Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
//=- AArch64RedundantCopyElimination.cpp - Remove useless copy for AArch64 -=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
// This pass removes unnecessary copies/moves in BBs based on a dominating
// condition.
//
// We handle three cases:
// 1. For BBs that are targets of CBZ/CBNZ instructions, we know the value of
//    the CBZ/CBNZ source register is zero on the taken/not-taken path. For
//    instance, the copy instruction in the code below can be removed because
//    the CBZW jumps to %bb.2 when w0 is zero.
//
//  %bb.1:
//    cbz w0, .LBB0_2
//  .LBB0_2:
//    mov w0, wzr  ; <-- redundant
//
// 2. If the flag setting instruction defines a register other than WZR/XZR, we
//    can remove a zero copy in some cases.
//
//  %bb.0:
//    subs w0, w1, w2
//    str w0, [x1]
//    b.ne .LBB0_2
//  %bb.1:
//    mov w0, wzr  ; <-- redundant
//    str w0, [x2]
//  .LBB0_2
//
// 3. Finally, if the flag setting instruction is a comparison against a
//    constant (i.e., ADDS[W|X]ri, SUBS[W|X]ri), we can remove a mov immediate
//    in some cases.
//
//  %bb.0:
//    subs xzr, x0, #1
//    b.eq .LBB0_1
//  .LBB0_1:
//    orr x0, xzr, #0x1  ; <-- redundant
//
// This pass should be run after register allocation.
//
// FIXME: This could also be extended to check the whole dominance subtree below
// the comparison if the compile time regression is acceptable.
//
// FIXME: Add support for handling CCMP instructions.
// FIXME: If the known register value is zero, we should be able to rewrite uses
//        to use WZR/XZR directly in some cases.
//===----------------------------------------------------------------------===//
#include "AArch64.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/LiveRegUnits.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/Debug.h"

using namespace llvm;

#define DEBUG_TYPE "aarch64-copyelim"

STATISTIC(NumCopiesRemoved, "Number of copies removed.");

namespace {
class AArch64RedundantCopyElimination : public MachineFunctionPass {
  const MachineRegisterInfo *MRI;
  const TargetRegisterInfo *TRI;

  // DomBBClobberedRegs is used when computing known values in the dominating
  // BB.
  LiveRegUnits DomBBClobberedRegs, DomBBUsedRegs;

  // OptBBClobberedRegs is used when optimizing away redundant copies/moves.
  LiveRegUnits OptBBClobberedRegs, OptBBUsedRegs;

public:
  static char ID;
  AArch64RedundantCopyElimination() : MachineFunctionPass(ID) {
    initializeAArch64RedundantCopyEliminationPass(
        *PassRegistry::getPassRegistry());
  }

  struct RegImm {
    MCPhysReg Reg;
    int32_t Imm;
    RegImm(MCPhysReg Reg, int32_t Imm) : Reg(Reg), Imm(Imm) {}
  };

  bool knownRegValInBlock(MachineInstr &CondBr, MachineBasicBlock *MBB,
                          SmallVectorImpl<RegImm> &KnownRegs,
                          MachineBasicBlock::iterator &FirstUse);
  bool optimizeBlock(MachineBasicBlock *MBB);
  bool runOnMachineFunction(MachineFunction &MF) override;
  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }
  StringRef getPassName() const override {
    return "AArch64 Redundant Copy Elimination";
  }
};
char AArch64RedundantCopyElimination::ID = 0;
}

INITIALIZE_PASS(AArch64RedundantCopyElimination, "aarch64-copyelim",
                "AArch64 redundant copy elimination pass", false, false)

/// It's possible to determine the value of a register based on a dominating
/// condition.  To do so, this function checks to see if the basic block \p MBB
/// is the target of a conditional branch \p CondBr with an equality comparison.
/// If the branch is a CBZ/CBNZ, we know the value of its source operand is zero
/// in \p MBB for some cases.  Otherwise, we find and inspect the NZCV setting
/// instruction (e.g., SUBS, ADDS).  If this instruction defines a register
/// other than WZR/XZR, we know the value of the destination register is zero in
/// \p MMB for some cases.  In addition, if the NZCV setting instruction is
/// comparing against a constant we know the other source register is equal to
/// the constant in \p MBB for some cases.  If we find any constant values, push
/// a physical register and constant value pair onto the KnownRegs vector and
/// return true.  Otherwise, return false if no known values were found.
bool AArch64RedundantCopyElimination::knownRegValInBlock(
    MachineInstr &CondBr, MachineBasicBlock *MBB,
    SmallVectorImpl<RegImm> &KnownRegs, MachineBasicBlock::iterator &FirstUse) {
  unsigned Opc = CondBr.getOpcode();

