Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
//===-- ARM/ARMMCCodeEmitter.cpp - Convert ARM code to machine code -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the ARMMCCodeEmitter class.
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMBaseInfo.h"
#include "MCTargetDesc/ARMFixupKinds.h"
#include "MCTargetDesc/ARMMCExpr.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/Triple.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>

using namespace llvm;

#define DEBUG_TYPE "mccodeemitter"

STATISTIC(MCNumEmitted, "Number of MC instructions emitted.");
STATISTIC(MCNumCPRelocations, "Number of constant pool relocations created.");

namespace {

class ARMMCCodeEmitter : public MCCodeEmitter {
  const MCInstrInfo &MCII;
  MCContext &CTX;
  bool IsLittleEndian;

public:
  ARMMCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx, bool IsLittle)
    : MCII(mcii), CTX(ctx), IsLittleEndian(IsLittle) {
  }
  ARMMCCodeEmitter(const ARMMCCodeEmitter &) = delete;
  ARMMCCodeEmitter &operator=(const ARMMCCodeEmitter &) = delete;
  ~ARMMCCodeEmitter() override = default;

  bool isThumb(const MCSubtargetInfo &STI) const {
    return STI.getFeatureBits()[ARM::ModeThumb];
  }

  bool isThumb2(const MCSubtargetInfo &STI) const {
    return isThumb(STI) && STI.getFeatureBits()[ARM::FeatureThumb2];
  }

  bool isTargetMachO(const MCSubtargetInfo &STI) const {
    const Triple &TT = STI.getTargetTriple();
    return TT.isOSBinFormatMachO();
  }

  unsigned getMachineSoImmOpValue(unsigned SoImm) const;

  // getBinaryCodeForInstr - TableGen'erated function for getting the
  // binary encoding for an instruction.
  uint64_t getBinaryCodeForInstr(const MCInst &MI,
                                 SmallVectorImpl<MCFixup> &Fixups,
                                 const MCSubtargetInfo &STI) const;

  /// getMachineOpValue - Return binary encoding of operand. If the machine
  /// operand requires relocation, record the relocation and return zero.
  unsigned getMachineOpValue(const MCInst &MI,const MCOperand &MO,
                             SmallVectorImpl<MCFixup> &Fixups,
                             const MCSubtargetInfo &STI) const;

  /// getHiLo16ImmOpValue - Return the encoding for the hi / low 16-bit of
  /// the specified operand. This is used for operands with :lower16: and
  /// :upper16: prefixes.
  uint32_t getHiLo16ImmOpValue(const MCInst &MI, unsigned OpIdx,
                               SmallVectorImpl<MCFixup> &Fixups,
                               const MCSubtargetInfo &STI) const;

  bool EncodeAddrModeOpValues(const MCInst &MI, unsigned OpIdx,
                              unsigned &Reg, unsigned &Imm,
                              SmallVectorImpl<MCFixup> &Fixups,
                              const MCSubtargetInfo &STI) const;

  /// getThumbBLTargetOpValue - Return encoding info for Thumb immediate
  /// BL branch target.
  uint32_t getThumbBLTargetOpValue(const MCInst &MI, unsigned OpIdx,
                                   SmallVectorImpl<MCFixup> &Fixups,
                                   const MCSubtargetInfo &STI) const;

  /// getThumbBLXTargetOpValue - Return encoding info for Thumb immediate
  /// BLX branch target.
  uint32_t getThumbBLXTargetOpValue(const MCInst &MI, unsigned OpIdx,
                                    SmallVectorImpl<MCFixup> &Fixups,
                                    const MCSubtargetInfo &STI) const;

  /// getThumbBRTargetOpValue - Return encoding info for Thumb branch target.
  uint32_t getThumbBRTargetOpValue(const MCInst &MI, unsigned OpIdx,
                                   SmallVectorImpl<MCFixup> &Fixups,
                                   const MCSubtargetInfo &STI) const;

  /// getThumbBCCTargetOpValue - Return encoding info for Thumb branch target.
  uint32_t getThumbBCCTargetOpValue(const MCInst &MI, unsigned OpIdx,
                                    SmallVectorImpl<MCFixup> &Fixups,
                                    const MCSubtargetInfo &STI) const;

  /// getThumbCBTargetOpValue - Return encoding info for Thumb branch target.
  uint32_t getThumbCBTargetOpValue(const MCInst &MI, unsigned OpIdx,
                                   SmallVectorImpl<MCFixup> &Fixups,
                                   const MCSubtargetInfo &STI) const;

  /// getBranchTargetOpValue - Return encoding info for 24-bit immediate
  /// branch target.
  uint32_t getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
                                  SmallVectorImpl<MCFixup> &Fixups,
                                  const MCSubtargetInfo &STI) const;

  /// getThumbBranchTargetOpValue - Return encoding info for 24-bit
  /// immediate Thumb2 direct branch target.
  uint32_t getThumbBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
                                       SmallVectorImpl<MCFixup> &Fixups,
                                       const MCSubtargetInfo &STI) const;

  /// getARMBranchTargetOpValue - Return encoding info for 24-bit immediate
  /// branch target.
  uint32_t getARMBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
                                     SmallVectorImpl<MCFixup> &Fixups,
                                     const MCSubtargetInfo &STI) const;
  uint32_t getARMBLTargetOpValue(const MCInst &MI, unsigned OpIdx,
                                 SmallVectorImpl<MCFixup> &Fixups,
                                 const MCSubtargetInfo &STI) const;
  uint32_t getARMBLXTargetOpValue(const MCInst &MI, unsigned OpIdx,
                                  SmallVectorImpl<MCFixup> &Fixups,
                                  const MCSubtargetInfo &STI) const;

  /// getAdrLabelOpValue - Return encoding info for 12-bit immediate
  /// ADR label target.
  uint32_t getAdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
                              SmallVectorImpl<MCFixup> &Fixups,
                              const MCSubtargetInfo &STI) const;
  uint32_t getThumbAdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
                              SmallVectorImpl<MCFixup> &Fixups,
                              const MCSubtargetInfo &STI) const;
  uint32_t getT2AdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
                              SmallVectorImpl<MCFixup> &Fixups,
                              const MCSubtargetInfo &STI) const;

  uint32_t getITMaskOpValue(const MCInst &MI, unsigned OpIdx,
                            SmallVectorImpl<MCFixup> &Fixups,
                            const MCSubtargetInfo &STI) const;

  /// getMVEShiftImmOpValue - Return encoding info for the 'sz:imm5'
  /// operand.
  uint32_t getMVEShiftImmOpValue(const MCInst &MI, unsigned OpIdx,
                                 SmallVectorImpl<MCFixup> &Fixups,
                                 const MCSubtargetInfo &STI) const;

  /// getAddrModeImm12OpValue - Return encoding info for 'reg +/- imm12'
  /// operand.
  uint32_t getAddrModeImm12OpValue(const MCInst &MI, unsigned OpIdx,
                                   SmallVectorImpl<MCFixup> &Fixups,
                                   const MCSubtargetInfo &STI) const;

  /// getThumbAddrModeRegRegOpValue - Return encoding for 'reg + reg' operand.
  uint32_t getThumbAddrModeRegRegOpValue(const MCInst &MI, unsigned OpIdx,
                                         SmallVectorImpl<MCFixup> &Fixups,
                                         const MCSubtargetInfo &STI) const;

  /// getT2AddrModeImm8s4OpValue - Return encoding info for 'reg +/- imm8<<2'
  /// operand.
  uint32_t getT2AddrModeImm8s4OpValue(const MCInst &MI, unsigned OpIdx,
                                   SmallVectorImpl<MCFixup> &Fixups,
                                   const MCSubtargetInfo &STI) const;

  /// getT2AddrModeImm7s4OpValue - Return encoding info for 'reg +/- imm7<<2'
  /// operand.
  uint32_t getT2AddrModeImm7s4OpValue(const MCInst &MI, unsigned OpIdx,
                                      SmallVectorImpl<MCFixup> &Fixups,
                                      const MCSubtargetInfo &STI) const;

  /// getT2AddrModeImm0_1020s4OpValue - Return encoding info for 'reg + imm8<<2'
  /// operand.
  uint32_t getT2AddrModeImm0_1020s4OpValue(const MCInst &MI, unsigned OpIdx,
                                   SmallVectorImpl<MCFixup> &Fixups,
                                   const MCSubtargetInfo &STI) const;

  /// getT2ScaledImmOpValue - Return encoding info for '+/- immX<<Y'
  /// operand.
  template<unsigned Bits, unsigned Shift>
  uint32_t getT2ScaledImmOpValue(const MCInst &MI, unsigned OpIdx,
                                 SmallVectorImpl<MCFixup> &Fixups,
                                 const MCSubtargetInfo &STI) const;

  /// getMveAddrModeRQOpValue - Return encoding info for 'reg, vreg'
  /// operand.
  uint32_t getMveAddrModeRQOpValue(const MCInst &MI, unsigned OpIdx,
                                   SmallVectorImpl<MCFixup> &Fixups,
                                   const MCSubtargetInfo &STI) const;

  /// getMveAddrModeQOpValue - Return encoding info for 'reg +/- imm7<<{shift}'
  /// operand.
  template<int shift>
  uint32_t getMveAddrModeQOpValue(const MCInst &MI, unsigned OpIdx,
                                  SmallVectorImpl<MCFixup> &Fixups,
                                  const MCSubtargetInfo &STI) const;

