Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
//===- ARMRegisterBankInfo.cpp -----------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the RegisterBankInfo class for ARM.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//

#include "ARMRegisterBankInfo.h"
#include "ARMInstrInfo.h" // For the register classes
#include "ARMSubtarget.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"

#define GET_TARGET_REGBANK_IMPL
#include "ARMGenRegisterBank.inc"

using namespace llvm;

// FIXME: TableGen this.
// If it grows too much and TableGen still isn't ready to do the job, extract it
// into an ARMGenRegisterBankInfo.def (similar to AArch64).
namespace llvm {
namespace ARM {
enum PartialMappingIdx {
  PMI_GPR,
  PMI_SPR,
  PMI_DPR,
  PMI_Min = PMI_GPR,
};

RegisterBankInfo::PartialMapping PartMappings[]{
    // GPR Partial Mapping
    {0, 32, GPRRegBank},
    // SPR Partial Mapping
    {0, 32, FPRRegBank},
    // DPR Partial Mapping
    {0, 64, FPRRegBank},
};

#ifndef NDEBUG
static bool checkPartMapping(const RegisterBankInfo::PartialMapping &PM,
                             unsigned Start, unsigned Length,
                             unsigned RegBankID) {
  return PM.StartIdx == Start && PM.Length == Length &&
         PM.RegBank->getID() == RegBankID;
}

static void checkPartialMappings() {
  assert(
      checkPartMapping(PartMappings[PMI_GPR - PMI_Min], 0, 32, GPRRegBankID) &&
      "Wrong mapping for GPR");
  assert(
      checkPartMapping(PartMappings[PMI_SPR - PMI_Min], 0, 32, FPRRegBankID) &&
      "Wrong mapping for SPR");
  assert(
      checkPartMapping(PartMappings[PMI_DPR - PMI_Min], 0, 64, FPRRegBankID) &&
      "Wrong mapping for DPR");
}
#endif

enum ValueMappingIdx {
  InvalidIdx = 0,
  GPR3OpsIdx = 1,
  SPR3OpsIdx = 4,
  DPR3OpsIdx = 7,
};

RegisterBankInfo::ValueMapping ValueMappings[] = {
    // invalid
    {nullptr, 0},
    // 3 ops in GPRs
    {&PartMappings[PMI_GPR - PMI_Min], 1},
    {&PartMappings[PMI_GPR - PMI_Min], 1},
    {&PartMappings[PMI_GPR - PMI_Min], 1},
    // 3 ops in SPRs
    {&PartMappings[PMI_SPR - PMI_Min], 1},
    {&PartMappings[PMI_SPR - PMI_Min], 1},
    {&PartMappings[PMI_SPR - PMI_Min], 1},
    // 3 ops in DPRs
    {&PartMappings[PMI_DPR - PMI_Min], 1},
    {&PartMappings[PMI_DPR - PMI_Min], 1},
    {&PartMappings[PMI_DPR - PMI_Min], 1}};

#ifndef NDEBUG
static bool checkValueMapping(const RegisterBankInfo::ValueMapping &VM,
                              RegisterBankInfo::PartialMapping *BreakDown) {
  return VM.NumBreakDowns == 1 && VM.BreakDown == BreakDown;
}

static void checkValueMappings() {
  assert(checkValueMapping(ValueMappings[GPR3OpsIdx],
                           &PartMappings[PMI_GPR - PMI_Min]) &&
         "Wrong value mapping for 3 GPR ops instruction");
  assert(checkValueMapping(ValueMappings[GPR3OpsIdx + 1],
                           &PartMappings[PMI_GPR - PMI_Min]) &&
         "Wrong value mapping for 3 GPR ops instruction");
  assert(checkValueMapping(ValueMappings[GPR3OpsIdx + 2],
                           &PartMappings[PMI_GPR - PMI_Min]) &&
         "Wrong value mapping for 3 GPR ops instruction");

  assert(checkValueMapping(ValueMappings[SPR3OpsIdx],
                           &PartMappings[PMI_SPR - PMI_Min]) &&
         "Wrong value mapping for 3 SPR ops instruction");
  assert(checkValueMapping(ValueMappings[SPR3OpsIdx + 1],
                           &PartMappings[PMI_SPR - PMI_Min]) &&
         "Wrong value mapping for 3 SPR ops instruction");
  assert(checkValueMapping(ValueMappings[SPR3OpsIdx + 2],
                           &PartMappings[PMI_SPR - PMI_Min]) &&
         "Wrong value mapping for 3 SPR ops instruction");

