Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
/*-
 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
 *
 * Copyright (c) 2002-2006 Rice University
 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
 * All rights reserved.
 *
 * This software was developed for the FreeBSD Project by Alan L. Cox,
 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

/*
 *	Physical memory system implementation
 *
 * Any external functions defined by this module are only to be used by the
 * virtual memory system.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_ddb.h"
#include "opt_vm.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/domainset.h>
#include <sys/lock.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/rwlock.h>
#include <sys/sbuf.h>
#include <sys/sysctl.h>
#include <sys/tree.h>
#include <sys/vmmeter.h>

#include <ddb/ddb.h>

#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_phys.h>
#include <vm/vm_pagequeue.h>

_Static_assert(sizeof(long) * NBBY >= VM_PHYSSEG_MAX,
    "Too many physsegs.");

#ifdef NUMA
struct mem_affinity __read_mostly *mem_affinity;
int __read_mostly *mem_locality;
#endif

int __read_mostly vm_ndomains = 1;
domainset_t __read_mostly all_domains = DOMAINSET_T_INITIALIZER(0x1);

struct vm_phys_seg __read_mostly vm_phys_segs[VM_PHYSSEG_MAX];
int __read_mostly vm_phys_nsegs;
static struct vm_phys_seg vm_phys_early_segs[8];
static int vm_phys_early_nsegs;

struct vm_phys_fictitious_seg;
static int vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *,
    struct vm_phys_fictitious_seg *);

RB_HEAD(fict_tree, vm_phys_fictitious_seg) vm_phys_fictitious_tree =
    RB_INITIALIZER(&vm_phys_fictitious_tree);

struct vm_phys_fictitious_seg {
	RB_ENTRY(vm_phys_fictitious_seg) node;
	/* Memory region data */
	vm_paddr_t	start;
	vm_paddr_t	end;
	vm_page_t	first_page;
};

RB_GENERATE_STATIC(fict_tree, vm_phys_fictitious_seg, node,
    vm_phys_fictitious_cmp);

static struct rwlock_padalign vm_phys_fictitious_reg_lock;
MALLOC_DEFINE(M_FICT_PAGES, "vm_fictitious", "Fictitious VM pages");

static struct vm_freelist __aligned(CACHE_LINE_SIZE)
    vm_phys_free_queues[MAXMEMDOM][VM_NFREELIST][VM_NFREEPOOL]
    [VM_NFREEORDER_MAX];

static int __read_mostly vm_nfreelists;

/*
 * These "avail lists" are globals used to communicate boot-time physical
 * memory layout to other parts of the kernel.  Each physically contiguous
 * region of memory is defined by a start address at an even index and an
 * end address at the following odd index.  Each list is terminated by a
 * pair of zero entries.
 *
 * dump_avail tells the dump code what regions to include in a crash dump, and
 * phys_avail is all of the remaining physical memory that is available for
 * the vm system.
 *
 * Initially dump_avail and phys_avail are identical.  Boot time memory
 * allocations remove extents from phys_avail that may still be included
 * in dumps.
 */
vm_paddr_t phys_avail[PHYS_AVAIL_COUNT];
vm_paddr_t dump_avail[PHYS_AVAIL_COUNT];

/*
 * Provides the mapping from VM_FREELIST_* to free list indices (flind).
 */
static int __read_mostly vm_freelist_to_flind[VM_NFREELIST];

CTASSERT(VM_FREELIST_DEFAULT == 0);

#ifdef VM_FREELIST_DMA32
#define	VM_DMA32_BOUNDARY	((vm_paddr_t)1 << 32)
#endif

/*
 * Enforce the assumptions made by vm_phys_add_seg() and vm_phys_init() about
 * the ordering of the free list boundaries.
 */
#if defined(VM_LOWMEM_BOUNDARY) && defined(VM_DMA32_BOUNDARY)
CTASSERT(VM_LOWMEM_BOUNDARY < VM_DMA32_BOUNDARY);
#endif

static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
SYSCTL_OID(_vm, OID_AUTO, phys_free,
    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
    sysctl_vm_phys_free, "A",
    "Phys Free Info");

static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
SYSCTL_OID(_vm, OID_AUTO, phys_segs,
    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
    sysctl_vm_phys_segs, "A",
    "Phys Seg Info");

#ifdef NUMA
static int sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS);
SYSCTL_OID(_vm, OID_AUTO, phys_locality,
    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
    sysctl_vm_phys_locality, "A",
    "Phys Locality Info");
#endif

SYSCTL_INT(_vm, OID_AUTO, ndomains, CTLFLAG_RD,
    &vm_ndomains, 0, "Number of physical memory domains available.");

static vm_page_t vm_phys_alloc_seg_contig(struct vm_phys_seg *seg,
    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
    vm_paddr_t boundary);
static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain);
static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end);
static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
    int order, int tail);

/*
 * Red-black tree helpers for vm fictitious range management.
 */
static inline int
vm_phys_fictitious_in_range(struct vm_phys_fictitious_seg *p,
    struct vm_phys_fictitious_seg *range)
{

	KASSERT(range->start != 0 && range->end != 0,
	    ("Invalid range passed on search for vm_fictitious page"));
	if (p->start >= range->end)
		return (1);
	if (p->start < range->start)
		return (-1);

	return (0);
}

static int
vm_phys_fictitious_cmp(struct vm_phys_fictitious_seg *p1,
    struct vm_phys_fictitious_seg *p2)
{

	/* Check if this is a search for a page */
	if (p1->end == 0)
		return (vm_phys_fictitious_in_range(p1, p2));

	KASSERT(p2->end != 0,
    ("Invalid range passed as second parameter to vm fictitious comparison"));

	/* Searching to add a new range */
	if (p1->end <= p2->start)
		return (-1);
	if (p1->start >= p2->end)
		return (1);

	panic("Trying to add overlapping vm fictitious ranges:\n"
	    "[%#jx:%#jx] and [%#jx:%#jx]", (uintmax_t)p1->start,
	    (uintmax_t)p1->end, (uintmax_t)p2->start, (uintmax_t)p2->end);
}

int
vm_phys_domain_match(int prefer, vm_paddr_t low, vm_paddr_t high)
{
#ifdef NUMA
	domainset_t mask;
	int i;

	if (vm_ndomains == 1 || mem_affinity == NULL)
		return (0);

	DOMAINSET_ZERO(&mask);
	/*
	 * Check for any memory that overlaps low, high.
	 */
	for (i = 0; mem_affinity[i].end != 0; i++)
		if (mem_affinity[i].start <= high &&
		    mem_affinity[i].end >= low)
			DOMAINSET_SET(mem_affinity[i].domain, &mask);
	if (prefer != -1 && DOMAINSET_ISSET(prefer, &mask))
		return (prefer);
	if (DOMAINSET_EMPTY(&mask))
		panic("vm_phys_domain_match:  Impossible constraint");
	return (DOMAINSET_FFS(&mask) - 1);
#else
	return (0);
#endif
}