  /// getLdStSORegOpValue - Return encoding info for 'reg +/- reg shop imm'
  /// operand as needed by load/store instructions.
  uint32_t getLdStSORegOpValue(const MCInst &MI, unsigned OpIdx,
                               SmallVectorImpl<MCFixup> &Fixups,
                               const MCSubtargetInfo &STI) const;

  /// getLdStmModeOpValue - Return encoding for load/store multiple mode.
  uint32_t getLdStmModeOpValue(const MCInst &MI, unsigned OpIdx,
                               SmallVectorImpl<MCFixup> &Fixups,
                               const MCSubtargetInfo &STI) const {
    ARM_AM::AMSubMode Mode = (ARM_AM::AMSubMode)MI.getOperand(OpIdx).getImm();
    switch (Mode) {
    default: llvm_unreachable("Unknown addressing sub-mode!");
    case ARM_AM::da: return 0;
    case ARM_AM::ia: return 1;
    case ARM_AM::db: return 2;
    case ARM_AM::ib: return 3;
    }
  }

  /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
  ///
  unsigned getShiftOp(ARM_AM::ShiftOpc ShOpc) const {
    switch (ShOpc) {
    case ARM_AM::no_shift:
    case ARM_AM::lsl: return 0;
    case ARM_AM::lsr: return 1;
    case ARM_AM::asr: return 2;
    case ARM_AM::ror:
    case ARM_AM::rrx: return 3;
    default:
      llvm_unreachable("Invalid ShiftOpc!");
    }
  }

  /// getAddrMode2OffsetOpValue - Return encoding for am2offset operands.
  uint32_t getAddrMode2OffsetOpValue(const MCInst &MI, unsigned OpIdx,
                                     SmallVectorImpl<MCFixup> &Fixups,
                                     const MCSubtargetInfo &STI) const;

  /// getPostIdxRegOpValue - Return encoding for postidx_reg operands.
  uint32_t getPostIdxRegOpValue(const MCInst &MI, unsigned OpIdx,
                                SmallVectorImpl<MCFixup> &Fixups,
                                const MCSubtargetInfo &STI) const;

  /// getAddrMode3OffsetOpValue - Return encoding for am3offset operands.
  uint32_t getAddrMode3OffsetOpValue(const MCInst &MI, unsigned OpIdx,
                                     SmallVectorImpl<MCFixup> &Fixups,
                                     const MCSubtargetInfo &STI) const;

  /// getAddrMode3OpValue - Return encoding for addrmode3 operands.
  uint32_t getAddrMode3OpValue(const MCInst &MI, unsigned OpIdx,
                               SmallVectorImpl<MCFixup> &Fixups,
                               const MCSubtargetInfo &STI) const;

  /// getAddrModeThumbSPOpValue - Return encoding info for 'reg +/- imm12'
  /// operand.
  uint32_t getAddrModeThumbSPOpValue(const MCInst &MI, unsigned OpIdx,
                                     SmallVectorImpl<MCFixup> &Fixups,
                                     const MCSubtargetInfo &STI) const;

  /// getAddrModeISOpValue - Encode the t_addrmode_is# operands.
  uint32_t getAddrModeISOpValue(const MCInst &MI, unsigned OpIdx,
                                SmallVectorImpl<MCFixup> &Fixups,
                                const MCSubtargetInfo &STI) const;

  /// getAddrModePCOpValue - Return encoding for t_addrmode_pc operands.
  uint32_t getAddrModePCOpValue(const MCInst &MI, unsigned OpIdx,
                                SmallVectorImpl<MCFixup> &Fixups,
                                const MCSubtargetInfo &STI) const;

  /// getAddrMode5OpValue - Return encoding info for 'reg +/- (imm8 << 2)' operand.
  uint32_t getAddrMode5OpValue(const MCInst &MI, unsigned OpIdx,
                               SmallVectorImpl<MCFixup> &Fixups,
                               const MCSubtargetInfo &STI) const;

  /// getAddrMode5FP16OpValue - Return encoding info for 'reg +/- (imm8 << 1)' operand.
  uint32_t getAddrMode5FP16OpValue(const MCInst &MI, unsigned OpIdx,
                               SmallVectorImpl<MCFixup> &Fixups,
                               const MCSubtargetInfo &STI) const;

  /// getCCOutOpValue - Return encoding of the 's' bit.
  unsigned getCCOutOpValue(const MCInst &MI, unsigned Op,
                           SmallVectorImpl<MCFixup> &Fixups,
                           const MCSubtargetInfo &STI) const {
    // The operand is either reg0 or CPSR. The 's' bit is encoded as '0' or
    // '1' respectively.
    return MI.getOperand(Op).getReg() == ARM::CPSR;
  }

  unsigned getModImmOpValue(const MCInst &MI, unsigned Op,
                            SmallVectorImpl<MCFixup> &Fixups,
                            const MCSubtargetInfo &ST) const {
    const MCOperand &MO = MI.getOperand(Op);

    // Support for fixups (MCFixup)
    if (MO.isExpr()) {
      const MCExpr *Expr = MO.getExpr();
      // Fixups resolve to plain values that need to be encoded.
      MCFixupKind Kind = MCFixupKind(ARM::fixup_arm_mod_imm);
      Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));
      return 0;
    }

    // Immediate is already in its encoded format
    return MO.getImm();
  }

  /// getT2SOImmOpValue - Return an encoded 12-bit shifted-immediate value.
  unsigned getT2SOImmOpValue(const MCInst &MI, unsigned Op,
                           SmallVectorImpl<MCFixup> &Fixups,
                           const MCSubtargetInfo &STI) const {
    const MCOperand &MO = MI.getOperand(Op);

    // Support for fixups (MCFixup)
    if (MO.isExpr()) {
      const MCExpr *Expr = MO.getExpr();
      // Fixups resolve to plain values that need to be encoded.
      MCFixupKind Kind = MCFixupKind(ARM::fixup_t2_so_imm);
      Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));
      return 0;
    }
    unsigned SoImm = MO.getImm();
    unsigned Encoded =  ARM_AM::getT2SOImmVal(SoImm);
    assert(Encoded != ~0U && "Not a Thumb2 so_imm value?");
    return Encoded;
  }

  unsigned getT2AddrModeSORegOpValue(const MCInst &MI, unsigned OpNum,
    SmallVectorImpl<MCFixup> &Fixups,
    const MCSubtargetInfo &STI) const;
  template<unsigned Bits, unsigned Shift>
  unsigned getT2AddrModeImmOpValue(const MCInst &MI, unsigned OpNum,
    SmallVectorImpl<MCFixup> &Fixups,
    const MCSubtargetInfo &STI) const;
  unsigned getT2AddrModeImm8OffsetOpValue(const MCInst &MI, unsigned OpNum,
    SmallVectorImpl<MCFixup> &Fixups,
    const MCSubtargetInfo &STI) const;

  /// getSORegOpValue - Return an encoded so_reg shifted register value.
  unsigned getSORegRegOpValue(const MCInst &MI, unsigned Op,
                           SmallVectorImpl<MCFixup> &Fixups,
                           const MCSubtargetInfo &STI) const;
  unsigned getSORegImmOpValue(const MCInst &MI, unsigned Op,
                           SmallVectorImpl<MCFixup> &Fixups,
                           const MCSubtargetInfo &STI) const;
  unsigned getT2SORegOpValue(const MCInst &MI, unsigned Op,
                             SmallVectorImpl<MCFixup> &Fixups,
                             const MCSubtargetInfo &STI) const;

  unsigned getNEONVcvtImm32OpValue(const MCInst &MI, unsigned Op,
                                   SmallVectorImpl<MCFixup> &Fixups,
                                   const MCSubtargetInfo &STI) const {
    return 64 - MI.getOperand(Op).getImm();
  }

  unsigned getBitfieldInvertedMaskOpValue(const MCInst &MI, unsigned Op,
                                      SmallVectorImpl<MCFixup> &Fixups,
                                      const MCSubtargetInfo &STI) const;

  unsigned getRegisterListOpValue(const MCInst &MI, unsigned Op,
                                  SmallVectorImpl<MCFixup> &Fixups,
                                  const MCSubtargetInfo &STI) const;
  unsigned getAddrMode6AddressOpValue(const MCInst &MI, unsigned Op,
                                      SmallVectorImpl<MCFixup> &Fixups,
                                      const MCSubtargetInfo &STI) const;
  unsigned getAddrMode6OneLane32AddressOpValue(const MCInst &MI, unsigned Op,
                                        SmallVectorImpl<MCFixup> &Fixups,
                                        const MCSubtargetInfo &STI) const;
  unsigned getAddrMode6DupAddressOpValue(const MCInst &MI, unsigned Op,
                                        SmallVectorImpl<MCFixup> &Fixups,
                                        const MCSubtargetInfo &STI) const;
  unsigned getAddrMode6OffsetOpValue(const MCInst &MI, unsigned Op,
                                     SmallVectorImpl<MCFixup> &Fixups,
                                     const MCSubtargetInfo &STI) const;

  unsigned getShiftRight8Imm(const MCInst &MI, unsigned Op,
                             SmallVectorImpl<MCFixup> &Fixups,
                             const MCSubtargetInfo &STI) const;
  unsigned getShiftRight16Imm(const MCInst &MI, unsigned Op,
                              SmallVectorImpl<MCFixup> &Fixups,
                              const MCSubtargetInfo &STI) const;
  unsigned getShiftRight32Imm(const MCInst &MI, unsigned Op,
                              SmallVectorImpl<MCFixup> &Fixups,
                              const MCSubtargetInfo &STI) const;
  unsigned getShiftRight64Imm(const MCInst &MI, unsigned Op,
                              SmallVectorImpl<MCFixup> &Fixups,
                              const MCSubtargetInfo &STI) const;