  assert(checkValueMapping(ValueMappings[DPR3OpsIdx],
                           &PartMappings[PMI_DPR - PMI_Min]) &&
         "Wrong value mapping for 3 DPR ops instruction");
  assert(checkValueMapping(ValueMappings[DPR3OpsIdx + 1],
                           &PartMappings[PMI_DPR - PMI_Min]) &&
         "Wrong value mapping for 3 DPR ops instruction");
  assert(checkValueMapping(ValueMappings[DPR3OpsIdx + 2],
                           &PartMappings[PMI_DPR - PMI_Min]) &&
         "Wrong value mapping for 3 DPR ops instruction");
}
#endif
} // end namespace arm
} // end namespace llvm

ARMRegisterBankInfo::ARMRegisterBankInfo(const TargetRegisterInfo &TRI)
    : ARMGenRegisterBankInfo() {
  // We have only one set of register banks, whatever the subtarget
  // is. Therefore, the initialization of the RegBanks table should be
  // done only once. Indeed the table of all register banks
  // (ARM::RegBanks) is unique in the compiler. At some point, it
  // will get tablegen'ed and the whole constructor becomes empty.
  static llvm::once_flag InitializeRegisterBankFlag;

  static auto InitializeRegisterBankOnce = [&]() {
    const RegisterBank &RBGPR = getRegBank(ARM::GPRRegBankID);
    (void)RBGPR;
    assert(&ARM::GPRRegBank == &RBGPR && "The order in RegBanks is messed up");

    // Initialize the GPR bank.
    assert(RBGPR.covers(*TRI.getRegClass(ARM::GPRRegClassID)) &&
           "Subclass not added?");
    assert(RBGPR.covers(*TRI.getRegClass(ARM::GPRwithAPSRRegClassID)) &&
           "Subclass not added?");
    assert(RBGPR.covers(*TRI.getRegClass(ARM::GPRnopcRegClassID)) &&
           "Subclass not added?");
    assert(RBGPR.covers(*TRI.getRegClass(ARM::rGPRRegClassID)) &&
           "Subclass not added?");
    assert(RBGPR.covers(*TRI.getRegClass(ARM::tGPRRegClassID)) &&
           "Subclass not added?");
    assert(RBGPR.covers(*TRI.getRegClass(ARM::tcGPRRegClassID)) &&
           "Subclass not added?");
    assert(RBGPR.covers(*TRI.getRegClass(ARM::tGPR_and_tcGPRRegClassID)) &&
           "Subclass not added?");
    assert(RBGPR.covers(
               *TRI.getRegClass(ARM::tGPREven_and_tGPR_and_tcGPRRegClassID)) &&
           "Subclass not added?");
    assert(RBGPR.covers(*TRI.getRegClass(ARM::tGPROdd_and_tcGPRRegClassID)) &&
           "Subclass not added?");
    assert(RBGPR.getSize() == 32 && "GPRs should hold up to 32-bit");

#ifndef NDEBUG
    ARM::checkPartialMappings();
    ARM::checkValueMappings();
#endif
  };

  llvm::call_once(InitializeRegisterBankFlag, InitializeRegisterBankOnce);
}

const RegisterBank &
ARMRegisterBankInfo::getRegBankFromRegClass(const TargetRegisterClass &RC,
                                            LLT) const {
  using namespace ARM;

  switch (RC.getID()) {
  case GPRRegClassID:
  case GPRwithAPSRRegClassID:
  case GPRnopcRegClassID:
  case rGPRRegClassID:
  case GPRspRegClassID:
  case tGPR_and_tcGPRRegClassID:
  case tcGPRRegClassID:
  case tGPRRegClassID:
  case tGPREvenRegClassID:
  case tGPROddRegClassID:
  case tGPR_and_tGPREvenRegClassID:
  case tGPR_and_tGPROddRegClassID:
  case tGPREven_and_tcGPRRegClassID:
  case tGPREven_and_tGPR_and_tcGPRRegClassID:
  case tGPROdd_and_tcGPRRegClassID:
    return getRegBank(ARM::GPRRegBankID);
  case HPRRegClassID:
  case SPR_8RegClassID:
  case SPRRegClassID:
  case DPR_8RegClassID:
  case DPRRegClassID:
  case QPRRegClassID:
    return getRegBank(ARM::FPRRegBankID);
  default:
    llvm_unreachable("Unsupported register kind");
  }

  llvm_unreachable("Switch should handle all register classes");
}

const RegisterBankInfo::InstructionMapping &
ARMRegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
  auto Opc = MI.getOpcode();