  // Check if the current basic block is the target block to which the
  // CBZ/CBNZ instruction jumps when its Wt/Xt is zero.
  if (((Opc == AArch64::CBZW || Opc == AArch64::CBZX) &&
       MBB == CondBr.getOperand(1).getMBB()) ||
      ((Opc == AArch64::CBNZW || Opc == AArch64::CBNZX) &&
       MBB != CondBr.getOperand(1).getMBB())) {
    FirstUse = CondBr;
    KnownRegs.push_back(RegImm(CondBr.getOperand(0).getReg(), 0));
    return true;
  }

  // Otherwise, must be a conditional branch.
  if (Opc != AArch64::Bcc)
    return false;

  // Must be an equality check (i.e., == or !=).
  AArch64CC::CondCode CC = (AArch64CC::CondCode)CondBr.getOperand(0).getImm();
  if (CC != AArch64CC::EQ && CC != AArch64CC::NE)
    return false;

  MachineBasicBlock *BrTarget = CondBr.getOperand(1).getMBB();
  if ((CC == AArch64CC::EQ && BrTarget != MBB) ||
      (CC == AArch64CC::NE && BrTarget == MBB))
    return false;

  // Stop if we get to the beginning of PredMBB.
  MachineBasicBlock *PredMBB = *MBB->pred_begin();
  assert(PredMBB == CondBr.getParent() &&
         "Conditional branch not in predecessor block!");
  if (CondBr == PredMBB->begin())
    return false;

  // Registers clobbered in PredMBB between CondBr instruction and current
  // instruction being checked in loop.
  DomBBClobberedRegs.clear();
  DomBBUsedRegs.clear();

  // Find compare instruction that sets NZCV used by CondBr.
  MachineBasicBlock::reverse_iterator RIt = CondBr.getReverseIterator();
  for (MachineInstr &PredI : make_range(std::next(RIt), PredMBB->rend())) {

    bool IsCMN = false;
    switch (PredI.getOpcode()) {
    default:
      break;

    // CMN is an alias for ADDS with a dead destination register.
    case AArch64::ADDSWri:
    case AArch64::ADDSXri:
      IsCMN = true;
      LLVM_FALLTHROUGH;
    // CMP is an alias for SUBS with a dead destination register.
    case AArch64::SUBSWri:
    case AArch64::SUBSXri: {
      // Sometimes the first operand is a FrameIndex. Bail if tht happens.
      if (!PredI.getOperand(1).isReg())
        return false;
      MCPhysReg DstReg = PredI.getOperand(0).getReg();
      MCPhysReg SrcReg = PredI.getOperand(1).getReg();

      bool Res = false;
      // If we're comparing against a non-symbolic immediate and the source
      // register of the compare is not modified (including a self-clobbering
      // compare) between the compare and conditional branch we known the value
      // of the 1st source operand.
      if (PredI.getOperand(2).isImm() && DomBBClobberedRegs.available(SrcReg) &&
          SrcReg != DstReg) {
        // We've found the instruction that sets NZCV.
        int32_t KnownImm = PredI.getOperand(2).getImm();
        int32_t Shift = PredI.getOperand(3).getImm();
        KnownImm <<= Shift;
        if (IsCMN)
          KnownImm = -KnownImm;
        FirstUse = PredI;
        KnownRegs.push_back(RegImm(SrcReg, KnownImm));
        Res = true;
      }

      // If this instructions defines something other than WZR/XZR, we know it's
      // result is zero in some cases.
      if (DstReg == AArch64::WZR || DstReg == AArch64::XZR)
        return Res;

      // The destination register must not be modified between the NZCV setting
      // instruction and the conditional branch.
      if (!DomBBClobberedRegs.available(DstReg))
        return Res;

      FirstUse = PredI;
      KnownRegs.push_back(RegImm(DstReg, 0));
      return true;
    }

    // Look for NZCV setting instructions that define something other than
    // WZR/XZR.
    case AArch64::ADCSWr:
    case AArch64::ADCSXr:
    case AArch64::ADDSWrr:
    case AArch64::ADDSWrs:
    case AArch64::ADDSWrx:
    case AArch64::ADDSXrr:
    case AArch64::ADDSXrs:
    case AArch64::ADDSXrx:
    case AArch64::ADDSXrx64:
    case AArch64::ANDSWri:
    case AArch64::ANDSWrr:
    case AArch64::ANDSWrs:
    case AArch64::ANDSXri:
    case AArch64::ANDSXrr:
    case AArch64::ANDSXrs:
    case AArch64::BICSWrr:
    case AArch64::BICSWrs:
    case AArch64::BICSXrs:
    case AArch64::BICSXrr:
    case AArch64::SBCSWr:
    case AArch64::SBCSXr:
    case AArch64::SUBSWrr:
    case AArch64::SUBSWrs:
    case AArch64::SUBSWrx:
    case AArch64::SUBSXrr:
    case AArch64::SUBSXrs:
    case AArch64::SUBSXrx:
    case AArch64::SUBSXrx64: {
      MCPhysReg DstReg = PredI.getOperand(0).getReg();
      if (DstReg == AArch64::WZR || DstReg == AArch64::XZR)
        return false;