  unsigned getThumbSRImmOpValue(const MCInst &MI, unsigned Op,
                                 SmallVectorImpl<MCFixup> &Fixups,
                                 const MCSubtargetInfo &STI) const;

  unsigned NEONThumb2DataIPostEncoder(const MCInst &MI,
                                      unsigned EncodedValue,
                                      const MCSubtargetInfo &STI) const;
  unsigned NEONThumb2LoadStorePostEncoder(const MCInst &MI,
                                          unsigned EncodedValue,
                                          const MCSubtargetInfo &STI) const;
  unsigned NEONThumb2DupPostEncoder(const MCInst &MI,
                                    unsigned EncodedValue,
                                    const MCSubtargetInfo &STI) const;
  unsigned NEONThumb2V8PostEncoder(const MCInst &MI,
                                   unsigned EncodedValue,
                                   const MCSubtargetInfo &STI) const;

  unsigned VFPThumb2PostEncoder(const MCInst &MI,
                                unsigned EncodedValue,
                                const MCSubtargetInfo &STI) const;

  uint32_t getPowerTwoOpValue(const MCInst &MI, unsigned OpIdx,
                              SmallVectorImpl<MCFixup> &Fixups,
                              const MCSubtargetInfo &STI) const;

  void EmitByte(unsigned char C, raw_ostream &OS) const {
    OS << (char)C;
  }

  void EmitConstant(uint64_t Val, unsigned Size, raw_ostream &OS) const {
    // Output the constant in little endian byte order.
    for (unsigned i = 0; i != Size; ++i) {
      unsigned Shift = IsLittleEndian ? i * 8 : (Size - 1 - i) * 8;
      EmitByte((Val >> Shift) & 0xff, OS);
    }
  }

  void encodeInstruction(const MCInst &MI, raw_ostream &OS,
                         SmallVectorImpl<MCFixup> &Fixups,
                         const MCSubtargetInfo &STI) const override;

  template <bool isNeg, ARM::Fixups fixup>
  uint32_t getBFTargetOpValue(const MCInst &MI, unsigned OpIdx,
                              SmallVectorImpl<MCFixup> &Fixups,
                              const MCSubtargetInfo &STI) const;

  uint32_t getBFAfterTargetOpValue(const MCInst &MI, unsigned OpIdx,
                                   SmallVectorImpl<MCFixup> &Fixups,
                                   const MCSubtargetInfo &STI) const;

  uint32_t getVPTMaskOpValue(const MCInst &MI, unsigned OpIdx,
                             SmallVectorImpl<MCFixup> &Fixups,
                             const MCSubtargetInfo &STI) const;
  uint32_t getRestrictedCondCodeOpValue(const MCInst &MI, unsigned OpIdx,
                                        SmallVectorImpl<MCFixup> &Fixups,
                                        const MCSubtargetInfo &STI) const;
  template <unsigned size>
  uint32_t getMVEPairVectorIndexOpValue(const MCInst &MI, unsigned OpIdx,
                                        SmallVectorImpl<MCFixup> &Fixups,
                                        const MCSubtargetInfo &STI) const;
};

} // end anonymous namespace

/// NEONThumb2DataIPostEncoder - Post-process encoded NEON data-processing
/// instructions, and rewrite them to their Thumb2 form if we are currently in
/// Thumb2 mode.
unsigned ARMMCCodeEmitter::NEONThumb2DataIPostEncoder(const MCInst &MI,
                                                 unsigned EncodedValue,
                                                 const MCSubtargetInfo &STI) const {
  if (isThumb2(STI)) {
    // NEON Thumb2 data-processsing encodings are very simple: bit 24 is moved
    // to bit 12 of the high half-word (i.e. bit 28), and bits 27-24 are
    // set to 1111.
    unsigned Bit24 = EncodedValue & 0x01000000;
    unsigned Bit28 = Bit24 << 4;
    EncodedValue &= 0xEFFFFFFF;
    EncodedValue |= Bit28;
    EncodedValue |= 0x0F000000;
  }

  return EncodedValue;
}

/// NEONThumb2LoadStorePostEncoder - Post-process encoded NEON load/store
/// instructions, and rewrite them to their Thumb2 form if we are currently in
/// Thumb2 mode.
unsigned ARMMCCodeEmitter::NEONThumb2LoadStorePostEncoder(const MCInst &MI,
                                                 unsigned EncodedValue,
                                                 const MCSubtargetInfo &STI) const {
  if (isThumb2(STI)) {
    EncodedValue &= 0xF0FFFFFF;
    EncodedValue |= 0x09000000;
  }

  return EncodedValue;
}

/// NEONThumb2DupPostEncoder - Post-process encoded NEON vdup
/// instructions, and rewrite them to their Thumb2 form if we are currently in
/// Thumb2 mode.
unsigned ARMMCCodeEmitter::NEONThumb2DupPostEncoder(const MCInst &MI,
                                                 unsigned EncodedValue,
                                                 const MCSubtargetInfo &STI) const {
  if (isThumb2(STI)) {
    EncodedValue &= 0x00FFFFFF;
    EncodedValue |= 0xEE000000;
  }

  return EncodedValue;
}

/// Post-process encoded NEON v8 instructions, and rewrite them to Thumb2 form
/// if we are in Thumb2.
unsigned ARMMCCodeEmitter::NEONThumb2V8PostEncoder(const MCInst &MI,
                                                 unsigned EncodedValue,
                                                 const MCSubtargetInfo &STI) const {
  if (isThumb2(STI)) {
    EncodedValue |= 0xC000000; // Set bits 27-26
  }

  return EncodedValue;
}

/// VFPThumb2PostEncoder - Post-process encoded VFP instructions and rewrite
/// them to their Thumb2 form if we are currently in Thumb2 mode.
unsigned ARMMCCodeEmitter::
VFPThumb2PostEncoder(const MCInst &MI, unsigned EncodedValue,
                     const MCSubtargetInfo &STI) const {
  if (isThumb2(STI)) {
    EncodedValue &= 0x0FFFFFFF;
    EncodedValue |= 0xE0000000;
  }
  return EncodedValue;
}

/// getMachineOpValue - Return binary encoding of operand. If the machine
/// operand requires relocation, record the relocation and return zero.
unsigned ARMMCCodeEmitter::
getMachineOpValue(const MCInst &MI, const MCOperand &MO,
                  SmallVectorImpl<MCFixup> &Fixups,
                  const MCSubtargetInfo &STI) const {
  if (MO.isReg()) {
    unsigned Reg = MO.getReg();
    unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg);

    // In NEON, Q registers are encoded as 2x their register number,
    // because they're using the same indices as the D registers they
    // overlap. In MVE, there are no 64-bit vector instructions, so
    // the encodings all refer to Q-registers by their literal
    // register number.

    if (STI.getFeatureBits()[ARM::HasMVEIntegerOps])
      return RegNo;

    switch (Reg) {
    default:
      return RegNo;
    case ARM::Q0:  case ARM::Q1:  case ARM::Q2:  case ARM::Q3:
    case ARM::Q4:  case ARM::Q5:  case ARM::Q6:  case ARM::Q7:
    case ARM::Q8:  case ARM::Q9:  case ARM::Q10: case ARM::Q11:
    case ARM::Q12: case ARM::Q13: case ARM::Q14: case ARM::Q15:
      return 2 * RegNo;
    }
  } else if (MO.isImm()) {
    return static_cast<unsigned>(MO.getImm());
  } else if (MO.isFPImm()) {
    return static_cast<unsigned>(APFloat(MO.getFPImm())
                     .bitcastToAPInt().getHiBits(32).getLimitedValue());
  }

  llvm_unreachable("Unable to encode MCOperand!");
}

/// getAddrModeImmOpValue - Return encoding info for 'reg +/- imm' operand.
bool ARMMCCodeEmitter::
EncodeAddrModeOpValues(const MCInst &MI, unsigned OpIdx, unsigned &Reg,
                       unsigned &Imm, SmallVectorImpl<MCFixup> &Fixups,
                       const MCSubtargetInfo &STI) const {
  const MCOperand &MO  = MI.getOperand(OpIdx);
  const MCOperand &MO1 = MI.getOperand(OpIdx + 1);

  Reg = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());

  int32_t SImm = MO1.getImm();
  bool isAdd = true;

  // Special value for #-0
  if (SImm == INT32_MIN) {
    SImm = 0;
    isAdd = false;
  }

  // Immediate is always encoded as positive. The 'U' bit controls add vs sub.
  if (SImm < 0) {
    SImm = -SImm;
    isAdd = false;
  }

  Imm = SImm;
  return isAdd;
}

/// getBranchTargetOpValue - Helper function to get the branch target operand,
/// which is either an immediate or requires a fixup.
static uint32_t getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
                                       unsigned FixupKind,
                                       SmallVectorImpl<MCFixup> &Fixups,
                                       const MCSubtargetInfo &STI) {
  const MCOperand &MO = MI.getOperand(OpIdx);

  // If the destination is an immediate, we have nothing to do.
  if (MO.isImm()) return MO.getImm();
  assert(MO.isExpr() && "Unexpected branch target type!");
  const MCExpr *Expr = MO.getExpr();
  MCFixupKind Kind = MCFixupKind(FixupKind);
  Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));