/*
 * Outputs the state of the physical memory allocator, specifically,
 * the amount of physical memory in each free list.
 */
static int
sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
{
	struct sbuf sbuf;
	struct vm_freelist *fl;
	int dom, error, flind, oind, pind;

	error = sysctl_wire_old_buffer(req, 0);
	if (error != 0)
		return (error);
	sbuf_new_for_sysctl(&sbuf, NULL, 128 * vm_ndomains, req);
	for (dom = 0; dom < vm_ndomains; dom++) {
		sbuf_printf(&sbuf,"\nDOMAIN %d:\n", dom);
		for (flind = 0; flind < vm_nfreelists; flind++) {
			sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
			    "\n  ORDER (SIZE)  |  NUMBER"
			    "\n              ", flind);
			for (pind = 0; pind < VM_NFREEPOOL; pind++)
				sbuf_printf(&sbuf, "  |  POOL %d", pind);
			sbuf_printf(&sbuf, "\n--            ");
			for (pind = 0; pind < VM_NFREEPOOL; pind++)
				sbuf_printf(&sbuf, "-- --      ");
			sbuf_printf(&sbuf, "--\n");
			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
				sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
				    1 << (PAGE_SHIFT - 10 + oind));
				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
				fl = vm_phys_free_queues[dom][flind][pind];
					sbuf_printf(&sbuf, "  |  %6d",
					    fl[oind].lcnt);
				}
				sbuf_printf(&sbuf, "\n");
			}
		}
	}
	error = sbuf_finish(&sbuf);
	sbuf_delete(&sbuf);
	return (error);
}

/*
 * Outputs the set of physical memory segments.
 */
static int
sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
{
	struct sbuf sbuf;
	struct vm_phys_seg *seg;
	int error, segind;

	error = sysctl_wire_old_buffer(req, 0);
	if (error != 0)
		return (error);
	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
	for (segind = 0; segind < vm_phys_nsegs; segind++) {
		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
		seg = &vm_phys_segs[segind];
		sbuf_printf(&sbuf, "start:     %#jx\n",
		    (uintmax_t)seg->start);
		sbuf_printf(&sbuf, "end:       %#jx\n",
		    (uintmax_t)seg->end);
		sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
	}
	error = sbuf_finish(&sbuf);
	sbuf_delete(&sbuf);
	return (error);
}

/*
 * Return affinity, or -1 if there's no affinity information.
 */
int
vm_phys_mem_affinity(int f, int t)
{

#ifdef NUMA
	if (mem_locality == NULL)
		return (-1);
	if (f >= vm_ndomains || t >= vm_ndomains)
		return (-1);
	return (mem_locality[f * vm_ndomains + t]);
#else
	return (-1);
#endif
}

#ifdef NUMA
/*
 * Outputs the VM locality table.
 */
static int
sysctl_vm_phys_locality(SYSCTL_HANDLER_ARGS)
{
	struct sbuf sbuf;
	int error, i, j;

	error = sysctl_wire_old_buffer(req, 0);
	if (error != 0)
		return (error);
	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);

	sbuf_printf(&sbuf, "\n");

	for (i = 0; i < vm_ndomains; i++) {
		sbuf_printf(&sbuf, "%d: ", i);
		for (j = 0; j < vm_ndomains; j++) {
			sbuf_printf(&sbuf, "%d ", vm_phys_mem_affinity(i, j));
		}
		sbuf_printf(&sbuf, "\n");
	}
	error = sbuf_finish(&sbuf);
	sbuf_delete(&sbuf);
	return (error);
}
#endif

static void
vm_freelist_add(struct vm_freelist *fl, vm_page_t m, int order, int tail)
{

	m->order = order;
	if (tail)
		TAILQ_INSERT_TAIL(&fl[order].pl, m, listq);
	else
		TAILQ_INSERT_HEAD(&fl[order].pl, m, listq);
	fl[order].lcnt++;
}

static void
vm_freelist_rem(struct vm_freelist *fl, vm_page_t m, int order)
{

	TAILQ_REMOVE(&fl[order].pl, m, listq);
	fl[order].lcnt--;
	m->order = VM_NFREEORDER;
}

/*
 * Create a physical memory segment.
 */
static void
_vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int domain)
{
	struct vm_phys_seg *seg;

	KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
	    ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
	KASSERT(domain >= 0 && domain < vm_ndomains,
	    ("vm_phys_create_seg: invalid domain provided"));
	seg = &vm_phys_segs[vm_phys_nsegs++];
	while (seg > vm_phys_segs && (seg - 1)->start >= end) {
		*seg = *(seg - 1);
		seg--;
	}
	seg->start = start;
	seg->end = end;
	seg->domain = domain;
}

static void
vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end)
{
#ifdef NUMA
	int i;

	if (mem_affinity == NULL) {
		_vm_phys_create_seg(start, end, 0);
		return;
	}

	for (i = 0;; i++) {
		if (mem_affinity[i].end == 0)
			panic("Reached end of affinity info");
		if (mem_affinity[i].end <= start)
			continue;
		if (mem_affinity[i].start > start)
			panic("No affinity info for start %jx",
			    (uintmax_t)start);
		if (mem_affinity[i].end >= end) {
			_vm_phys_create_seg(start, end,
			    mem_affinity[i].domain);
			break;
		}
		_vm_phys_create_seg(start, mem_affinity[i].end,
		    mem_affinity[i].domain);
		start = mem_affinity[i].end;
	}
#else
	_vm_phys_create_seg(start, end, 0);
#endif
}

/*
 * Add a physical memory segment.
 */
void
vm_phys_add_seg(vm_paddr_t start, vm_paddr_t end)
{
	vm_paddr_t paddr;

	KASSERT((start & PAGE_MASK) == 0,
	    ("vm_phys_define_seg: start is not page aligned"));
	KASSERT((end & PAGE_MASK) == 0,
	    ("vm_phys_define_seg: end is not page aligned"));

	/*
	 * Split the physical memory segment if it spans two or more free
	 * list boundaries.
	 */
	paddr = start;
#ifdef	VM_FREELIST_LOWMEM
	if (paddr < VM_LOWMEM_BOUNDARY && end > VM_LOWMEM_BOUNDARY) {
		vm_phys_create_seg(paddr, VM_LOWMEM_BOUNDARY);
		paddr = VM_LOWMEM_BOUNDARY;
	}
#endif
#ifdef	VM_FREELIST_DMA32
	if (paddr < VM_DMA32_BOUNDARY && end > VM_DMA32_BOUNDARY) {
		vm_phys_create_seg(paddr, VM_DMA32_BOUNDARY);
		paddr = VM_DMA32_BOUNDARY;
	}
#endif
	vm_phys_create_seg(paddr, end);
}

/*
 * Initialize the physical memory allocator.
 *
 * Requires that vm_page_array is initialized!
 */
void
vm_phys_init(void)
{
	struct vm_freelist *fl;
	struct vm_phys_seg *end_seg, *prev_seg, *seg, *tmp_seg;
	u_long npages;
	int dom, flind, freelist, oind, pind, segind;