      // The destination register of the NZCV setting instruction must not be
      // modified before the conditional branch.
      if (!DomBBClobberedRegs.available(DstReg))
        return false;

      // We've found the instruction that sets NZCV whose DstReg == 0.
      FirstUse = PredI;
      KnownRegs.push_back(RegImm(DstReg, 0));
      return true;
    }
    }

    // Bail if we see an instruction that defines NZCV that we don't handle.
    if (PredI.definesRegister(AArch64::NZCV))
      return false;

    // Track clobbered and used registers.
    LiveRegUnits::accumulateUsedDefed(PredI, DomBBClobberedRegs, DomBBUsedRegs,
                                      TRI);
  }
  return false;
}

bool AArch64RedundantCopyElimination::optimizeBlock(MachineBasicBlock *MBB) {
  // Check if the current basic block has a single predecessor.
  if (MBB->pred_size() != 1)
    return false;

  // Check if the predecessor has two successors, implying the block ends in a
  // conditional branch.
  MachineBasicBlock *PredMBB = *MBB->pred_begin();
  if (PredMBB->succ_size() != 2)
    return false;

  MachineBasicBlock::iterator CondBr = PredMBB->getLastNonDebugInstr();
  if (CondBr == PredMBB->end())
    return false;

  // Keep track of the earliest point in the PredMBB block where kill markers
  // need to be removed if a COPY is removed.
  MachineBasicBlock::iterator FirstUse;
  // After calling knownRegValInBlock, FirstUse will either point to a CBZ/CBNZ
  // or a compare (i.e., SUBS).  In the latter case, we must take care when
  // updating FirstUse when scanning for COPY instructions.  In particular, if
  // there's a COPY in between the compare and branch the COPY should not
  // update FirstUse.
  bool SeenFirstUse = false;
  // Registers that contain a known value at the start of MBB.
  SmallVector<RegImm, 4> KnownRegs;

  MachineBasicBlock::iterator Itr = std::next(CondBr);
  do {
    --Itr;

    if (!knownRegValInBlock(*Itr, MBB, KnownRegs, FirstUse))
      continue;

    // Reset the clobbered and used register units.
    OptBBClobberedRegs.clear();
    OptBBUsedRegs.clear();

    // Look backward in PredMBB for COPYs from the known reg to find other
    // registers that are known to be a constant value.
    for (auto PredI = Itr;; --PredI) {
      if (FirstUse == PredI)
        SeenFirstUse = true;

      if (PredI->isCopy()) {
        MCPhysReg CopyDstReg = PredI->getOperand(0).getReg();
        MCPhysReg CopySrcReg = PredI->getOperand(1).getReg();
        for (auto &KnownReg : KnownRegs) {
          if (!OptBBClobberedRegs.available(KnownReg.Reg))
            continue;
          // If we have X = COPY Y, and Y is known to be zero, then now X is
          // known to be zero.
          if (CopySrcReg == KnownReg.Reg &&
              OptBBClobberedRegs.available(CopyDstReg)) {
            KnownRegs.push_back(RegImm(CopyDstReg, KnownReg.Imm));
            if (SeenFirstUse)
              FirstUse = PredI;
            break;
          }
          // If we have X = COPY Y, and X is known to be zero, then now Y is
          // known to be zero.
          if (CopyDstReg == KnownReg.Reg &&
              OptBBClobberedRegs.available(CopySrcReg)) {
            KnownRegs.push_back(RegImm(CopySrcReg, KnownReg.Imm));
            if (SeenFirstUse)
              FirstUse = PredI;
            break;
          }
        }
      }

      // Stop if we get to the beginning of PredMBB.
      if (PredI == PredMBB->begin())
        break;

      LiveRegUnits::accumulateUsedDefed(*PredI, OptBBClobberedRegs,
                                        OptBBUsedRegs, TRI);
      // Stop if all of the known-zero regs have been clobbered.
      if (all_of(KnownRegs, [&](RegImm KnownReg) {
            return !OptBBClobberedRegs.available(KnownReg.Reg);
          }))
        break;
    }
    break;

  } while (Itr != PredMBB->begin() && Itr->isTerminator());

