */
while (proto == IPPROTO_HOPOPTS || proto == IPPROTO_ROUTING ||
proto == IPPROTO_DSTOPTS) {
hbh = mtodo(m, hlen);
/*
* We expect mbuf has contigious data up to
* upper level header.
*/
if (m->m_len < hlen)
return (-1);
/*
* We doesn't support Jumbo payload option,
* so return error.
*/
if (proto == IPPROTO_HOPOPTS && ip6->ip6_plen == 0)
return (-1);
proto = hbh->ip6h_nxt;
hlen += (hbh->ip6h_len + 1) << 3;
}
if (offset != NULL)
*offset = hlen;
return (proto);
}
int
nat64_do_handle_ip4(struct mbuf *m, struct in6_addr *saddr,
struct in6_addr *daddr, uint16_t lport, struct nat64_config *cfg,
void *logdata)
{
struct nhop_object *nh;
struct ip6_hdr ip6;
struct sockaddr_in6 dst;
struct ip *ip;
struct mbufq mq;
uint16_t ip_id, ip_off;
uint16_t *csum;
int plen, hlen;
uint8_t proto;
ip = mtod(m, struct ip*);
if (*V_nat64ipstealth == 0 && ip->ip_ttl <= IPTTLDEC) {
nat64_icmp_reflect(m, ICMP_TIMXCEED,
ICMP_TIMXCEED_INTRANS, 0, &cfg->stats, logdata);
return (NAT64RETURN);
}
ip6.ip6_dst = *daddr;
ip6.ip6_src = *saddr;
hlen = ip->ip_hl << 2;
plen = ntohs(ip->ip_len) - hlen;
proto = ip->ip_p;
/* Save ip_id and ip_off, both are in network byte order */
ip_id = ip->ip_id;
ip_off = ip->ip_off & htons(IP_OFFMASK | IP_MF);
/* Fragment length must be multiple of 8 octets */
if ((ip->ip_off & htons(IP_MF)) != 0 && (plen & 0x7) != 0) {
nat64_icmp_reflect(m, ICMP_PARAMPROB,
ICMP_PARAMPROB_LENGTH, 0, &cfg->stats, logdata);
return (NAT64RETURN);
}
/* Fragmented ICMP is unsupported */
if (proto == IPPROTO_ICMP && ip_off != 0) {
DPRINTF(DP_DROPS, "dropped due to fragmented ICMP");
NAT64STAT_INC(&cfg->stats, dropped);
return (NAT64MFREE);
}
dst.sin6_addr = ip6.ip6_dst;
nh = nat64_find_route6(&dst, m);
if (nh == NULL) {
NAT64STAT_INC(&cfg->stats, noroute6);
nat64_icmp_reflect(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0,
&cfg->stats, logdata);
return (NAT64RETURN);
}
if (nh->nh_mtu < plen + sizeof(ip6) &&
(ip->ip_off & htons(IP_DF)) != 0) {
nat64_icmp_reflect(m, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG,
FRAGSZ(nh->nh_mtu) + sizeof(struct ip), &cfg->stats, logdata);
return (NAT64RETURN);
}
ip6.ip6_flow = htonl(ip->ip_tos << 20);
ip6.ip6_vfc |= IPV6_VERSION;
ip6.ip6_hlim = ip->ip_ttl;
if (*V_nat64ipstealth == 0)
ip6.ip6_hlim -= IPTTLDEC;
ip6.ip6_plen = htons(plen);
ip6.ip6_nxt = (proto == IPPROTO_ICMP) ? IPPROTO_ICMPV6: proto;
/* Handle delayed checksums if needed. */
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
in_delayed_cksum(m);
m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
}
/* Convert checksums. */
switch (proto) {
case IPPROTO_TCP:
csum = &TCP(mtodo(m, hlen))->th_sum;
if (lport != 0) {
struct tcphdr *tcp = TCP(mtodo(m, hlen));
*csum = cksum_adjust(*csum, tcp->th_dport, lport);
tcp->th_dport = lport;
}
*csum = cksum_add(*csum, ~nat64_cksum_convert(&ip6, ip));
break;
case IPPROTO_UDP:
csum = &UDP(mtodo(m, hlen))->uh_sum;
if (lport != 0) {
struct udphdr *udp = UDP(mtodo(m, hlen));
*csum = cksum_adjust(*csum, udp->uh_dport, lport);
udp->uh_dport = lport;
}
*csum = cksum_add(*csum, ~nat64_cksum_convert(&ip6, ip));
break;
case IPPROTO_ICMP:
m = nat64_icmp_translate(m, &ip6, lport, hlen, cfg);
if (m == NULL) /* stats already accounted */
return (NAT64RETURN);
}
m_adj(m, hlen);
mbufq_init(&mq, 255);
nat64_fragment6(&cfg->stats, &ip6, &mq, m, nh->nh_mtu, ip_id, ip_off);
while ((m = mbufq_dequeue(&mq)) != NULL) {
if (V_nat64out->output(nh->nh_ifp, m, (struct sockaddr *)&dst,
&cfg->stats, logdata) != 0)
break;
NAT64STAT_INC(&cfg->stats, opcnt46);
}
mbufq_drain(&mq);
return (NAT64RETURN);
}
int
nat64_handle_icmp6(struct mbuf *m, int hlen, uint32_t aaddr, uint16_t aport,
struct nat64_config *cfg, void *logdata)
{
struct ip ip;
struct icmp6_hdr *icmp6;
struct ip6_frag *ip6f;
struct ip6_hdr *ip6, *ip6i;
uint32_t mtu;
int plen, proto;
uint8_t type, code;
if (hlen == 0) {
ip6 = mtod(m, struct ip6_hdr *);
if (nat64_check_ip6(&ip6->ip6_src) != 0 ||
nat64_check_ip6(&ip6->ip6_dst) != 0)
return (NAT64SKIP);
proto = nat64_getlasthdr(m, &hlen);
if (proto != IPPROTO_ICMPV6) {
DPRINTF(DP_DROPS,
"dropped due to mbuf isn't contigious");
NAT64STAT_INC(&cfg->stats, dropped);
return (NAT64MFREE);
}
}
/*
* Translate ICMPv6 type and code to ICMPv4 (RFC7915).
* NOTE: ICMPv6 echo handled by nat64_do_handle_ip6().
*/
icmp6 = mtodo(m, hlen);
mtu = 0;
switch (icmp6->icmp6_type) {
case ICMP6_DST_UNREACH:
type = ICMP_UNREACH;
switch (icmp6->icmp6_code) {
case ICMP6_DST_UNREACH_NOROUTE:
case ICMP6_DST_UNREACH_BEYONDSCOPE:
case ICMP6_DST_UNREACH_ADDR:
code = ICMP_UNREACH_HOST;
break;
case ICMP6_DST_UNREACH_ADMIN:
code = ICMP_UNREACH_HOST_PROHIB;
break;
case ICMP6_DST_UNREACH_NOPORT:
code = ICMP_UNREACH_PORT;
break;
default:
DPRINTF(DP_DROPS, "Unsupported ICMPv6 type %d,"
" code %d", icmp6->icmp6_type,
icmp6->icmp6_code);
NAT64STAT_INC(&cfg->stats, dropped);
return (NAT64MFREE);
}
break;
case ICMP6_PACKET_TOO_BIG:
type = ICMP_UNREACH;
code = ICMP_UNREACH_NEEDFRAG;
mtu = ntohl(icmp6->icmp6_mtu);
if (mtu < IPV6_MMTU) {
DPRINTF(DP_DROPS, "Wrong MTU %d in ICMPv6 type %d,"
" code %d", mtu, icmp6->icmp6_type,
icmp6->icmp6_code);
NAT64STAT_INC(&cfg->stats, dropped);
return (NAT64MFREE);
}
/*
* Adjust MTU to reflect difference between
* IPv6 an IPv4 headers.