  // All of the information is in the fixup.
  return 0;
}

// Thumb BL and BLX use a strange offset encoding where bits 22 and 21 are
// determined by negating them and XOR'ing them with bit 23.
static int32_t encodeThumbBLOffset(int32_t offset) {
  offset >>= 1;
  uint32_t S  = (offset & 0x800000) >> 23;
  uint32_t J1 = (offset & 0x400000) >> 22;
  uint32_t J2 = (offset & 0x200000) >> 21;
  J1 = (~J1 & 0x1);
  J2 = (~J2 & 0x1);
  J1 ^= S;
  J2 ^= S;

  offset &= ~0x600000;
  offset |= J1 << 22;
  offset |= J2 << 21;

  return offset;
}

/// getThumbBLTargetOpValue - Return encoding info for immediate branch target.
uint32_t ARMMCCodeEmitter::
getThumbBLTargetOpValue(const MCInst &MI, unsigned OpIdx,
                        SmallVectorImpl<MCFixup> &Fixups,
                        const MCSubtargetInfo &STI) const {
  const MCOperand MO = MI.getOperand(OpIdx);
  if (MO.isExpr())
    return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_bl,
                                    Fixups, STI);
  return encodeThumbBLOffset(MO.getImm());
}

/// getThumbBLXTargetOpValue - Return encoding info for Thumb immediate
/// BLX branch target.
uint32_t ARMMCCodeEmitter::
getThumbBLXTargetOpValue(const MCInst &MI, unsigned OpIdx,
                         SmallVectorImpl<MCFixup> &Fixups,
                         const MCSubtargetInfo &STI) const {
  const MCOperand MO = MI.getOperand(OpIdx);
  if (MO.isExpr())
    return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_blx,
                                    Fixups, STI);
  return encodeThumbBLOffset(MO.getImm());
}

/// getThumbBRTargetOpValue - Return encoding info for Thumb branch target.
uint32_t ARMMCCodeEmitter::
getThumbBRTargetOpValue(const MCInst &MI, unsigned OpIdx,
                        SmallVectorImpl<MCFixup> &Fixups,
                        const MCSubtargetInfo &STI) const {
  const MCOperand MO = MI.getOperand(OpIdx);
  if (MO.isExpr())
    return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_br,
                                    Fixups, STI);
  return (MO.getImm() >> 1);
}

/// getThumbBCCTargetOpValue - Return encoding info for Thumb branch target.
uint32_t ARMMCCodeEmitter::
getThumbBCCTargetOpValue(const MCInst &MI, unsigned OpIdx,
                         SmallVectorImpl<MCFixup> &Fixups,
                         const MCSubtargetInfo &STI) const {
  const MCOperand MO = MI.getOperand(OpIdx);
  if (MO.isExpr())
    return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_bcc,
                                    Fixups, STI);
  return (MO.getImm() >> 1);
}

/// getThumbCBTargetOpValue - Return encoding info for Thumb branch target.
uint32_t ARMMCCodeEmitter::
getThumbCBTargetOpValue(const MCInst &MI, unsigned OpIdx,
                        SmallVectorImpl<MCFixup> &Fixups,
                        const MCSubtargetInfo &STI) const {
  const MCOperand MO = MI.getOperand(OpIdx);
  if (MO.isExpr())
    return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_cb, Fixups, STI);
  return (MO.getImm() >> 1);
}

/// Return true if this branch has a non-always predication
static bool HasConditionalBranch(const MCInst &MI) {
  int NumOp = MI.getNumOperands();
  if (NumOp >= 2) {
    for (int i = 0; i < NumOp-1; ++i) {
      const MCOperand &MCOp1 = MI.getOperand(i);
      const MCOperand &MCOp2 = MI.getOperand(i + 1);
      if (MCOp1.isImm() && MCOp2.isReg() &&
          (MCOp2.getReg() == 0 || MCOp2.getReg() == ARM::CPSR)) {
        if (ARMCC::CondCodes(MCOp1.getImm()) != ARMCC::AL)
          return true;
      }
    }
  }
  return false;
}

/// getBranchTargetOpValue - Return encoding info for 24-bit immediate branch
/// target.
uint32_t ARMMCCodeEmitter::
getBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
                       SmallVectorImpl<MCFixup> &Fixups,
                       const MCSubtargetInfo &STI) const {
  // FIXME: This really, really shouldn't use TargetMachine. We don't want
  // coupling between MC and TM anywhere we can help it.
  if (isThumb2(STI))
    return
      ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_t2_condbranch, Fixups, STI);
  return getARMBranchTargetOpValue(MI, OpIdx, Fixups, STI);
}

/// getBranchTargetOpValue - Return encoding info for 24-bit immediate branch
/// target.
uint32_t ARMMCCodeEmitter::
getARMBranchTargetOpValue(const MCInst &MI, unsigned OpIdx,
                          SmallVectorImpl<MCFixup> &Fixups,
                          const MCSubtargetInfo &STI) const {
  const MCOperand MO = MI.getOperand(OpIdx);
  if (MO.isExpr()) {
    if (HasConditionalBranch(MI))
      return ::getBranchTargetOpValue(MI, OpIdx,
                                      ARM::fixup_arm_condbranch, Fixups, STI);
    return ::getBranchTargetOpValue(MI, OpIdx,
                                    ARM::fixup_arm_uncondbranch, Fixups, STI);
  }

  return MO.getImm() >> 2;
}

uint32_t ARMMCCodeEmitter::
getARMBLTargetOpValue(const MCInst &MI, unsigned OpIdx,
                          SmallVectorImpl<MCFixup> &Fixups,
                          const MCSubtargetInfo &STI) const {
  const MCOperand MO = MI.getOperand(OpIdx);
  if (MO.isExpr()) {
    if (HasConditionalBranch(MI))
      return ::getBranchTargetOpValue(MI, OpIdx,
                                      ARM::fixup_arm_condbl, Fixups, STI);
    return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_uncondbl, Fixups, STI);
  }

  return MO.getImm() >> 2;
}

uint32_t ARMMCCodeEmitter::
getARMBLXTargetOpValue(const MCInst &MI, unsigned OpIdx,
                          SmallVectorImpl<MCFixup> &Fixups,
                          const MCSubtargetInfo &STI) const {
  const MCOperand MO = MI.getOperand(OpIdx);
  if (MO.isExpr())
    return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_blx, Fixups, STI);

  return MO.getImm() >> 1;
}

/// getUnconditionalBranchTargetOpValue - Return encoding info for 24-bit
/// immediate branch target.
uint32_t ARMMCCodeEmitter::getThumbBranchTargetOpValue(
    const MCInst &MI, unsigned OpIdx, SmallVectorImpl<MCFixup> &Fixups,
    const MCSubtargetInfo &STI) const {
  unsigned Val = 0;
  const MCOperand MO = MI.getOperand(OpIdx);

  if(MO.isExpr())
    return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_t2_uncondbranch, Fixups, STI);
  else
    Val = MO.getImm() >> 1;

  bool I  = (Val & 0x800000);
  bool J1 = (Val & 0x400000);
  bool J2 = (Val & 0x200000);
  if (I ^ J1)
    Val &= ~0x400000;
  else
    Val |= 0x400000;

  if (I ^ J2)
    Val &= ~0x200000;
  else
    Val |= 0x200000;

  return Val;
}

/// getAdrLabelOpValue - Return encoding info for 12-bit shifted-immediate
/// ADR label target.
uint32_t ARMMCCodeEmitter::
getAdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
                   SmallVectorImpl<MCFixup> &Fixups,
                   const MCSubtargetInfo &STI) const {
  const MCOperand MO = MI.getOperand(OpIdx);
  if (MO.isExpr())
    return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_adr_pcrel_12,
                                    Fixups, STI);
  int64_t offset = MO.getImm();
  uint32_t Val = 0x2000;

  int SoImmVal;
  if (offset == INT32_MIN) {
    Val = 0x1000;
    SoImmVal = 0;
  } else if (offset < 0) {
    Val = 0x1000;
    offset *= -1;
    SoImmVal = ARM_AM::getSOImmVal(offset);
    if(SoImmVal == -1) {
      Val = 0x2000;
      offset *= -1;
      SoImmVal = ARM_AM::getSOImmVal(offset);
    }
  } else {
    SoImmVal = ARM_AM::getSOImmVal(offset);
    if(SoImmVal == -1) {
      Val = 0x1000;
      offset *= -1;
      SoImmVal = ARM_AM::getSOImmVal(offset);
    }
  }

  assert(SoImmVal != -1 && "Not a valid so_imm value!");

  Val |= SoImmVal;
  return Val;
}

/// getT2AdrLabelOpValue - Return encoding info for 12-bit immediate ADR label
/// target.
uint32_t ARMMCCodeEmitter::
getT2AdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
                   SmallVectorImpl<MCFixup> &Fixups,
                   const MCSubtargetInfo &STI) const {
  const MCOperand MO = MI.getOperand(OpIdx);
  if (MO.isExpr())
    return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_t2_adr_pcrel_12,
                                    Fixups, STI);
  int32_t Val = MO.getImm();
  if (Val == INT32_MIN)
    Val = 0x1000;
  else if (Val < 0) {
    Val *= -1;
    Val |= 0x1000;
  }
  return Val;
}