	/*
	 * Compute the number of free lists, and generate the mapping from the
	 * manifest constants VM_FREELIST_* to the free list indices.
	 *
	 * Initially, the entries of vm_freelist_to_flind[] are set to either
	 * 0 or 1 to indicate which free lists should be created.
	 */
	npages = 0;
	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
		seg = &vm_phys_segs[segind];
#ifdef	VM_FREELIST_LOWMEM
		if (seg->end <= VM_LOWMEM_BOUNDARY)
			vm_freelist_to_flind[VM_FREELIST_LOWMEM] = 1;
		else
#endif
#ifdef	VM_FREELIST_DMA32
		if (
#ifdef	VM_DMA32_NPAGES_THRESHOLD
		    /*
		     * Create the DMA32 free list only if the amount of
		     * physical memory above physical address 4G exceeds the
		     * given threshold.
		     */
		    npages > VM_DMA32_NPAGES_THRESHOLD &&
#endif
		    seg->end <= VM_DMA32_BOUNDARY)
			vm_freelist_to_flind[VM_FREELIST_DMA32] = 1;
		else
#endif
		{
			npages += atop(seg->end - seg->start);
			vm_freelist_to_flind[VM_FREELIST_DEFAULT] = 1;
		}
	}
	/* Change each entry into a running total of the free lists. */
	for (freelist = 1; freelist < VM_NFREELIST; freelist++) {
		vm_freelist_to_flind[freelist] +=
		    vm_freelist_to_flind[freelist - 1];
	}
	vm_nfreelists = vm_freelist_to_flind[VM_NFREELIST - 1];
	KASSERT(vm_nfreelists > 0, ("vm_phys_init: no free lists"));
	/* Change each entry into a free list index. */
	for (freelist = 0; freelist < VM_NFREELIST; freelist++)
		vm_freelist_to_flind[freelist]--;

	/*
	 * Initialize the first_page and free_queues fields of each physical
	 * memory segment.
	 */
#ifdef VM_PHYSSEG_SPARSE
	npages = 0;
#endif
	for (segind = 0; segind < vm_phys_nsegs; segind++) {
		seg = &vm_phys_segs[segind];
#ifdef VM_PHYSSEG_SPARSE
		seg->first_page = &vm_page_array[npages];
		npages += atop(seg->end - seg->start);
#else
		seg->first_page = PHYS_TO_VM_PAGE(seg->start);
#endif
#ifdef	VM_FREELIST_LOWMEM
		if (seg->end <= VM_LOWMEM_BOUNDARY) {
			flind = vm_freelist_to_flind[VM_FREELIST_LOWMEM];
			KASSERT(flind >= 0,
			    ("vm_phys_init: LOWMEM flind < 0"));
		} else
#endif
#ifdef	VM_FREELIST_DMA32
		if (seg->end <= VM_DMA32_BOUNDARY) {
			flind = vm_freelist_to_flind[VM_FREELIST_DMA32];
			KASSERT(flind >= 0,
			    ("vm_phys_init: DMA32 flind < 0"));
		} else
#endif
		{
			flind = vm_freelist_to_flind[VM_FREELIST_DEFAULT];
			KASSERT(flind >= 0,
			    ("vm_phys_init: DEFAULT flind < 0"));
		}
		seg->free_queues = &vm_phys_free_queues[seg->domain][flind];
	}

	/*
	 * Coalesce physical memory segments that are contiguous and share the
	 * same per-domain free queues.
	 */
	prev_seg = vm_phys_segs;
	seg = &vm_phys_segs[1];
	end_seg = &vm_phys_segs[vm_phys_nsegs];
	while (seg < end_seg) {
		if (prev_seg->end == seg->start &&
		    prev_seg->free_queues == seg->free_queues) {
			prev_seg->end = seg->end;
			KASSERT(prev_seg->domain == seg->domain,
			    ("vm_phys_init: free queues cannot span domains"));
			vm_phys_nsegs--;
			end_seg--;
			for (tmp_seg = seg; tmp_seg < end_seg; tmp_seg++)
				*tmp_seg = *(tmp_seg + 1);
		} else {
			prev_seg = seg;
			seg++;
		}
	}

	/*
	 * Initialize the free queues.
	 */
	for (dom = 0; dom < vm_ndomains; dom++) {
		for (flind = 0; flind < vm_nfreelists; flind++) {
			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
				fl = vm_phys_free_queues[dom][flind][pind];
				for (oind = 0; oind < VM_NFREEORDER; oind++)
					TAILQ_INIT(&fl[oind].pl);
			}
		}
	}

	rw_init(&vm_phys_fictitious_reg_lock, "vmfctr");
}

/*
 * Register info about the NUMA topology of the system.
 *
 * Invoked by platform-dependent code prior to vm_phys_init().
 */
void
vm_phys_register_domains(int ndomains, struct mem_affinity *affinity,
    int *locality)
{
#ifdef NUMA
	int d, i;

	/*
	 * For now the only override value that we support is 1, which
	 * effectively disables NUMA-awareness in the allocators.
	 */
	d = 0;
	TUNABLE_INT_FETCH("vm.numa.disabled", &d);
	if (d)
		ndomains = 1;

	if (ndomains > 1) {
		vm_ndomains = ndomains;
		mem_affinity = affinity;
		mem_locality = locality;
	}

	for (i = 0; i < vm_ndomains; i++)
		DOMAINSET_SET(i, &all_domains);
#else
	(void)ndomains;
	(void)affinity;
	(void)locality;
#endif
}

int
_vm_phys_domain(vm_paddr_t pa)
{
#ifdef NUMA
	int i;

	if (vm_ndomains == 1)
		return (0);
	for (i = 0; mem_affinity[i].end != 0; i++)
		if (mem_affinity[i].start <= pa &&
		    mem_affinity[i].end >= pa)
			return (mem_affinity[i].domain);
	return (-1);
#else
	return (0);
#endif
}

/*
 * Split a contiguous, power of two-sized set of physical pages.
 *
 * When this function is called by a page allocation function, the caller
 * should request insertion at the head unless the order [order, oind) queues
 * are known to be empty.  The objective being to reduce the likelihood of
 * long-term fragmentation by promoting contemporaneous allocation and
 * (hopefully) deallocation.
 */
static __inline void
vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order,
    int tail)
{
	vm_page_t m_buddy;

	while (oind > order) {
		oind--;
		m_buddy = &m[1 << oind];
		KASSERT(m_buddy->order == VM_NFREEORDER,
		    ("vm_phys_split_pages: page %p has unexpected order %d",
		    m_buddy, m_buddy->order));
		vm_freelist_add(fl, m_buddy, oind, tail);
        }
}