*/
mtu -= sizeof(struct ip6_hdr) - sizeof(struct ip);
break;
case ICMP6_TIME_EXCEEDED:
type = ICMP_TIMXCEED;
code = icmp6->icmp6_code;
break;
case ICMP6_PARAM_PROB:
switch (icmp6->icmp6_code) {
case ICMP6_PARAMPROB_HEADER:
type = ICMP_PARAMPROB;
code = ICMP_PARAMPROB_ERRATPTR;
mtu = ntohl(icmp6->icmp6_pptr);
switch (mtu) {
case 0: /* Version/Traffic Class */
case 1: /* Traffic Class/Flow Label */
break;
case 4: /* Payload Length */
case 5:
mtu = 2;
break;
case 6: /* Next Header */
mtu = 9;
break;
case 7: /* Hop Limit */
mtu = 8;
break;
default:
if (mtu >= 8 && mtu <= 23) {
mtu = 12; /* Source address */
break;
}
if (mtu >= 24 && mtu <= 39) {
mtu = 16; /* Destination address */
break;
}
DPRINTF(DP_DROPS, "Unsupported ICMPv6 type %d,"
" code %d, pptr %d", icmp6->icmp6_type,
icmp6->icmp6_code, mtu);
NAT64STAT_INC(&cfg->stats, dropped);
return (NAT64MFREE);
}
case ICMP6_PARAMPROB_NEXTHEADER:
type = ICMP_UNREACH;
code = ICMP_UNREACH_PROTOCOL;
break;
default:
DPRINTF(DP_DROPS, "Unsupported ICMPv6 type %d,"
" code %d, pptr %d", icmp6->icmp6_type,
icmp6->icmp6_code, ntohl(icmp6->icmp6_pptr));
NAT64STAT_INC(&cfg->stats, dropped);
return (NAT64MFREE);
}
break;
default:
DPRINTF(DP_DROPS, "Unsupported ICMPv6 type %d, code %d",
icmp6->icmp6_type, icmp6->icmp6_code);
NAT64STAT_INC(&cfg->stats, dropped);
return (NAT64MFREE);
}
hlen += sizeof(struct icmp6_hdr);
if (m->m_pkthdr.len < hlen + sizeof(struct ip6_hdr) + ICMP_MINLEN) {
NAT64STAT_INC(&cfg->stats, dropped);
DPRINTF(DP_DROPS, "Message is too short %d",
m->m_pkthdr.len);
return (NAT64MFREE);
}
/*
* We need at least ICMP_MINLEN bytes of original datagram payload
* to generate ICMP message. It is nice that ICMP_MINLEN is equal
* to sizeof(struct ip6_frag). So, if embedded datagram had a fragment
* header we will not have to do m_pullup() again.
*
* What we have here:
* Outer header: (IPv6iGW, v4mapPRefix+v4exthost)
* Inner header: (v4mapPRefix+v4host, IPv6iHost) [sport, dport]
* We need to translate it to:
*
* Outer header: (alias_host, v4exthost)
* Inner header: (v4exthost, alias_host) [sport, alias_port]
*
* Assume caller function has checked if v4mapPRefix+v4host
* matches configured prefix.
* The only two things we should be provided with are mapping between
* IPv6iHost <> alias_host and between dport and alias_port.
*/
if (m->m_len < hlen + sizeof(struct ip6_hdr) + ICMP_MINLEN)
m = m_pullup(m, hlen + sizeof(struct ip6_hdr) + ICMP_MINLEN);
if (m == NULL) {
NAT64STAT_INC(&cfg->stats, nomem);
return (NAT64RETURN);
}
ip6 = mtod(m, struct ip6_hdr *);
ip6i = mtodo(m, hlen);
ip6f = NULL;
proto = ip6i->ip6_nxt;
plen = ntohs(ip6i->ip6_plen);
hlen += sizeof(struct ip6_hdr);
if (proto == IPPROTO_FRAGMENT) {
if (m->m_pkthdr.len < hlen + sizeof(struct ip6_frag) +
ICMP_MINLEN)
goto fail;
ip6f = mtodo(m, hlen);
proto = ip6f->ip6f_nxt;
plen -= sizeof(struct ip6_frag);
hlen += sizeof(struct ip6_frag);
/* Ajust MTU to reflect frag header size */
if (type == ICMP_UNREACH && code == ICMP_UNREACH_NEEDFRAG)
mtu -= sizeof(struct ip6_frag);
}
if (proto != IPPROTO_TCP && proto != IPPROTO_UDP) {
DPRINTF(DP_DROPS, "Unsupported proto %d in the inner header",
proto);
goto fail;
}
if (nat64_check_ip6(&ip6i->ip6_src) != 0 ||
nat64_check_ip6(&ip6i->ip6_dst) != 0) {
DPRINTF(DP_DROPS, "Inner addresses do not passes the check");
goto fail;
}
/* Check if outer dst is the same as inner src */
if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6i->ip6_src)) {
DPRINTF(DP_DROPS, "Inner src doesn't match outer dst");
goto fail;
}
/* Now we need to make a fake IPv4 packet to generate ICMP message */
ip.ip_dst.s_addr = aaddr;
ip.ip_src.s_addr = nat64_extract_ip4(&ip6i->ip6_src, cfg->plat_plen);
if (ip.ip_src.s_addr == 0)
goto fail;
/* XXX: Make fake ulp header */
if (V_nat64out == &nat64_direct) /* init_ip4hdr will decrement it */
ip6i->ip6_hlim += IPV6_HLIMDEC;
nat64_init_ip4hdr(ip6i, ip6f, plen, proto, &ip);
m_adj(m, hlen - sizeof(struct ip));
bcopy(&ip, mtod(m, void *), sizeof(ip));
nat64_icmp_reflect(m, type, code, (uint16_t)mtu, &cfg->stats,
logdata);
return (NAT64RETURN);
fail:
/*
* We must call m_freem() because mbuf pointer could be
* changed with m_pullup().