/// getITMaskOpValue - Return the architectural encoding of an IT
/// predication mask, given the MCOperand format.
uint32_t ARMMCCodeEmitter::
getITMaskOpValue(const MCInst &MI, unsigned OpIdx,
                 SmallVectorImpl<MCFixup> &Fixups,
                 const MCSubtargetInfo &STI) const {
  const MCOperand MaskMO = MI.getOperand(OpIdx);
  assert(MaskMO.isImm() && "Unexpected operand type!");

  unsigned Mask = MaskMO.getImm();

  // IT masks are encoded as a sequence of replacement low-order bits
  // for the condition code. So if the low bit of the starting
  // condition code is 1, then we have to flip all the bits above the
  // terminating bit (which is the lowest 1 bit).
  assert(OpIdx > 0 && "IT mask appears first!");
  const MCOperand CondMO = MI.getOperand(OpIdx-1);
  assert(CondMO.isImm() && "Unexpected operand type!");
  if (CondMO.getImm() & 1) {
    unsigned LowBit = Mask & -Mask;
    unsigned BitsAboveLowBit = 0xF & (-LowBit << 1);
    Mask ^= BitsAboveLowBit;
  }

  return Mask;
}

/// getThumbAdrLabelOpValue - Return encoding info for 8-bit immediate ADR label
/// target.
uint32_t ARMMCCodeEmitter::
getThumbAdrLabelOpValue(const MCInst &MI, unsigned OpIdx,
                   SmallVectorImpl<MCFixup> &Fixups,
                   const MCSubtargetInfo &STI) const {
  const MCOperand MO = MI.getOperand(OpIdx);
  if (MO.isExpr())
    return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_thumb_adr_pcrel_10,
                                    Fixups, STI);
  return MO.getImm();
}

/// getThumbAddrModeRegRegOpValue - Return encoding info for 'reg + reg'
/// operand.
uint32_t ARMMCCodeEmitter::
getThumbAddrModeRegRegOpValue(const MCInst &MI, unsigned OpIdx,
                              SmallVectorImpl<MCFixup> &,
                              const MCSubtargetInfo &STI) const {
  // [Rn, Rm]
  //   {5-3} = Rm
  //   {2-0} = Rn
  const MCOperand &MO1 = MI.getOperand(OpIdx);
  const MCOperand &MO2 = MI.getOperand(OpIdx + 1);
  unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg());
  unsigned Rm = CTX.getRegisterInfo()->getEncodingValue(MO2.getReg());
  return (Rm << 3) | Rn;
}

/// getMVEShiftImmOpValue - Return encoding info for the 'sz:imm5'
/// operand.
uint32_t
ARMMCCodeEmitter::getMVEShiftImmOpValue(const MCInst &MI, unsigned OpIdx,
                                        SmallVectorImpl<MCFixup> &Fixups,
                                        const MCSubtargetInfo &STI) const {
  // {4-0} = szimm5
  // The value we are trying to encode is an immediate between either the
  // range of [1-7] or [1-15] depending on whether we are dealing with the
  // u8/s8 or the u16/s16 variants respectively.
  // This value is encoded as follows, if ShiftImm is the value within those
  // ranges then the encoding szimm5 = ShiftImm + size, where size is either 8
  // or 16.

  unsigned Size, ShiftImm;
  switch(MI.getOpcode()) {
    case ARM::MVE_VSHLL_imms16bh:
    case ARM::MVE_VSHLL_imms16th:
    case ARM::MVE_VSHLL_immu16bh:
    case ARM::MVE_VSHLL_immu16th:
      Size = 16;
      break;
    case ARM::MVE_VSHLL_imms8bh:
    case ARM::MVE_VSHLL_imms8th:
    case ARM::MVE_VSHLL_immu8bh:
    case ARM::MVE_VSHLL_immu8th:
      Size = 8;
      break;
    default:
      llvm_unreachable("Use of operand not supported by this instruction");
  }
  ShiftImm = MI.getOperand(OpIdx).getImm();
  return Size + ShiftImm;
}

/// getAddrModeImm12OpValue - Return encoding info for 'reg +/- imm12' operand.
uint32_t ARMMCCodeEmitter::
getAddrModeImm12OpValue(const MCInst &MI, unsigned OpIdx,
                        SmallVectorImpl<MCFixup> &Fixups,
                        const MCSubtargetInfo &STI) const {
  // {17-13} = reg
  // {12}    = (U)nsigned (add == '1', sub == '0')
  // {11-0}  = imm12
  unsigned Reg, Imm12;
  bool isAdd = true;
  // If The first operand isn't a register, we have a label reference.
  const MCOperand &MO = MI.getOperand(OpIdx);
  if (!MO.isReg()) {
    Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC);   // Rn is PC.
    Imm12 = 0;

    if (MO.isExpr()) {
      const MCExpr *Expr = MO.getExpr();
      isAdd = false ; // 'U' bit is set as part of the fixup.

      MCFixupKind Kind;
      if (isThumb2(STI))
        Kind = MCFixupKind(ARM::fixup_t2_ldst_pcrel_12);
      else
        Kind = MCFixupKind(ARM::fixup_arm_ldst_pcrel_12);
      Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));

      ++MCNumCPRelocations;
    } else {
      Reg = ARM::PC;
      int32_t Offset = MO.getImm();
      if (Offset == INT32_MIN) {
        Offset = 0;
        isAdd = false;
      } else if (Offset < 0) {
        Offset *= -1;
        isAdd = false;
      }
      Imm12 = Offset;
    }
  } else
    isAdd = EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm12, Fixups, STI);

  uint32_t Binary = Imm12 & 0xfff;
  // Immediate is always encoded as positive. The 'U' bit controls add vs sub.
  if (isAdd)
    Binary |= (1 << 12);
  Binary |= (Reg << 13);
  return Binary;
}

template<unsigned Bits, unsigned Shift>
uint32_t ARMMCCodeEmitter::
getT2ScaledImmOpValue(const MCInst &MI, unsigned OpIdx,
                      SmallVectorImpl<MCFixup> &Fixups,
                      const MCSubtargetInfo &STI) const {
  // FIXME: The immediate operand should have already been encoded like this
  // before ever getting here. The encoder method should just need to combine
  // the MI operands for the register and the offset into a single
  // representation for the complex operand in the .td file. This isn't just
  // style, unfortunately. As-is, we can't represent the distinct encoding
  // for #-0.

  // {Bits}    = (U)nsigned (add == '1', sub == '0')
  // {(Bits-1)-0}  = immediate
  int32_t Imm = MI.getOperand(OpIdx).getImm();
  bool isAdd = Imm >= 0;

  // Immediate is always encoded as positive. The 'U' bit controls add vs sub.
  if (Imm < 0)
    Imm = -(uint32_t)Imm;

  Imm >>= Shift;

  uint32_t Binary = Imm & ((1U << Bits) - 1);
  // Immediate is always encoded as positive. The 'U' bit controls add vs sub.
  if (isAdd)
    Binary |= (1U << Bits);
  return Binary;
}

/// getMveAddrModeRQOpValue - Return encoding info for 'reg, vreg'
/// operand.
uint32_t ARMMCCodeEmitter::
getMveAddrModeRQOpValue(const MCInst &MI, unsigned OpIdx,
                        SmallVectorImpl<MCFixup> &Fixups,
                        const MCSubtargetInfo &STI) const {
    // {6-3} Rn
    // {2-0} Qm
    const MCOperand &M0 = MI.getOperand(OpIdx);
    const MCOperand &M1 = MI.getOperand(OpIdx + 1);

    unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(M0.getReg());
    unsigned Qm = CTX.getRegisterInfo()->getEncodingValue(M1.getReg());

    assert(Qm < 8 && "Qm is supposed to be encodable in 3 bits");

    return (Rn << 3) | Qm;
}

/// getMveAddrModeRQOpValue - Return encoding info for 'reg, vreg'
/// operand.
template<int shift>
uint32_t ARMMCCodeEmitter::
getMveAddrModeQOpValue(const MCInst &MI, unsigned OpIdx,
                        SmallVectorImpl<MCFixup> &Fixups,
                        const MCSubtargetInfo &STI) const {
    // {10-8} Qm
    // {7-0} Imm
    const MCOperand &M0 = MI.getOperand(OpIdx);
    const MCOperand &M1 = MI.getOperand(OpIdx + 1);

    unsigned Qm = CTX.getRegisterInfo()->getEncodingValue(M0.getReg());
    int32_t Imm = M1.getImm();

    bool isAdd = Imm >= 0;

    Imm >>= shift;

    if (!isAdd)
      Imm = -(uint32_t)Imm;

    Imm &= 0x7f;

    if (isAdd)
      Imm |= 0x80;

    assert(Qm < 8 && "Qm is supposed to be encodable in 3 bits");

    return (Qm << 8) | Imm;
}

/// getT2AddrModeImm8s4OpValue - Return encoding info for
/// 'reg +/- imm8<<2' operand.
uint32_t ARMMCCodeEmitter::
getT2AddrModeImm8s4OpValue(const MCInst &MI, unsigned OpIdx,
                        SmallVectorImpl<MCFixup> &Fixups,
                        const MCSubtargetInfo &STI) const {
  // {12-9} = reg
  // {8}    = (U)nsigned (add == '1', sub == '0')
  // {7-0}  = imm8
  unsigned Reg, Imm8;
  bool isAdd = true;
  // If The first operand isn't a register, we have a label reference.
  const MCOperand &MO = MI.getOperand(OpIdx);
  if (!MO.isReg()) {
    Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC);   // Rn is PC.
    Imm8 = 0;
    isAdd = false ; // 'U' bit is set as part of the fixup.