  // Try the default logic for non-generic instructions that are either copies
  // or already have some operands assigned to banks.
  if (!isPreISelGenericOpcode(Opc) || Opc == TargetOpcode::G_PHI) {
    const InstructionMapping &Mapping = getInstrMappingImpl(MI);
    if (Mapping.isValid())
      return Mapping;
  }

  using namespace TargetOpcode;

  const MachineFunction &MF = *MI.getParent()->getParent();
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  unsigned NumOperands = MI.getNumOperands();
  const ValueMapping *OperandsMapping = &ARM::ValueMappings[ARM::GPR3OpsIdx];

  switch (Opc) {
  case G_ADD:
  case G_SUB: {
    // Integer operations where the source and destination are in the
    // same register class.
    LLT Ty = MRI.getType(MI.getOperand(0).getReg());
    OperandsMapping = Ty.getSizeInBits() == 64
                          ? &ARM::ValueMappings[ARM::DPR3OpsIdx]
                          : &ARM::ValueMappings[ARM::GPR3OpsIdx];
    break;
  }
  case G_MUL:
  case G_AND:
  case G_OR:
  case G_XOR:
  case G_LSHR:
  case G_ASHR:
  case G_SHL:
  case G_SDIV:
  case G_UDIV:
  case G_SEXT:
  case G_ZEXT:
  case G_ANYEXT:
  case G_PTR_ADD:
  case G_INTTOPTR:
  case G_PTRTOINT:
  case G_CTLZ:
    // FIXME: We're abusing the fact that everything lives in a GPR for now; in
    // the real world we would use different mappings.
    OperandsMapping = &ARM::ValueMappings[ARM::GPR3OpsIdx];
    break;
  case G_TRUNC: {
    // In some cases we may end up with a G_TRUNC from a 64-bit value to a
    // 32-bit value. This isn't a real floating point trunc (that would be a
    // G_FPTRUNC). Instead it is an integer trunc in disguise, which can appear
    // because the legalizer doesn't distinguish between integer and floating
    // point values so it may leave some 64-bit integers un-narrowed. Until we
    // have a more principled solution that doesn't let such things sneak all
    // the way to this point, just map the source to a DPR and the destination
    // to a GPR.
    LLT LargeTy = MRI.getType(MI.getOperand(1).getReg());
    OperandsMapping =
        LargeTy.getSizeInBits() <= 32
            ? &ARM::ValueMappings[ARM::GPR3OpsIdx]
            : getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx],
                                  &ARM::ValueMappings[ARM::DPR3OpsIdx]});
    break;
  }
  case G_LOAD:
  case G_STORE: {
    LLT Ty = MRI.getType(MI.getOperand(0).getReg());
    OperandsMapping =
        Ty.getSizeInBits() == 64
            ? getOperandsMapping({&ARM::ValueMappings[ARM::DPR3OpsIdx],
                                  &ARM::ValueMappings[ARM::GPR3OpsIdx]})
            : &ARM::ValueMappings[ARM::GPR3OpsIdx];
    break;
  }
  case G_FADD:
  case G_FSUB:
  case G_FMUL:
  case G_FDIV:
  case G_FNEG: {
    LLT Ty = MRI.getType(MI.getOperand(0).getReg());
    OperandsMapping =Ty.getSizeInBits() == 64
                          ? &ARM::ValueMappings[ARM::DPR3OpsIdx]
                          : &ARM::ValueMappings[ARM::SPR3OpsIdx];
    break;
  }
  case G_FMA: {
    LLT Ty = MRI.getType(MI.getOperand(0).getReg());
    OperandsMapping =
        Ty.getSizeInBits() == 64
            ? getOperandsMapping({&ARM::ValueMappings[ARM::DPR3OpsIdx],
                                  &ARM::ValueMappings[ARM::DPR3OpsIdx],
                                  &ARM::ValueMappings[ARM::DPR3OpsIdx],
                                  &ARM::ValueMappings[ARM::DPR3OpsIdx]})
            : getOperandsMapping({&ARM::ValueMappings[ARM::SPR3OpsIdx],
                                  &ARM::ValueMappings[ARM::SPR3OpsIdx],
                                  &ARM::ValueMappings[ARM::SPR3OpsIdx],
                                  &ARM::ValueMappings[ARM::SPR3OpsIdx]});
    break;
  }
  case G_FPEXT: {
    LLT ToTy = MRI.getType(MI.getOperand(0).getReg());