/*
 * Add the physical pages [m, m + npages) at the end of a power-of-two aligned
 * and sized set to the specified free list.
 *
 * When this function is called by a page allocation function, the caller
 * should request insertion at the head unless the lower-order queues are
 * known to be empty.  The objective being to reduce the likelihood of long-
 * term fragmentation by promoting contemporaneous allocation and (hopefully)
 * deallocation.
 *
 * The physical page m's buddy must not be free.
 */
static void
vm_phys_enq_range(vm_page_t m, u_int npages, struct vm_freelist *fl, int tail)
{
	u_int n;
	int order;

	KASSERT(npages > 0, ("vm_phys_enq_range: npages is 0"));
	KASSERT(((VM_PAGE_TO_PHYS(m) + npages * PAGE_SIZE) &
	    ((PAGE_SIZE << (fls(npages) - 1)) - 1)) == 0,
	    ("vm_phys_enq_range: page %p and npages %u are misaligned",
	    m, npages));
	do {
		KASSERT(m->order == VM_NFREEORDER,
		    ("vm_phys_enq_range: page %p has unexpected order %d",
		    m, m->order));
		order = ffs(npages) - 1;
		KASSERT(order < VM_NFREEORDER,
		    ("vm_phys_enq_range: order %d is out of range", order));
		vm_freelist_add(fl, m, order, tail);
		n = 1 << order;
		m += n;
		npages -= n;
	} while (npages > 0);
}

/*
 * Tries to allocate the specified number of pages from the specified pool
 * within the specified domain.  Returns the actual number of allocated pages
 * and a pointer to each page through the array ma[].
 *
 * The returned pages may not be physically contiguous.  However, in contrast
 * to performing multiple, back-to-back calls to vm_phys_alloc_pages(..., 0),
 * calling this function once to allocate the desired number of pages will
 * avoid wasted time in vm_phys_split_pages().
 *
 * The free page queues for the specified domain must be locked.
 */
int
vm_phys_alloc_npages(int domain, int pool, int npages, vm_page_t ma[])
{
	struct vm_freelist *alt, *fl;
	vm_page_t m;
	int avail, end, flind, freelist, i, need, oind, pind;

	KASSERT(domain >= 0 && domain < vm_ndomains,
	    ("vm_phys_alloc_npages: domain %d is out of range", domain));
	KASSERT(pool < VM_NFREEPOOL,
	    ("vm_phys_alloc_npages: pool %d is out of range", pool));
	KASSERT(npages <= 1 << (VM_NFREEORDER - 1),
	    ("vm_phys_alloc_npages: npages %d is out of range", npages));
	vm_domain_free_assert_locked(VM_DOMAIN(domain));
	i = 0;
	for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
		flind = vm_freelist_to_flind[freelist];
		if (flind < 0)
			continue;
		fl = vm_phys_free_queues[domain][flind][pool];
		for (oind = 0; oind < VM_NFREEORDER; oind++) {
			while ((m = TAILQ_FIRST(&fl[oind].pl)) != NULL) {
				vm_freelist_rem(fl, m, oind);
				avail = 1 << oind;
				need = imin(npages - i, avail);
				for (end = i + need; i < end;)
					ma[i++] = m++;
				if (need < avail) {
					/*
					 * Return excess pages to fl.  Its
					 * order [0, oind) queues are empty.
					 */
					vm_phys_enq_range(m, avail - need, fl,
					    1);
					return (npages);
				} else if (i == npages)
					return (npages);
			}
		}
		for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
				alt = vm_phys_free_queues[domain][flind][pind];
				while ((m = TAILQ_FIRST(&alt[oind].pl)) !=
				    NULL) {
					vm_freelist_rem(alt, m, oind);
					vm_phys_set_pool(pool, m, oind);
					avail = 1 << oind;
					need = imin(npages - i, avail);
					for (end = i + need; i < end;)
						ma[i++] = m++;
					if (need < avail) {
						/*
						 * Return excess pages to fl.
						 * Its order [0, oind) queues
						 * are empty.
						 */
						vm_phys_enq_range(m, avail -
						    need, fl, 1);
						return (npages);
					} else if (i == npages)
						return (npages);
				}
			}
		}
	}
	return (i);
}

/*
 * Allocate a contiguous, power of two-sized set of physical pages
 * from the free lists.
 *
 * The free page queues must be locked.
 */
vm_page_t
vm_phys_alloc_pages(int domain, int pool, int order)
{
	vm_page_t m;
	int freelist;

	for (freelist = 0; freelist < VM_NFREELIST; freelist++) {
		m = vm_phys_alloc_freelist_pages(domain, freelist, pool, order);
		if (m != NULL)
			return (m);
	}
	return (NULL);
}

/*
 * Allocate a contiguous, power of two-sized set of physical pages from the
 * specified free list.  The free list must be specified using one of the
 * manifest constants VM_FREELIST_*.
 *
 * The free page queues must be locked.
 */
vm_page_t
vm_phys_alloc_freelist_pages(int domain, int freelist, int pool, int order)
{
	struct vm_freelist *alt, *fl;
	vm_page_t m;
	int oind, pind, flind;

	KASSERT(domain >= 0 && domain < vm_ndomains,
	    ("vm_phys_alloc_freelist_pages: domain %d is out of range",
	    domain));
	KASSERT(freelist < VM_NFREELIST,
	    ("vm_phys_alloc_freelist_pages: freelist %d is out of range",
	    freelist));
	KASSERT(pool < VM_NFREEPOOL,
	    ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
	KASSERT(order < VM_NFREEORDER,
	    ("vm_phys_alloc_freelist_pages: order %d is out of range", order));

	flind = vm_freelist_to_flind[freelist];
	/* Check if freelist is present */
	if (flind < 0)
		return (NULL);

	vm_domain_free_assert_locked(VM_DOMAIN(domain));
	fl = &vm_phys_free_queues[domain][flind][pool][0];
	for (oind = order; oind < VM_NFREEORDER; oind++) {
		m = TAILQ_FIRST(&fl[oind].pl);
		if (m != NULL) {
			vm_freelist_rem(fl, m, oind);
			/* The order [order, oind) queues are empty. */
			vm_phys_split_pages(m, oind, fl, order, 1);
			return (m);
		}
	}

	/*
	 * The given pool was empty.  Find the largest
	 * contiguous, power-of-two-sized set of pages in any
	 * pool.  Transfer these pages to the given pool, and
	 * use them to satisfy the allocation.
	 */
	for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
			alt = &vm_phys_free_queues[domain][flind][pind][0];
			m = TAILQ_FIRST(&alt[oind].pl);
			if (m != NULL) {
				vm_freelist_rem(alt, m, oind);
				vm_phys_set_pool(pool, m, oind);
				/* The order [order, oind) queues are empty. */
				vm_phys_split_pages(m, oind, fl, order, 1);
				return (m);
			}
		}
	}
	return (NULL);
}