    assert(MO.isExpr() && "Unexpected machine operand type!");
    const MCExpr *Expr = MO.getExpr();
    MCFixupKind Kind = MCFixupKind(ARM::fixup_t2_pcrel_10);
    Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));

    ++MCNumCPRelocations;
  } else
    isAdd = EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm8, Fixups, STI);

  // FIXME: The immediate operand should have already been encoded like this
  // before ever getting here. The encoder method should just need to combine
  // the MI operands for the register and the offset into a single
  // representation for the complex operand in the .td file. This isn't just
  // style, unfortunately. As-is, we can't represent the distinct encoding
  // for #-0.
  uint32_t Binary = (Imm8 >> 2) & 0xff;
  // Immediate is always encoded as positive. The 'U' bit controls add vs sub.
  if (isAdd)
    Binary |= (1 << 8);
  Binary |= (Reg << 9);
  return Binary;
}

/// getT2AddrModeImm7s4OpValue - Return encoding info for
/// 'reg +/- imm7<<2' operand.
uint32_t
ARMMCCodeEmitter::getT2AddrModeImm7s4OpValue(const MCInst &MI, unsigned OpIdx,
                                             SmallVectorImpl<MCFixup> &Fixups,
                                             const MCSubtargetInfo &STI) const {
  // {11-8} = reg
  // {7}    = (A)dd (add == '1', sub == '0')
  // {6-0}  = imm7
  unsigned Reg, Imm7;
  // If The first operand isn't a register, we have a label reference.
  bool isAdd = EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm7, Fixups, STI);

  // FIXME: The immediate operand should have already been encoded like this
  // before ever getting here. The encoder method should just need to combine
  // the MI operands for the register and the offset into a single
  // representation for the complex operand in the .td file. This isn't just
  // style, unfortunately. As-is, we can't represent the distinct encoding
  // for #-0.
  uint32_t Binary = (Imm7 >> 2) & 0xff;
  // Immediate is always encoded as positive. The 'A' bit controls add vs sub.
  if (isAdd)
    Binary |= (1 << 7);
  Binary |= (Reg << 8);
  return Binary;
}

/// getT2AddrModeImm0_1020s4OpValue - Return encoding info for
/// 'reg + imm8<<2' operand.
uint32_t ARMMCCodeEmitter::
getT2AddrModeImm0_1020s4OpValue(const MCInst &MI, unsigned OpIdx,
                        SmallVectorImpl<MCFixup> &Fixups,
                        const MCSubtargetInfo &STI) const {
  // {11-8} = reg
  // {7-0}  = imm8
  const MCOperand &MO = MI.getOperand(OpIdx);
  const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
  unsigned Reg = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
  unsigned Imm8 = MO1.getImm();
  return (Reg << 8) | Imm8;
}

uint32_t
ARMMCCodeEmitter::getHiLo16ImmOpValue(const MCInst &MI, unsigned OpIdx,
                                      SmallVectorImpl<MCFixup> &Fixups,
                                      const MCSubtargetInfo &STI) const {
  // {20-16} = imm{15-12}
  // {11-0}  = imm{11-0}
  const MCOperand &MO = MI.getOperand(OpIdx);
  if (MO.isImm())
    // Hi / lo 16 bits already extracted during earlier passes.
    return static_cast<unsigned>(MO.getImm());

  // Handle :upper16: and :lower16: assembly prefixes.
  const MCExpr *E = MO.getExpr();
  MCFixupKind Kind;
  if (E->getKind() == MCExpr::Target) {
    const ARMMCExpr *ARM16Expr = cast<ARMMCExpr>(E);
    E = ARM16Expr->getSubExpr();

    if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(E)) {
      const int64_t Value = MCE->getValue();
      if (Value > UINT32_MAX)
        report_fatal_error("constant value truncated (limited to 32-bit)");

      switch (ARM16Expr->getKind()) {
      case ARMMCExpr::VK_ARM_HI16:
        return (int32_t(Value) & 0xffff0000) >> 16;
      case ARMMCExpr::VK_ARM_LO16:
        return (int32_t(Value) & 0x0000ffff);
      default: llvm_unreachable("Unsupported ARMFixup");
      }
    }

    switch (ARM16Expr->getKind()) {
    default: llvm_unreachable("Unsupported ARMFixup");
    case ARMMCExpr::VK_ARM_HI16:
      Kind = MCFixupKind(isThumb(STI) ? ARM::fixup_t2_movt_hi16
                                      : ARM::fixup_arm_movt_hi16);
      break;
    case ARMMCExpr::VK_ARM_LO16:
      Kind = MCFixupKind(isThumb(STI) ? ARM::fixup_t2_movw_lo16
                                      : ARM::fixup_arm_movw_lo16);
      break;
    }

    Fixups.push_back(MCFixup::create(0, E, Kind, MI.getLoc()));
    return 0;
  }
  // If the expression doesn't have :upper16: or :lower16: on it,
  // it's just a plain immediate expression, previously those evaluated to
  // the lower 16 bits of the expression regardless of whether
  // we have a movt or a movw, but that led to misleadingly results.
  // This is disallowed in the AsmParser in validateInstruction()
  // so this should never happen.
  llvm_unreachable("expression without :upper16: or :lower16:");
}

uint32_t ARMMCCodeEmitter::
getLdStSORegOpValue(const MCInst &MI, unsigned OpIdx,
                    SmallVectorImpl<MCFixup> &Fixups,
                    const MCSubtargetInfo &STI) const {
  const MCOperand &MO = MI.getOperand(OpIdx);
  const MCOperand &MO1 = MI.getOperand(OpIdx+1);
  const MCOperand &MO2 = MI.getOperand(OpIdx+2);
  unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
  unsigned Rm = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg());
  unsigned ShImm = ARM_AM::getAM2Offset(MO2.getImm());
  bool isAdd = ARM_AM::getAM2Op(MO2.getImm()) == ARM_AM::add;
  ARM_AM::ShiftOpc ShOp = ARM_AM::getAM2ShiftOpc(MO2.getImm());
  unsigned SBits = getShiftOp(ShOp);

  // While "lsr #32" and "asr #32" exist, they are encoded with a 0 in the shift
  // amount. However, it would be an easy mistake to make so check here.
  assert((ShImm & ~0x1f) == 0 && "Out of range shift amount");

  // {16-13} = Rn
  // {12}    = isAdd
  // {11-0}  = shifter
  //  {3-0}  = Rm
  //  {4}    = 0
  //  {6-5}  = type
  //  {11-7} = imm
  uint32_t Binary = Rm;
  Binary |= Rn << 13;
  Binary |= SBits << 5;
  Binary |= ShImm << 7;
  if (isAdd)
    Binary |= 1 << 12;
  return Binary;
}

uint32_t ARMMCCodeEmitter::
getAddrMode2OffsetOpValue(const MCInst &MI, unsigned OpIdx,
                          SmallVectorImpl<MCFixup> &Fixups,
                          const MCSubtargetInfo &STI) const {
  // {13}     1 == imm12, 0 == Rm
  // {12}     isAdd
  // {11-0}   imm12/Rm
  const MCOperand &MO = MI.getOperand(OpIdx);
  const MCOperand &MO1 = MI.getOperand(OpIdx+1);
  unsigned Imm = MO1.getImm();
  bool isAdd = ARM_AM::getAM2Op(Imm) == ARM_AM::add;
  bool isReg = MO.getReg() != 0;
  uint32_t Binary = ARM_AM::getAM2Offset(Imm);
  // if reg +/- reg, Rm will be non-zero. Otherwise, we have reg +/- imm12
  if (isReg) {
    ARM_AM::ShiftOpc ShOp = ARM_AM::getAM2ShiftOpc(Imm);
    Binary <<= 7;                    // Shift amount is bits [11:7]
    Binary |= getShiftOp(ShOp) << 5; // Shift type is bits [6:5]
    Binary |= CTX.getRegisterInfo()->getEncodingValue(MO.getReg()); // Rm is bits [3:0]
  }
  return Binary | (isAdd << 12) | (isReg << 13);
}

uint32_t ARMMCCodeEmitter::
getPostIdxRegOpValue(const MCInst &MI, unsigned OpIdx,
                     SmallVectorImpl<MCFixup> &Fixups,
                     const MCSubtargetInfo &STI) const {
  // {4}      isAdd
  // {3-0}    Rm
  const MCOperand &MO = MI.getOperand(OpIdx);
  const MCOperand &MO1 = MI.getOperand(OpIdx+1);
  bool isAdd = MO1.getImm() != 0;
  return CTX.getRegisterInfo()->getEncodingValue(MO.getReg()) | (isAdd << 4);
}

uint32_t ARMMCCodeEmitter::
getAddrMode3OffsetOpValue(const MCInst &MI, unsigned OpIdx,
                          SmallVectorImpl<MCFixup> &Fixups,
                          const MCSubtargetInfo &STI) const {
  // {9}      1 == imm8, 0 == Rm
  // {8}      isAdd
  // {7-4}    imm7_4/zero
  // {3-0}    imm3_0/Rm
  const MCOperand &MO = MI.getOperand(OpIdx);
  const MCOperand &MO1 = MI.getOperand(OpIdx+1);
  unsigned Imm = MO1.getImm();
  bool isAdd = ARM_AM::getAM3Op(Imm) == ARM_AM::add;
  bool isImm = MO.getReg() == 0;
  uint32_t Imm8 = ARM_AM::getAM3Offset(Imm);
  // if reg +/- reg, Rm will be non-zero. Otherwise, we have reg +/- imm8
  if (!isImm)
    Imm8 = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
  return Imm8 | (isAdd << 8) | (isImm << 9);
}

uint32_t ARMMCCodeEmitter::
getAddrMode3OpValue(const MCInst &MI, unsigned OpIdx,
                    SmallVectorImpl<MCFixup> &Fixups,
                    const MCSubtargetInfo &STI) const {
  // {13}     1 == imm8, 0 == Rm
  // {12-9}   Rn
  // {8}      isAdd
  // {7-4}    imm7_4/zero
  // {3-0}    imm3_0/Rm
  const MCOperand &MO = MI.getOperand(OpIdx);
  const MCOperand &MO1 = MI.getOperand(OpIdx+1);
  const MCOperand &MO2 = MI.getOperand(OpIdx+2);