    LLT FromTy = MRI.getType(MI.getOperand(1).getReg());
    if (ToTy.getSizeInBits() == 64 && FromTy.getSizeInBits() == 32)
      OperandsMapping =
          getOperandsMapping({&ARM::ValueMappings[ARM::DPR3OpsIdx],
                              &ARM::ValueMappings[ARM::SPR3OpsIdx]});
    break;
  }
  case G_FPTRUNC: {
    LLT ToTy = MRI.getType(MI.getOperand(0).getReg());
    LLT FromTy = MRI.getType(MI.getOperand(1).getReg());
    if (ToTy.getSizeInBits() == 32 && FromTy.getSizeInBits() == 64)
      OperandsMapping =
          getOperandsMapping({&ARM::ValueMappings[ARM::SPR3OpsIdx],
                              &ARM::ValueMappings[ARM::DPR3OpsIdx]});
    break;
  }
  case G_FPTOSI:
  case G_FPTOUI: {
    LLT ToTy = MRI.getType(MI.getOperand(0).getReg());
    LLT FromTy = MRI.getType(MI.getOperand(1).getReg());
    if ((FromTy.getSizeInBits() == 32 || FromTy.getSizeInBits() == 64) &&
        ToTy.getSizeInBits() == 32)
      OperandsMapping =
          FromTy.getSizeInBits() == 64
              ? getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx],
                                    &ARM::ValueMappings[ARM::DPR3OpsIdx]})
              : getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx],
                                    &ARM::ValueMappings[ARM::SPR3OpsIdx]});
    break;
  }
  case G_SITOFP:
  case G_UITOFP: {
    LLT ToTy = MRI.getType(MI.getOperand(0).getReg());
    LLT FromTy = MRI.getType(MI.getOperand(1).getReg());
    if (FromTy.getSizeInBits() == 32 &&
        (ToTy.getSizeInBits() == 32 || ToTy.getSizeInBits() == 64))
      OperandsMapping =
          ToTy.getSizeInBits() == 64
              ? getOperandsMapping({&ARM::ValueMappings[ARM::DPR3OpsIdx],
                                    &ARM::ValueMappings[ARM::GPR3OpsIdx]})
              : getOperandsMapping({&ARM::ValueMappings[ARM::SPR3OpsIdx],
                                    &ARM::ValueMappings[ARM::GPR3OpsIdx]});
    break;
  }
  case G_FCONSTANT: {
    LLT Ty = MRI.getType(MI.getOperand(0).getReg());
    OperandsMapping = getOperandsMapping(
        {Ty.getSizeInBits() == 64 ? &ARM::ValueMappings[ARM::DPR3OpsIdx]
                                  : &ARM::ValueMappings[ARM::SPR3OpsIdx],
         nullptr});
    break;
  }
  case G_CONSTANT:
  case G_FRAME_INDEX:
  case G_GLOBAL_VALUE:
    OperandsMapping =
        getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx], nullptr});
    break;
  case G_SELECT: {
    LLT Ty = MRI.getType(MI.getOperand(0).getReg());
    (void)Ty;
    LLT Ty2 = MRI.getType(MI.getOperand(1).getReg());
    (void)Ty2;
    assert(Ty.getSizeInBits() == 32 && "Unsupported size for G_SELECT");
    assert(Ty2.getSizeInBits() == 1 && "Unsupported size for G_SELECT");
    OperandsMapping =
        getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx],
                            &ARM::ValueMappings[ARM::GPR3OpsIdx],
                            &ARM::ValueMappings[ARM::GPR3OpsIdx],
                            &ARM::ValueMappings[ARM::GPR3OpsIdx]});
    break;
  }
  case G_ICMP: {
    LLT Ty2 = MRI.getType(MI.getOperand(2).getReg());
    (void)Ty2;
    assert(Ty2.getSizeInBits() == 32 && "Unsupported size for G_ICMP");
    OperandsMapping =
        getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx], nullptr,
                            &ARM::ValueMappings[ARM::GPR3OpsIdx],
                            &ARM::ValueMappings[ARM::GPR3OpsIdx]});
    break;
  }
  case G_FCMP: {
    LLT Ty = MRI.getType(MI.getOperand(0).getReg());
    (void)Ty;
    LLT Ty1 = MRI.getType(MI.getOperand(2).getReg());
    LLT Ty2 = MRI.getType(MI.getOperand(3).getReg());
    (void)Ty2;
    assert(Ty.getSizeInBits() == 1 && "Unsupported size for G_FCMP");
    assert(Ty1.getSizeInBits() == Ty2.getSizeInBits() &&
           "Mismatched operand sizes for G_FCMP");