*/
m_freem(m);
NAT64STAT_INC(&cfg->stats, dropped);
return (NAT64RETURN);
}
int
nat64_do_handle_ip6(struct mbuf *m, uint32_t aaddr, uint16_t aport,
struct nat64_config *cfg, void *logdata)
{
struct ip ip;
struct nhop_object *nh;
struct sockaddr_in dst;
struct ip6_frag *frag;
struct ip6_hdr *ip6;
struct icmp6_hdr *icmp6;
uint16_t *csum;
int plen, hlen, proto;
/*
* XXX: we expect ipfw_chk() did m_pullup() up to upper level
* protocol's headers. Also we skip some checks, that ip6_input(),
* ip6_forward(), ip6_fastfwd() and ipfw_chk() already did.
*/
ip6 = mtod(m, struct ip6_hdr *);
if (nat64_check_ip6(&ip6->ip6_src) != 0 ||
nat64_check_ip6(&ip6->ip6_dst) != 0) {
return (NAT64SKIP);
}
/* Starting from this point we must not return zero */
ip.ip_src.s_addr = aaddr;
if (nat64_check_ip4(ip.ip_src.s_addr) != 0) {
DPRINTF(DP_GENERIC | DP_DROPS, "invalid source address: %08x",
ip.ip_src.s_addr);
NAT64STAT_INC(&cfg->stats, dropped);
return (NAT64MFREE);
}
ip.ip_dst.s_addr = nat64_extract_ip4(&ip6->ip6_dst, cfg->plat_plen);
if (ip.ip_dst.s_addr == 0) {
NAT64STAT_INC(&cfg->stats, dropped);
return (NAT64MFREE);
}
if (*V_nat64ip6stealth == 0 && ip6->ip6_hlim <= IPV6_HLIMDEC) {
nat64_icmp6_reflect(m, ICMP6_TIME_EXCEEDED,
ICMP6_TIME_EXCEED_TRANSIT, 0, &cfg->stats, logdata);
return (NAT64RETURN);
}
hlen = 0;
plen = ntohs(ip6->ip6_plen);
proto = nat64_getlasthdr(m, &hlen);
if (proto < 0) {
DPRINTF(DP_DROPS, "dropped due to mbuf isn't contigious");
NAT64STAT_INC(&cfg->stats, dropped);
return (NAT64MFREE);
}
frag = NULL;
if (proto == IPPROTO_FRAGMENT) {
/* ipfw_chk should m_pullup up to frag header */
if (m->m_len < hlen + sizeof(*frag)) {
DPRINTF(DP_DROPS,
"dropped due to mbuf isn't contigious");
NAT64STAT_INC(&cfg->stats, dropped);
return (NAT64MFREE);
}
frag = mtodo(m, hlen);
proto = frag->ip6f_nxt;
hlen += sizeof(*frag);
/* Fragmented ICMPv6 is unsupported */
if (proto == IPPROTO_ICMPV6) {
DPRINTF(DP_DROPS, "dropped due to fragmented ICMPv6");
NAT64STAT_INC(&cfg->stats, dropped);
return (NAT64MFREE);
}
/* Fragment length must be multiple of 8 octets */
if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0 &&
((plen + sizeof(struct ip6_hdr) - hlen) & 0x7) != 0) {
nat64_icmp6_reflect(m, ICMP6_PARAM_PROB,
ICMP6_PARAMPROB_HEADER,
offsetof(struct ip6_hdr, ip6_plen), &cfg->stats,
logdata);
return (NAT64RETURN);
}
}
plen -= hlen - sizeof(struct ip6_hdr);
if (plen < 0 || m->m_pkthdr.len < plen + hlen) {