/*
 * Find the vm_page corresponding to the given physical address.
 */
vm_page_t
vm_phys_paddr_to_vm_page(vm_paddr_t pa)
{
	struct vm_phys_seg *seg;
	int segind;

	for (segind = 0; segind < vm_phys_nsegs; segind++) {
		seg = &vm_phys_segs[segind];
		if (pa >= seg->start && pa < seg->end)
			return (&seg->first_page[atop(pa - seg->start)]);
	}
	return (NULL);
}

vm_page_t
vm_phys_fictitious_to_vm_page(vm_paddr_t pa)
{
	struct vm_phys_fictitious_seg tmp, *seg;
	vm_page_t m;

	m = NULL;
	tmp.start = pa;
	tmp.end = 0;

	rw_rlock(&vm_phys_fictitious_reg_lock);
	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
	rw_runlock(&vm_phys_fictitious_reg_lock);
	if (seg == NULL)
		return (NULL);

	m = &seg->first_page[atop(pa - seg->start)];
	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("%p not fictitious", m));

	return (m);
}

static inline void
vm_phys_fictitious_init_range(vm_page_t range, vm_paddr_t start,
    long page_count, vm_memattr_t memattr)
{
	long i;

	bzero(range, page_count * sizeof(*range));
	for (i = 0; i < page_count; i++) {
		vm_page_initfake(&range[i], start + PAGE_SIZE * i, memattr);
		range[i].oflags &= ~VPO_UNMANAGED;
		range[i].busy_lock = VPB_UNBUSIED;
	}
}

int
vm_phys_fictitious_reg_range(vm_paddr_t start, vm_paddr_t end,
    vm_memattr_t memattr)
{
	struct vm_phys_fictitious_seg *seg;
	vm_page_t fp;
	long page_count;
#ifdef VM_PHYSSEG_DENSE
	long pi, pe;
	long dpage_count;
#endif

	KASSERT(start < end,
	    ("Start of segment isn't less than end (start: %jx end: %jx)",
	    (uintmax_t)start, (uintmax_t)end));

	page_count = (end - start) / PAGE_SIZE;

#ifdef VM_PHYSSEG_DENSE
	pi = atop(start);
	pe = atop(end);
	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
		fp = &vm_page_array[pi - first_page];
		if ((pe - first_page) > vm_page_array_size) {
			/*
			 * We have a segment that starts inside
			 * of vm_page_array, but ends outside of it.
			 *
			 * Use vm_page_array pages for those that are
			 * inside of the vm_page_array range, and
			 * allocate the remaining ones.
			 */
			dpage_count = vm_page_array_size - (pi - first_page);
			vm_phys_fictitious_init_range(fp, start, dpage_count,
			    memattr);
			page_count -= dpage_count;
			start += ptoa(dpage_count);
			goto alloc;
		}
		/*
		 * We can allocate the full range from vm_page_array,
		 * so there's no need to register the range in the tree.
		 */
		vm_phys_fictitious_init_range(fp, start, page_count, memattr);
		return (0);
	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
		/*
		 * We have a segment that ends inside of vm_page_array,
		 * but starts outside of it.
		 */
		fp = &vm_page_array[0];
		dpage_count = pe - first_page;
		vm_phys_fictitious_init_range(fp, ptoa(first_page), dpage_count,
		    memattr);
		end -= ptoa(dpage_count);
		page_count -= dpage_count;
		goto alloc;
	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
		/*
		 * Trying to register a fictitious range that expands before
		 * and after vm_page_array.
		 */
		return (EINVAL);
	} else {
alloc:
#endif
		fp = malloc(page_count * sizeof(struct vm_page), M_FICT_PAGES,
		    M_WAITOK);
#ifdef VM_PHYSSEG_DENSE
	}
#endif
	vm_phys_fictitious_init_range(fp, start, page_count, memattr);

	seg = malloc(sizeof(*seg), M_FICT_PAGES, M_WAITOK | M_ZERO);
	seg->start = start;
	seg->end = end;
	seg->first_page = fp;

	rw_wlock(&vm_phys_fictitious_reg_lock);
	RB_INSERT(fict_tree, &vm_phys_fictitious_tree, seg);
	rw_wunlock(&vm_phys_fictitious_reg_lock);

	return (0);
}

void
vm_phys_fictitious_unreg_range(vm_paddr_t start, vm_paddr_t end)
{
	struct vm_phys_fictitious_seg *seg, tmp;
#ifdef VM_PHYSSEG_DENSE
	long pi, pe;
#endif

	KASSERT(start < end,
	    ("Start of segment isn't less than end (start: %jx end: %jx)",
	    (uintmax_t)start, (uintmax_t)end));

#ifdef VM_PHYSSEG_DENSE
	pi = atop(start);
	pe = atop(end);
	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
		if ((pe - first_page) <= vm_page_array_size) {
			/*
			 * This segment was allocated using vm_page_array
			 * only, there's nothing to do since those pages
			 * were never added to the tree.
			 */
			return;
		}
		/*
		 * We have a segment that starts inside
		 * of vm_page_array, but ends outside of it.
		 *
		 * Calculate how many pages were added to the
		 * tree and free them.
		 */
		start = ptoa(first_page + vm_page_array_size);
	} else if (pe > first_page && (pe - first_page) < vm_page_array_size) {
		/*
		 * We have a segment that ends inside of vm_page_array,
		 * but starts outside of it.
		 */
		end = ptoa(first_page);
	} else if (pi < first_page && pe > (first_page + vm_page_array_size)) {
		/* Since it's not possible to register such a range, panic. */
		panic(
		    "Unregistering not registered fictitious range [%#jx:%#jx]",
		    (uintmax_t)start, (uintmax_t)end);
	}
#endif
	tmp.start = start;
	tmp.end = 0;

	rw_wlock(&vm_phys_fictitious_reg_lock);
	seg = RB_FIND(fict_tree, &vm_phys_fictitious_tree, &tmp);
	if (seg->start != start || seg->end != end) {
		rw_wunlock(&vm_phys_fictitious_reg_lock);
		panic(
		    "Unregistering not registered fictitious range [%#jx:%#jx]",
		    (uintmax_t)start, (uintmax_t)end);
	}
	RB_REMOVE(fict_tree, &vm_phys_fictitious_tree, seg);
	rw_wunlock(&vm_phys_fictitious_reg_lock);
	free(seg->first_page, M_FICT_PAGES);
	free(seg, M_FICT_PAGES);
}

/*
 * Free a contiguous, power of two-sized set of physical pages.
 *
 * The free page queues must be locked.
 */
void
vm_phys_free_pages(vm_page_t m, int order)
{
	struct vm_freelist *fl;
	struct vm_phys_seg *seg;
	vm_paddr_t pa;
	vm_page_t m_buddy;