    unsigned Size = Ty1.getSizeInBits();
    assert((Size == 32 || Size == 64) && "Unsupported size for G_FCMP");

    auto FPRValueMapping = Size == 32 ? &ARM::ValueMappings[ARM::SPR3OpsIdx]
                                      : &ARM::ValueMappings[ARM::DPR3OpsIdx];
    OperandsMapping =
        getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx], nullptr,
                            FPRValueMapping, FPRValueMapping});
    break;
  }
  case G_MERGE_VALUES: {
    // We only support G_MERGE_VALUES for creating a double precision floating
    // point value out of two GPRs.
    LLT Ty = MRI.getType(MI.getOperand(0).getReg());
    LLT Ty1 = MRI.getType(MI.getOperand(1).getReg());
    LLT Ty2 = MRI.getType(MI.getOperand(2).getReg());
    if (Ty.getSizeInBits() != 64 || Ty1.getSizeInBits() != 32 ||
        Ty2.getSizeInBits() != 32)
      return getInvalidInstructionMapping();
    OperandsMapping =
        getOperandsMapping({&ARM::ValueMappings[ARM::DPR3OpsIdx],
                            &ARM::ValueMappings[ARM::GPR3OpsIdx],
                            &ARM::ValueMappings[ARM::GPR3OpsIdx]});
    break;
  }
  case G_UNMERGE_VALUES: {
    // We only support G_UNMERGE_VALUES for splitting a double precision
    // floating point value into two GPRs.
    LLT Ty = MRI.getType(MI.getOperand(0).getReg());
    LLT Ty1 = MRI.getType(MI.getOperand(1).getReg());
    LLT Ty2 = MRI.getType(MI.getOperand(2).getReg());
    if (Ty.getSizeInBits() != 32 || Ty1.getSizeInBits() != 32 ||
        Ty2.getSizeInBits() != 64)
      return getInvalidInstructionMapping();
    OperandsMapping =
        getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx],
                            &ARM::ValueMappings[ARM::GPR3OpsIdx],
                            &ARM::ValueMappings[ARM::DPR3OpsIdx]});
    break;
  }
  case G_BR:
    OperandsMapping = getOperandsMapping({nullptr});
    break;
  case G_BRCOND:
    OperandsMapping =
        getOperandsMapping({&ARM::ValueMappings[ARM::GPR3OpsIdx], nullptr});
    break;
  case DBG_VALUE: {
    SmallVector<const ValueMapping *, 4> OperandBanks(NumOperands);
    const MachineOperand &MaybeReg = MI.getOperand(0);
    if (MaybeReg.isReg() && MaybeReg.getReg()) {
      unsigned Size = MRI.getType(MaybeReg.getReg()).getSizeInBits();
      if (Size > 32 && Size != 64)
        return getInvalidInstructionMapping();
      OperandBanks[0] = Size == 64 ? &ARM::ValueMappings[ARM::DPR3OpsIdx]
                                   : &ARM::ValueMappings[ARM::GPR3OpsIdx];
    }
    OperandsMapping = getOperandsMapping(OperandBanks);
    break;
  }
  default:
    return getInvalidInstructionMapping();
  }

#ifndef NDEBUG
  for (unsigned i = 0; i < NumOperands; i++) {
    for (const auto &Mapping : OperandsMapping[i]) {
      assert(
          (Mapping.RegBank->getID() != ARM::FPRRegBankID ||
           MF.getSubtarget<ARMSubtarget>().hasVFP2Base()) &&
          "Trying to use floating point register bank on target without vfp");
    }
  }
#endif

  return getInstructionMapping(DefaultMappingID, /*Cost=*/1, OperandsMapping,
                               NumOperands);
}