DPRINTF(DP_DROPS, "plen %d, pkthdr.len %d, hlen %d",
plen, m->m_pkthdr.len, hlen);
NAT64STAT_INC(&cfg->stats, dropped);
return (NAT64MFREE);
}
icmp6 = NULL; /* Make gcc happy */
if (proto == IPPROTO_ICMPV6) {
icmp6 = mtodo(m, hlen);
if (icmp6->icmp6_type != ICMP6_ECHO_REQUEST &&
icmp6->icmp6_type != ICMP6_ECHO_REPLY)
return (nat64_handle_icmp6(m, hlen, aaddr, aport,
cfg, logdata));
}
dst.sin_addr.s_addr = ip.ip_dst.s_addr;
nh = nat64_find_route4(&dst, m);
if (nh == NULL) {
NAT64STAT_INC(&cfg->stats, noroute4);
nat64_icmp6_reflect(m, ICMP6_DST_UNREACH,
ICMP6_DST_UNREACH_NOROUTE, 0, &cfg->stats, logdata);
return (NAT64RETURN);
}
if (nh->nh_mtu < plen + sizeof(ip)) {
nat64_icmp6_reflect(m, ICMP6_PACKET_TOO_BIG, 0, nh->nh_mtu,
&cfg->stats, logdata);
return (NAT64RETURN);
}
nat64_init_ip4hdr(ip6, frag, plen, proto, &ip);
/* Handle delayed checksums if needed. */
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
in6_delayed_cksum(m, plen, hlen);
m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
}
/* Convert checksums. */
switch (proto) {
case IPPROTO_TCP:
csum = &TCP(mtodo(m, hlen))->th_sum;
if (aport != 0) {
struct tcphdr *tcp = TCP(mtodo(m, hlen));
*csum = cksum_adjust(*csum, tcp->th_sport, aport);
tcp->th_sport = aport;
}
*csum = cksum_add(*csum, nat64_cksum_convert(ip6, &ip));
break;
case IPPROTO_UDP:
csum = &UDP(mtodo(m, hlen))->uh_sum;
if (aport != 0) {
struct udphdr *udp = UDP(mtodo(m, hlen));
*csum = cksum_adjust(*csum, udp->uh_sport, aport);
udp->uh_sport = aport;
}
*csum = cksum_add(*csum, nat64_cksum_convert(ip6, &ip));
break;
case IPPROTO_ICMPV6:
/* Checksum in ICMPv6 covers pseudo header */
csum = &icmp6->icmp6_cksum;
*csum = cksum_add(*csum, in6_cksum_pseudo(ip6, plen,
IPPROTO_ICMPV6, 0));
/* Convert ICMPv6 types to ICMP */
proto = *(uint16_t *)icmp6; /* save old word for cksum_adjust */
if (icmp6->icmp6_type == ICMP6_ECHO_REQUEST)
icmp6->icmp6_type = ICMP_ECHO;
else /* ICMP6_ECHO_REPLY */
icmp6->icmp6_type = ICMP_ECHOREPLY;
*csum = cksum_adjust(*csum, (uint16_t)proto,
*(uint16_t *)icmp6);
if (aport != 0) {
uint16_t old_id = icmp6->icmp6_id;
icmp6->icmp6_id = aport;
*csum = cksum_adjust(*csum, old_id, aport);
}
break;
};
m_adj(m, hlen - sizeof(ip));
bcopy(&ip, mtod(m, void *), sizeof(ip));
if (V_nat64out->output(nh->nh_ifp, m, (struct sockaddr *)&dst,
&cfg->stats, logdata) == 0)
NAT64STAT_INC(&cfg->stats, opcnt64);
return (NAT64RETURN);
}