	KASSERT(m->order == VM_NFREEORDER,
	    ("vm_phys_free_pages: page %p has unexpected order %d",
	    m, m->order));
	KASSERT(m->pool < VM_NFREEPOOL,
	    ("vm_phys_free_pages: page %p has unexpected pool %d",
	    m, m->pool));
	KASSERT(order < VM_NFREEORDER,
	    ("vm_phys_free_pages: order %d is out of range", order));
	seg = &vm_phys_segs[m->segind];
	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
	if (order < VM_NFREEORDER - 1) {
		pa = VM_PAGE_TO_PHYS(m);
		do {
			pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
			if (pa < seg->start || pa >= seg->end)
				break;
			m_buddy = &seg->first_page[atop(pa - seg->start)];
			if (m_buddy->order != order)
				break;
			fl = (*seg->free_queues)[m_buddy->pool];
			vm_freelist_rem(fl, m_buddy, order);
			if (m_buddy->pool != m->pool)
				vm_phys_set_pool(m->pool, m_buddy, order);
			order++;
			pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
			m = &seg->first_page[atop(pa - seg->start)];
		} while (order < VM_NFREEORDER - 1);
	}
	fl = (*seg->free_queues)[m->pool];
	vm_freelist_add(fl, m, order, 1);
}

/*
 * Return the largest possible order of a set of pages starting at m.
 */
static int
max_order(vm_page_t m)
{

	/*
	 * Unsigned "min" is used here so that "order" is assigned
	 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
	 * or the low-order bits of its physical address are zero
	 * because the size of a physical address exceeds the size of
	 * a long.
	 */
	return (min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
	    VM_NFREEORDER - 1));
}

/*
 * Free a contiguous, arbitrarily sized set of physical pages, without
 * merging across set boundaries.
 *
 * The free page queues must be locked.
 */
void
vm_phys_enqueue_contig(vm_page_t m, u_long npages)
{
	struct vm_freelist *fl;
	struct vm_phys_seg *seg;
	vm_page_t m_end;
	int order;

	/*
	 * Avoid unnecessary coalescing by freeing the pages in the largest
	 * possible power-of-two-sized subsets.
	 */
	vm_domain_free_assert_locked(vm_pagequeue_domain(m));
	seg = &vm_phys_segs[m->segind];
	fl = (*seg->free_queues)[m->pool];
	m_end = m + npages;
	/* Free blocks of increasing size. */
	while ((order = max_order(m)) < VM_NFREEORDER - 1 &&
	    m + (1 << order) <= m_end) {
		KASSERT(seg == &vm_phys_segs[m->segind],
		    ("%s: page range [%p,%p) spans multiple segments",
		    __func__, m_end - npages, m));
		vm_freelist_add(fl, m, order, 1);
		m += 1 << order;
	}
	/* Free blocks of maximum size. */
	while (m + (1 << order) <= m_end) {
		KASSERT(seg == &vm_phys_segs[m->segind],
		    ("%s: page range [%p,%p) spans multiple segments",
		    __func__, m_end - npages, m));
		vm_freelist_add(fl, m, order, 1);
		m += 1 << order;
	}
	/* Free blocks of diminishing size. */
	while (m < m_end) {
		KASSERT(seg == &vm_phys_segs[m->segind],
		    ("%s: page range [%p,%p) spans multiple segments",
		    __func__, m_end - npages, m));
		order = flsl(m_end - m) - 1;
		vm_freelist_add(fl, m, order, 1);
		m += 1 << order;
	}
}

/*
 * Free a contiguous, arbitrarily sized set of physical pages.
 *
 * The free page queues must be locked.
 */
void
vm_phys_free_contig(vm_page_t m, u_long npages)
{
	int order_start, order_end;
	vm_page_t m_start, m_end;

	vm_domain_free_assert_locked(vm_pagequeue_domain(m));

	m_start = m;
	order_start = max_order(m_start);
	if (order_start < VM_NFREEORDER - 1)
		m_start += 1 << order_start;
	m_end = m + npages;
	order_end = max_order(m_end);
	if (order_end < VM_NFREEORDER - 1)
		m_end -= 1 << order_end;
	/*
	 * Avoid unnecessary coalescing by freeing the pages at the start and
	 * end of the range last.
	 */
	if (m_start < m_end)
		vm_phys_enqueue_contig(m_start, m_end - m_start);
	if (order_start < VM_NFREEORDER - 1)
		vm_phys_free_pages(m, order_start);
	if (order_end < VM_NFREEORDER - 1)
		vm_phys_free_pages(m_end, order_end);
}

/*
 * Scan physical memory between the specified addresses "low" and "high" for a
 * run of contiguous physical pages that satisfy the specified conditions, and
 * return the lowest page in the run.  The specified "alignment" determines
 * the alignment of the lowest physical page in the run.  If the specified
 * "boundary" is non-zero, then the run of physical pages cannot span a
 * physical address that is a multiple of "boundary".
 *
 * "npages" must be greater than zero.  Both "alignment" and "boundary" must
 * be a power of two.
 */
vm_page_t
vm_phys_scan_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
    u_long alignment, vm_paddr_t boundary, int options)
{
	vm_paddr_t pa_end;
	vm_page_t m_end, m_run, m_start;
	struct vm_phys_seg *seg;
	int segind;

	KASSERT(npages > 0, ("npages is 0"));
	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
	if (low >= high)
		return (NULL);
	for (segind = 0; segind < vm_phys_nsegs; segind++) {
		seg = &vm_phys_segs[segind];
		if (seg->domain != domain)
			continue;
		if (seg->start >= high)
			break;
		if (low >= seg->end)
			continue;
		if (low <= seg->start)
			m_start = seg->first_page;
		else
			m_start = &seg->first_page[atop(low - seg->start)];
		if (high < seg->end)
			pa_end = high;
		else
			pa_end = seg->end;
		if (pa_end - VM_PAGE_TO_PHYS(m_start) < ptoa(npages))
			continue;
		m_end = &seg->first_page[atop(pa_end - seg->start)];
		m_run = vm_page_scan_contig(npages, m_start, m_end,
		    alignment, boundary, options);
		if (m_run != NULL)
			return (m_run);
	}
	return (NULL);
}

/*
 * Set the pool for a contiguous, power of two-sized set of physical pages. 
 */
void
vm_phys_set_pool(int pool, vm_page_t m, int order)
{
	vm_page_t m_tmp;

	for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
		m_tmp->pool = pool;
}

/*
 * Search for the given physical page "m" in the free lists.  If the search
 * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
 * FALSE, indicating that "m" is not in the free lists.
 *
 * The free page queues must be locked.
 */
boolean_t
vm_phys_unfree_page(vm_page_t m)
{
	struct vm_freelist *fl;
	struct vm_phys_seg *seg;
	vm_paddr_t pa, pa_half;
	vm_page_t m_set, m_tmp;
	int order;

	/*
	 * First, find the contiguous, power of two-sized set of free
	 * physical pages containing the given physical page "m" and
	 * assign it to "m_set".
	 */
	seg = &vm_phys_segs[m->segind];
	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
	    order < VM_NFREEORDER - 1; ) {
		order++;
		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
		if (pa >= seg->start)
			m_set = &seg->first_page[atop(pa - seg->start)];
		else
			return (FALSE);
	}
	if (m_set->order < order)
		return (FALSE);
	if (m_set->order == VM_NFREEORDER)
		return (FALSE);
	KASSERT(m_set->order < VM_NFREEORDER,
	    ("vm_phys_unfree_page: page %p has unexpected order %d",
	    m_set, m_set->order));