  // We've not found a registers with a known value, time to bail out.
  if (KnownRegs.empty())
    return false;

  bool Changed = false;
  // UsedKnownRegs is the set of KnownRegs that have had uses added to MBB.
  SmallSetVector<unsigned, 4> UsedKnownRegs;
  MachineBasicBlock::iterator LastChange = MBB->begin();
  // Remove redundant copy/move instructions unless KnownReg is modified.
  for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
    MachineInstr *MI = &*I;
    ++I;
    bool RemovedMI = false;
    bool IsCopy = MI->isCopy();
    bool IsMoveImm = MI->isMoveImmediate();
    if (IsCopy || IsMoveImm) {
      Register DefReg = MI->getOperand(0).getReg();
      Register SrcReg = IsCopy ? MI->getOperand(1).getReg() : Register();
      int64_t SrcImm = IsMoveImm ? MI->getOperand(1).getImm() : 0;
      if (!MRI->isReserved(DefReg) &&
          ((IsCopy && (SrcReg == AArch64::XZR || SrcReg == AArch64::WZR)) ||
           IsMoveImm)) {
        for (RegImm &KnownReg : KnownRegs) {
          if (KnownReg.Reg != DefReg &&
              !TRI->isSuperRegister(DefReg, KnownReg.Reg))
            continue;

          // For a copy, the known value must be a zero.
          if (IsCopy && KnownReg.Imm != 0)
            continue;

          if (IsMoveImm) {
            // For a move immediate, the known immediate must match the source
            // immediate.
            if (KnownReg.Imm != SrcImm)
              continue;

            // Don't remove a move immediate that implicitly defines the upper
            // bits when only the lower 32 bits are known.
            MCPhysReg CmpReg = KnownReg.Reg;
            if (any_of(MI->implicit_operands(), [CmpReg](MachineOperand &O) {
                  return !O.isDead() && O.isReg() && O.isDef() &&
                         O.getReg() != CmpReg;
                }))
              continue;
          }

          if (IsCopy)
            LLVM_DEBUG(dbgs() << "Remove redundant Copy : " << *MI);
          else
            LLVM_DEBUG(dbgs() << "Remove redundant Move : " << *MI);

          MI->eraseFromParent();
          Changed = true;
          LastChange = I;
          NumCopiesRemoved++;
          UsedKnownRegs.insert(KnownReg.Reg);
          RemovedMI = true;
          break;
        }
      }
    }

    // Skip to the next instruction if we removed the COPY/MovImm.
    if (RemovedMI)
      continue;

    // Remove any regs the MI clobbers from the KnownConstRegs set.
    for (unsigned RI = 0; RI < KnownRegs.size();)
      if (MI->modifiesRegister(KnownRegs[RI].Reg, TRI)) {
        std::swap(KnownRegs[RI], KnownRegs[KnownRegs.size() - 1]);
        KnownRegs.pop_back();
        // Don't increment RI since we need to now check the swapped-in
        // KnownRegs[RI].
      } else {
        ++RI;
      }

    // Continue until the KnownRegs set is empty.
    if (KnownRegs.empty())
      break;
  }

  if (!Changed)
    return false;

  // Add newly used regs to the block's live-in list if they aren't there
  // already.
  for (MCPhysReg KnownReg : UsedKnownRegs)
    if (!MBB->isLiveIn(KnownReg))
      MBB->addLiveIn(KnownReg);

  // Clear kills in the range where changes were made.  This is conservative,
  // but should be okay since kill markers are being phased out.
  LLVM_DEBUG(dbgs() << "Clearing kill flags.\n\tFirstUse: " << *FirstUse
                    << "\tLastChange: " << *LastChange);
  for (MachineInstr &MMI : make_range(FirstUse, PredMBB->end()))
    MMI.clearKillInfo();
  for (MachineInstr &MMI : make_range(MBB->begin(), LastChange))
    MMI.clearKillInfo();

  return true;
}

bool AArch64RedundantCopyElimination::runOnMachineFunction(
    MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;
  TRI = MF.getSubtarget().getRegisterInfo();
  MRI = &MF.getRegInfo();

  // Resize the clobbered and used register unit trackers.  We do this once per
  // function.
  DomBBClobberedRegs.init(*TRI);
  DomBBUsedRegs.init(*TRI);
  OptBBClobberedRegs.init(*TRI);
  OptBBUsedRegs.init(*TRI);

  bool Changed = false;
  for (MachineBasicBlock &MBB : MF)
    Changed |= optimizeBlock(&MBB);
  return Changed;
}

FunctionPass *llvm::createAArch64RedundantCopyEliminationPass() {
  return new AArch64RedundantCopyElimination();
}