  // If The first operand isn't a register, we have a label reference.
  if (!MO.isReg()) {
    unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(ARM::PC);   // Rn is PC.

    assert(MO.isExpr() && "Unexpected machine operand type!");
    const MCExpr *Expr = MO.getExpr();
    MCFixupKind Kind = MCFixupKind(ARM::fixup_arm_pcrel_10_unscaled);
    Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));

    ++MCNumCPRelocations;
    return (Rn << 9) | (1 << 13);
  }
  unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
  unsigned Imm = MO2.getImm();
  bool isAdd = ARM_AM::getAM3Op(Imm) == ARM_AM::add;
  bool isImm = MO1.getReg() == 0;
  uint32_t Imm8 = ARM_AM::getAM3Offset(Imm);
  // if reg +/- reg, Rm will be non-zero. Otherwise, we have reg +/- imm8
  if (!isImm)
    Imm8 = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg());
  return (Rn << 9) | Imm8 | (isAdd << 8) | (isImm << 13);
}

/// getAddrModeThumbSPOpValue - Encode the t_addrmode_sp operands.
uint32_t ARMMCCodeEmitter::
getAddrModeThumbSPOpValue(const MCInst &MI, unsigned OpIdx,
                          SmallVectorImpl<MCFixup> &Fixups,
                          const MCSubtargetInfo &STI) const {
  // [SP, #imm]
  //   {7-0} = imm8
  const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
  assert(MI.getOperand(OpIdx).getReg() == ARM::SP &&
         "Unexpected base register!");

  // The immediate is already shifted for the implicit zeroes, so no change
  // here.
  return MO1.getImm() & 0xff;
}

/// getAddrModeISOpValue - Encode the t_addrmode_is# operands.
uint32_t ARMMCCodeEmitter::
getAddrModeISOpValue(const MCInst &MI, unsigned OpIdx,
                     SmallVectorImpl<MCFixup> &Fixups,
                     const MCSubtargetInfo &STI) const {
  // [Rn, #imm]
  //   {7-3} = imm5
  //   {2-0} = Rn
  const MCOperand &MO = MI.getOperand(OpIdx);
  const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
  unsigned Rn = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
  unsigned Imm5 = MO1.getImm();
  return ((Imm5 & 0x1f) << 3) | Rn;
}

/// getAddrModePCOpValue - Return encoding for t_addrmode_pc operands.
uint32_t ARMMCCodeEmitter::
getAddrModePCOpValue(const MCInst &MI, unsigned OpIdx,
                     SmallVectorImpl<MCFixup> &Fixups,
                     const MCSubtargetInfo &STI) const {
  const MCOperand MO = MI.getOperand(OpIdx);
  if (MO.isExpr())
    return ::getBranchTargetOpValue(MI, OpIdx, ARM::fixup_arm_thumb_cp, Fixups, STI);
  return (MO.getImm() >> 2);
}

/// getAddrMode5OpValue - Return encoding info for 'reg +/- (imm8 << 2)' operand.
uint32_t ARMMCCodeEmitter::
getAddrMode5OpValue(const MCInst &MI, unsigned OpIdx,
                    SmallVectorImpl<MCFixup> &Fixups,
                    const MCSubtargetInfo &STI) const {
  // {12-9} = reg
  // {8}    = (U)nsigned (add == '1', sub == '0')
  // {7-0}  = imm8
  unsigned Reg, Imm8;
  bool isAdd;
  // If The first operand isn't a register, we have a label reference.
  const MCOperand &MO = MI.getOperand(OpIdx);
  if (!MO.isReg()) {
    Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC);   // Rn is PC.
    Imm8 = 0;
    isAdd = false; // 'U' bit is handled as part of the fixup.

    assert(MO.isExpr() && "Unexpected machine operand type!");
    const MCExpr *Expr = MO.getExpr();
    MCFixupKind Kind;
    if (isThumb2(STI))
      Kind = MCFixupKind(ARM::fixup_t2_pcrel_10);
    else
      Kind = MCFixupKind(ARM::fixup_arm_pcrel_10);
    Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));

    ++MCNumCPRelocations;
  } else {
    EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm8, Fixups, STI);
    isAdd = ARM_AM::getAM5Op(Imm8) == ARM_AM::add;
  }

  uint32_t Binary = ARM_AM::getAM5Offset(Imm8);
  // Immediate is always encoded as positive. The 'U' bit controls add vs sub.
  if (isAdd)
    Binary |= (1 << 8);
  Binary |= (Reg << 9);
  return Binary;
}

/// getAddrMode5FP16OpValue - Return encoding info for 'reg +/- (imm8 << 1)' operand.
uint32_t ARMMCCodeEmitter::
getAddrMode5FP16OpValue(const MCInst &MI, unsigned OpIdx,
                    SmallVectorImpl<MCFixup> &Fixups,
                    const MCSubtargetInfo &STI) const {
  // {12-9} = reg
  // {8}    = (U)nsigned (add == '1', sub == '0')
  // {7-0}  = imm8
  unsigned Reg, Imm8;
  bool isAdd;
  // If The first operand isn't a register, we have a label reference.
  const MCOperand &MO = MI.getOperand(OpIdx);
  if (!MO.isReg()) {
    Reg = CTX.getRegisterInfo()->getEncodingValue(ARM::PC);   // Rn is PC.
    Imm8 = 0;
    isAdd = false; // 'U' bit is handled as part of the fixup.

    assert(MO.isExpr() && "Unexpected machine operand type!");
    const MCExpr *Expr = MO.getExpr();
    MCFixupKind Kind;
    if (isThumb2(STI))
      Kind = MCFixupKind(ARM::fixup_t2_pcrel_9);
    else
      Kind = MCFixupKind(ARM::fixup_arm_pcrel_9);
    Fixups.push_back(MCFixup::create(0, Expr, Kind, MI.getLoc()));

    ++MCNumCPRelocations;
  } else {
    EncodeAddrModeOpValues(MI, OpIdx, Reg, Imm8, Fixups, STI);
    isAdd = ARM_AM::getAM5Op(Imm8) == ARM_AM::add;
  }

  uint32_t Binary = ARM_AM::getAM5Offset(Imm8);
  // Immediate is always encoded as positive. The 'U' bit controls add vs sub.
  if (isAdd)
    Binary |= (1 << 8);
  Binary |= (Reg << 9);
  return Binary;
}

unsigned ARMMCCodeEmitter::
getSORegRegOpValue(const MCInst &MI, unsigned OpIdx,
                SmallVectorImpl<MCFixup> &Fixups,
                const MCSubtargetInfo &STI) const {
  // Sub-operands are [reg, reg, imm]. The first register is Rm, the reg to be
  // shifted. The second is Rs, the amount to shift by, and the third specifies
  // the type of the shift.
  //
  // {3-0} = Rm.
  // {4}   = 1
  // {6-5} = type
  // {11-8} = Rs
  // {7}    = 0

  const MCOperand &MO  = MI.getOperand(OpIdx);
  const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
  const MCOperand &MO2 = MI.getOperand(OpIdx + 2);
  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());

  // Encode Rm.
  unsigned Binary = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());

  // Encode the shift opcode.
  unsigned SBits = 0;
  unsigned Rs = MO1.getReg();
  if (Rs) {
    // Set shift operand (bit[7:4]).
    // LSL - 0001
    // LSR - 0011
    // ASR - 0101
    // ROR - 0111
    switch (SOpc) {
    default: llvm_unreachable("Unknown shift opc!");
    case ARM_AM::lsl: SBits = 0x1; break;
    case ARM_AM::lsr: SBits = 0x3; break;
    case ARM_AM::asr: SBits = 0x5; break;
    case ARM_AM::ror: SBits = 0x7; break;
    }
  }

  Binary |= SBits << 4;

  // Encode the shift operation Rs.
  // Encode Rs bit[11:8].
  assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
  return Binary | (CTX.getRegisterInfo()->getEncodingValue(Rs) << ARMII::RegRsShift);
}

unsigned ARMMCCodeEmitter::
getSORegImmOpValue(const MCInst &MI, unsigned OpIdx,
                SmallVectorImpl<MCFixup> &Fixups,
                const MCSubtargetInfo &STI) const {
  // Sub-operands are [reg, imm]. The first register is Rm, the reg to be
  // shifted. The second is the amount to shift by.
  //
  // {3-0} = Rm.
  // {4}   = 0
  // {6-5} = type
  // {11-7} = imm

  const MCOperand &MO  = MI.getOperand(OpIdx);
  const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO1.getImm());

  // Encode Rm.
  unsigned Binary = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());

  // Encode the shift opcode.
  unsigned SBits = 0;