	/*
	 * Next, remove "m_set" from the free lists.  Finally, extract
	 * "m" from "m_set" using an iterative algorithm: While "m_set"
	 * is larger than a page, shrink "m_set" by returning the half
	 * of "m_set" that does not contain "m" to the free lists.
	 */
	fl = (*seg->free_queues)[m_set->pool];
	order = m_set->order;
	vm_freelist_rem(fl, m_set, order);
	while (order > 0) {
		order--;
		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
		if (m->phys_addr < pa_half)
			m_tmp = &seg->first_page[atop(pa_half - seg->start)];
		else {
			m_tmp = m_set;
			m_set = &seg->first_page[atop(pa_half - seg->start)];
		}
		vm_freelist_add(fl, m_tmp, order, 0);
	}
	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
	return (TRUE);
}

/*
 * Allocate a contiguous set of physical pages of the given size
 * "npages" from the free lists.  All of the physical pages must be at
 * or above the given physical address "low" and below the given
 * physical address "high".  The given value "alignment" determines the
 * alignment of the first physical page in the set.  If the given value
 * "boundary" is non-zero, then the set of physical pages cannot cross
 * any physical address boundary that is a multiple of that value.  Both
 * "alignment" and "boundary" must be a power of two.
 */
vm_page_t
vm_phys_alloc_contig(int domain, u_long npages, vm_paddr_t low, vm_paddr_t high,
    u_long alignment, vm_paddr_t boundary)
{
	vm_paddr_t pa_end, pa_start;
	vm_page_t m_run;
	struct vm_phys_seg *seg;
	int segind;

	KASSERT(npages > 0, ("npages is 0"));
	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
	vm_domain_free_assert_locked(VM_DOMAIN(domain));
	if (low >= high)
		return (NULL);
	m_run = NULL;
	for (segind = vm_phys_nsegs - 1; segind >= 0; segind--) {
		seg = &vm_phys_segs[segind];
		if (seg->start >= high || seg->domain != domain)
			continue;
		if (low >= seg->end)
			break;
		if (low <= seg->start)
			pa_start = seg->start;
		else
			pa_start = low;
		if (high < seg->end)
			pa_end = high;
		else
			pa_end = seg->end;
		if (pa_end - pa_start < ptoa(npages))
			continue;
		m_run = vm_phys_alloc_seg_contig(seg, npages, low, high,
		    alignment, boundary);
		if (m_run != NULL)
			break;
	}
	return (m_run);
}

/*
 * Allocate a run of contiguous physical pages from the free list for the
 * specified segment.
 */
static vm_page_t
vm_phys_alloc_seg_contig(struct vm_phys_seg *seg, u_long npages,
    vm_paddr_t low, vm_paddr_t high, u_long alignment, vm_paddr_t boundary)
{
	struct vm_freelist *fl;
	vm_paddr_t pa, pa_end, size;
	vm_page_t m, m_ret;
	u_long npages_end;
	int oind, order, pind;

	KASSERT(npages > 0, ("npages is 0"));
	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
	vm_domain_free_assert_locked(VM_DOMAIN(seg->domain));
	/* Compute the queue that is the best fit for npages. */
	order = flsl(npages - 1);
	/* Search for a run satisfying the specified conditions. */
	size = npages << PAGE_SHIFT;
	for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER;
	    oind++) {
		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
			fl = (*seg->free_queues)[pind];
			TAILQ_FOREACH(m_ret, &fl[oind].pl, listq) {
				/*
				 * Is the size of this allocation request
				 * larger than the largest block size?
				 */
				if (order >= VM_NFREEORDER) {
					/*
					 * Determine if a sufficient number of
					 * subsequent blocks to satisfy the
					 * allocation request are free.
					 */
					pa = VM_PAGE_TO_PHYS(m_ret);
					pa_end = pa + size;
					if (pa_end < pa)
						continue;
					for (;;) {
						pa += 1 << (PAGE_SHIFT +
						    VM_NFREEORDER - 1);
						if (pa >= pa_end ||
						    pa < seg->start ||
						    pa >= seg->end)
							break;
						m = &seg->first_page[atop(pa -
						    seg->start)];
						if (m->order != VM_NFREEORDER -
						    1)
							break;
					}
					/* If not, go to the next block. */
					if (pa < pa_end)
						continue;
				}

				/*
				 * Determine if the blocks are within the
				 * given range, satisfy the given alignment,
				 * and do not cross the given boundary.
				 */
				pa = VM_PAGE_TO_PHYS(m_ret);
				pa_end = pa + size;
				if (pa >= low && pa_end <= high &&
				    (pa & (alignment - 1)) == 0 &&
				    rounddown2(pa ^ (pa_end - 1), boundary) == 0)
					goto done;
			}
		}
	}
	return (NULL);
done:
	for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
		fl = (*seg->free_queues)[m->pool];
		vm_freelist_rem(fl, m, oind);
		if (m->pool != VM_FREEPOOL_DEFAULT)
			vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m, oind);
	}
	/* Return excess pages to the free lists. */
	npages_end = roundup2(npages, 1 << oind);
	if (npages < npages_end) {
		fl = (*seg->free_queues)[VM_FREEPOOL_DEFAULT];
		vm_phys_enq_range(&m_ret[npages], npages_end - npages, fl, 0);
	}
	return (m_ret);
}

/*
 * Return the index of the first unused slot which may be the terminating
 * entry.
 */
static int
vm_phys_avail_count(void)
{
	int i;

	for (i = 0; phys_avail[i + 1]; i += 2)
		continue;
	if (i > PHYS_AVAIL_ENTRIES)
		panic("Improperly terminated phys_avail %d entries", i);

	return (i);
}

/*
 * Assert that a phys_avail entry is valid.
 */
static void
vm_phys_avail_check(int i)
{
	if (phys_avail[i] & PAGE_MASK)
		panic("Unaligned phys_avail[%d]: %#jx", i,
		    (intmax_t)phys_avail[i]);
	if (phys_avail[i+1] & PAGE_MASK)
		panic("Unaligned phys_avail[%d + 1]: %#jx", i,
		    (intmax_t)phys_avail[i]);
	if (phys_avail[i + 1] < phys_avail[i])
		panic("phys_avail[%d] start %#jx < end %#jx", i,
		    (intmax_t)phys_avail[i], (intmax_t)phys_avail[i+1]);
}

/*
 * Return the index of an overlapping phys_avail entry or -1.
 */
#ifdef NUMA
static int
vm_phys_avail_find(vm_paddr_t pa)
{
	int i;

	for (i = 0; phys_avail[i + 1]; i += 2)
		if (phys_avail[i] <= pa && phys_avail[i + 1] > pa)
			return (i);
	return (-1);
}
#endif

/*
 * Return the index of the largest entry.
 */
int
vm_phys_avail_largest(void)
{
	vm_paddr_t sz, largesz;
	int largest;
	int i;

	largest = 0;
	largesz = 0;
	for (i = 0; phys_avail[i + 1]; i += 2) {
		sz = vm_phys_avail_size(i);
		if (sz > largesz) {
			largesz = sz;
			largest = i;
		}
	}

	return (largest);
}

vm_paddr_t
vm_phys_avail_size(int i)
{

	return (phys_avail[i + 1] - phys_avail[i]);
}

/*
 * Split an entry at the address 'pa'.  Return zero on success or errno.
 */
static int
vm_phys_avail_split(vm_paddr_t pa, int i)
{
	int cnt;

	vm_phys_avail_check(i);
	if (pa <= phys_avail[i] || pa >= phys_avail[i + 1])
		panic("vm_phys_avail_split: invalid address");
	cnt = vm_phys_avail_count();
	if (cnt >= PHYS_AVAIL_ENTRIES)
		return (ENOSPC);
	memmove(&phys_avail[i + 2], &phys_avail[i],
	    (cnt - i) * sizeof(phys_avail[0]));
	phys_avail[i + 1] = pa;
	phys_avail[i + 2] = pa;
	vm_phys_avail_check(i);
	vm_phys_avail_check(i+2);

	return (0);
}

void
vm_phys_early_add_seg(vm_paddr_t start, vm_paddr_t end)
{
	struct vm_phys_seg *seg;

	if (vm_phys_early_nsegs == -1)
		panic("%s: called after initialization", __func__);
	if (vm_phys_early_nsegs == nitems(vm_phys_early_segs))
		panic("%s: ran out of early segments", __func__);

	seg = &vm_phys_early_segs[vm_phys_early_nsegs++];
	seg->start = start;
	seg->end = end;
}

/*
 * This routine allocates NUMA node specific memory before the page
 * allocator is bootstrapped.
 */
vm_paddr_t
vm_phys_early_alloc(int domain, size_t alloc_size)
{
	int i, mem_index, biggestone;
	vm_paddr_t pa, mem_start, mem_end, size, biggestsize, align;

	KASSERT(domain == -1 || (domain >= 0 && domain < vm_ndomains),
	    ("%s: invalid domain index %d", __func__, domain));

	/*
	 * Search the mem_affinity array for the biggest address
	 * range in the desired domain.  This is used to constrain
	 * the phys_avail selection below.
	 */
	biggestsize = 0;
	mem_index = 0;
	mem_start = 0;
	mem_end = -1;
#ifdef NUMA
	if (mem_affinity != NULL) {
		for (i = 0;; i++) {
			size = mem_affinity[i].end - mem_affinity[i].start;
			if (size == 0)
				break;
			if (domain != -1 && mem_affinity[i].domain != domain)
				continue;
			if (size > biggestsize) {
				mem_index = i;
				biggestsize = size;
			}
		}
		mem_start = mem_affinity[mem_index].start;
		mem_end = mem_affinity[mem_index].end;
	}
#endif

	/*
	 * Now find biggest physical segment in within the desired
	 * numa domain.
	 */
	biggestsize = 0;
	biggestone = 0;
	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
		/* skip regions that are out of range */
		if (phys_avail[i+1] - alloc_size < mem_start ||
		    phys_avail[i+1] > mem_end)
			continue;
		size = vm_phys_avail_size(i);
		if (size > biggestsize) {
			biggestone = i;
			biggestsize = size;
		}
	}
	alloc_size = round_page(alloc_size);

	/*
	 * Grab single pages from the front to reduce fragmentation.
	 */
	if (alloc_size == PAGE_SIZE) {
		pa = phys_avail[biggestone];
		phys_avail[biggestone] += PAGE_SIZE;
		vm_phys_avail_check(biggestone);
		return (pa);
	}

	/*
	 * Naturally align large allocations.
	 */
	align = phys_avail[biggestone + 1] & (alloc_size - 1);
	if (alloc_size + align > biggestsize)
		panic("cannot find a large enough size\n");
	if (align != 0 &&
	    vm_phys_avail_split(phys_avail[biggestone + 1] - align,
	    biggestone) != 0)
		/* Wasting memory. */
		phys_avail[biggestone + 1] -= align;

	phys_avail[biggestone + 1] -= alloc_size;
	vm_phys_avail_check(biggestone);
	pa = phys_avail[biggestone + 1];
	return (pa);
}

void
vm_phys_early_startup(void)
{
	struct vm_phys_seg *seg;
	int i;

	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
		phys_avail[i] = round_page(phys_avail[i]);
		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
	}

	for (i = 0; i < vm_phys_early_nsegs; i++) {
		seg = &vm_phys_early_segs[i];
		vm_phys_add_seg(seg->start, seg->end);
	}
	vm_phys_early_nsegs = -1;

#ifdef NUMA
	/* Force phys_avail to be split by domain. */
	if (mem_affinity != NULL) {
		int idx;

		for (i = 0; mem_affinity[i].end != 0; i++) {
			idx = vm_phys_avail_find(mem_affinity[i].start);
			if (idx != -1 &&
			    phys_avail[idx] != mem_affinity[i].start)
				vm_phys_avail_split(mem_affinity[i].start, idx);
			idx = vm_phys_avail_find(mem_affinity[i].end);
			if (idx != -1 &&
			    phys_avail[idx] != mem_affinity[i].end)
				vm_phys_avail_split(mem_affinity[i].end, idx);
		}
	}
#endif
}

#ifdef DDB
/*
 * Show the number of physical pages in each of the free lists.
 */
DB_SHOW_COMMAND(freepages, db_show_freepages)
{
	struct vm_freelist *fl;
	int flind, oind, pind, dom;

	for (dom = 0; dom < vm_ndomains; dom++) {
		db_printf("DOMAIN: %d\n", dom);
		for (flind = 0; flind < vm_nfreelists; flind++) {
			db_printf("FREE LIST %d:\n"
			    "\n  ORDER (SIZE)  |  NUMBER"
			    "\n              ", flind);
			for (pind = 0; pind < VM_NFREEPOOL; pind++)
				db_printf("  |  POOL %d", pind);
			db_printf("\n--            ");
			for (pind = 0; pind < VM_NFREEPOOL; pind++)
				db_printf("-- --      ");
			db_printf("--\n");
			for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
				db_printf("  %2.2d (%6.6dK)", oind,
				    1 << (PAGE_SHIFT - 10 + oind));
				for (pind = 0; pind < VM_NFREEPOOL; pind++) {
				fl = vm_phys_free_queues[dom][flind][pind];
					db_printf("  |  %6.6d", fl[oind].lcnt);
				}
				db_printf("\n");
			}
			db_printf("\n");
		}
		db_printf("\n");
	}
}
#endif