  // Set shift operand (bit[6:4]).
  // LSL - 000
  // LSR - 010
  // ASR - 100
  // ROR - 110
  // RRX - 110 and bit[11:8] clear.
  switch (SOpc) {
  default: llvm_unreachable("Unknown shift opc!");
  case ARM_AM::lsl: SBits = 0x0; break;
  case ARM_AM::lsr: SBits = 0x2; break;
  case ARM_AM::asr: SBits = 0x4; break;
  case ARM_AM::ror: SBits = 0x6; break;
  case ARM_AM::rrx:
    Binary |= 0x60;
    return Binary;
  }

  // Encode shift_imm bit[11:7].
  Binary |= SBits << 4;
  unsigned Offset = ARM_AM::getSORegOffset(MO1.getImm());
  assert(Offset < 32 && "Offset must be in range 0-31!");
  return Binary | (Offset << 7);
}


unsigned ARMMCCodeEmitter::
getT2AddrModeSORegOpValue(const MCInst &MI, unsigned OpNum,
                SmallVectorImpl<MCFixup> &Fixups,
                const MCSubtargetInfo &STI) const {
  const MCOperand &MO1 = MI.getOperand(OpNum);
  const MCOperand &MO2 = MI.getOperand(OpNum+1);
  const MCOperand &MO3 = MI.getOperand(OpNum+2);

  // Encoded as [Rn, Rm, imm].
  // FIXME: Needs fixup support.
  unsigned Value = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg());
  Value <<= 4;
  Value |= CTX.getRegisterInfo()->getEncodingValue(MO2.getReg());
  Value <<= 2;
  Value |= MO3.getImm();

  return Value;
}

template<unsigned Bits, unsigned Shift>
unsigned ARMMCCodeEmitter::
getT2AddrModeImmOpValue(const MCInst &MI, unsigned OpNum,
                        SmallVectorImpl<MCFixup> &Fixups,
                        const MCSubtargetInfo &STI) const {
  const MCOperand &MO1 = MI.getOperand(OpNum);
  const MCOperand &MO2 = MI.getOperand(OpNum+1);

  // FIXME: Needs fixup support.
  unsigned Value = CTX.getRegisterInfo()->getEncodingValue(MO1.getReg());

  // If the immediate is B bits long, we need B+1 bits in order
  // to represent the (inverse of the) sign bit.
  Value <<= (Bits + 1);
  int32_t tmp = (int32_t)MO2.getImm();
  if (tmp == INT32_MIN) { // represents subtracting zero rather than adding it
    tmp = 0;
  } else if (tmp < 0) {
    tmp = abs(tmp);
  } else {
    Value |= (1U << Bits); // Set the ADD bit
  }
  Value |= (tmp >> Shift) & ((1U << Bits) - 1);
  return Value;
}

unsigned ARMMCCodeEmitter::
getT2AddrModeImm8OffsetOpValue(const MCInst &MI, unsigned OpNum,
                         SmallVectorImpl<MCFixup> &Fixups,
                         const MCSubtargetInfo &STI) const {
  const MCOperand &MO1 = MI.getOperand(OpNum);

  // FIXME: Needs fixup support.
  unsigned Value = 0;
  int32_t tmp = (int32_t)MO1.getImm();
  if (tmp < 0)
    tmp = abs(tmp);
  else
    Value |= 256; // Set the ADD bit
  Value |= tmp & 255;
  return Value;
}

unsigned ARMMCCodeEmitter::
getT2SORegOpValue(const MCInst &MI, unsigned OpIdx,
                SmallVectorImpl<MCFixup> &Fixups,
                const MCSubtargetInfo &STI) const {
  // Sub-operands are [reg, imm]. The first register is Rm, the reg to be
  // shifted. The second is the amount to shift by.
  //
  // {3-0} = Rm.
  // {4}   = 0
  // {6-5} = type
  // {11-7} = imm

  const MCOperand &MO  = MI.getOperand(OpIdx);
  const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
  ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO1.getImm());

  // Encode Rm.
  unsigned Binary = CTX.getRegisterInfo()->getEncodingValue(MO.getReg());

  // Encode the shift opcode.
  unsigned SBits = 0;
  // Set shift operand (bit[6:4]).
  // LSL - 000
  // LSR - 010
  // ASR - 100
  // ROR - 110
  switch (SOpc) {
  default: llvm_unreachable("Unknown shift opc!");
  case ARM_AM::lsl: SBits = 0x0; break;
  case ARM_AM::lsr: SBits = 0x2; break;
  case ARM_AM::asr: SBits = 0x4; break;
  case ARM_AM::rrx: LLVM_FALLTHROUGH;
  case ARM_AM::ror: SBits = 0x6; break;
  }

  Binary |= SBits << 4;
  if (SOpc == ARM_AM::rrx)
    return Binary;

  // Encode shift_imm bit[11:7].
  return Binary | ARM_AM::getSORegOffset(MO1.getImm()) << 7;
}

unsigned ARMMCCodeEmitter::
getBitfieldInvertedMaskOpValue(const MCInst &MI, unsigned Op,
                               SmallVectorImpl<MCFixup> &Fixups,
                               const MCSubtargetInfo &STI) const {
  // 10 bits. lower 5 bits are the lsb of the mask, high five bits are the
  // msb of the mask.
  const MCOperand &MO = MI.getOperand(Op);
  uint32_t v = ~MO.getImm();
  uint32_t lsb = countTrailingZeros(v);
  uint32_t msb = (32 - countLeadingZeros (v)) - 1;
  assert(v != 0 && lsb < 32 && msb < 32 && "Illegal bitfield mask!");
  return lsb | (msb << 5);
}

unsigned ARMMCCodeEmitter::
getRegisterListOpValue(const MCInst &MI, unsigned Op,
                       SmallVectorImpl<MCFixup> &Fixups,
                       const MCSubtargetInfo &STI) const {
  // VLDM/VSTM/VSCCLRM:
  //   {12-8} = Vd
  //   {7-0}  = Number of registers
  //
  // LDM/STM:
  //   {15-0}  = Bitfield of GPRs.
  unsigned Reg = MI.getOperand(Op).getReg();
  bool SPRRegs = ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg);
  bool DPRRegs = ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg);

  unsigned Binary = 0;

  if (SPRRegs || DPRRegs) {
    // VLDM/VSTM/VSCCLRM
    unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg);
    unsigned NumRegs = (MI.getNumOperands() - Op) & 0xff;
    Binary |= (RegNo & 0x1f) << 8;

    // Ignore VPR
    if (MI.getOpcode() == ARM::VSCCLRMD || MI.getOpcode() == ARM::VSCCLRMS)
      --NumRegs;
    if (SPRRegs)
      Binary |= NumRegs;
    else
      Binary |= NumRegs * 2;
  } else {
    const MCRegisterInfo &MRI = *CTX.getRegisterInfo();
    assert(std::is_sorted(MI.begin() + Op, MI.end(),
                          [&](const MCOperand &LHS, const MCOperand &RHS) {
                            return MRI.getEncodingValue(LHS.getReg()) <
                              MRI.getEncodingValue(RHS.getReg());
                          }));
    for (unsigned I = Op, E = MI.getNumOperands(); I < E; ++I) {
      unsigned RegNo = MRI.getEncodingValue(MI.getOperand(I).getReg());
      Binary |= 1 << RegNo;
    }
  }

  return Binary;
}

/// getAddrMode6AddressOpValue - Encode an addrmode6 register number along
/// with the alignment operand.
unsigned ARMMCCodeEmitter::
getAddrMode6AddressOpValue(const MCInst &MI, unsigned Op,
                           SmallVectorImpl<MCFixup> &Fixups,
                           const MCSubtargetInfo &STI) const {
  const MCOperand &Reg = MI.getOperand(Op);
  const MCOperand &Imm = MI.getOperand(Op + 1);

  unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg.getReg());
  unsigned Align = 0;

  switch (Imm.getImm()) {
  default: break;
  case 2:
  case 4:
  case 8:  Align = 0x01; break;
  case 16: Align = 0x02; break;
  case 32: Align = 0x03; break;
  }

  return RegNo | (Align << 4);
}

/// getAddrMode6OneLane32AddressOpValue - Encode an addrmode6 register number
/// along  with the alignment operand for use in VST1 and VLD1 with size 32.
unsigned ARMMCCodeEmitter::
getAddrMode6OneLane32AddressOpValue(const MCInst &MI, unsigned Op,
                                    SmallVectorImpl<MCFixup> &Fixups,
                                    const MCSubtargetInfo &STI) const {
  const MCOperand &Reg = MI.getOperand(Op);
  const MCOperand &Imm = MI.getOperand(Op + 1);

  unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg.getReg());
  unsigned Align = 0;

  switch (Imm.getImm()) {
  default: break;
  case 8:
  case 16:
  case 32: // Default '0' value for invalid alignments of 8, 16, 32 bytes.
  case 2: Align = 0x00; break;
  case 4: Align = 0x03; break;
  }

  return RegNo | (Align << 4);
}


/// getAddrMode6DupAddressOpValue - Encode an addrmode6 register number and
/// alignment operand for use in VLD-dup instructions.  This is the same as
/// getAddrMode6AddressOpValue except for the alignment encoding, which is
/// different for VLD4-dup.
unsigned ARMMCCodeEmitter::
getAddrMode6DupAddressOpValue(const MCInst &MI, unsigned Op,
                              SmallVectorImpl<MCFixup> &Fixups,
                              const MCSubtargetInfo &STI) const {
  const MCOperand &Reg = MI.getOperand(Op);
  const MCOperand &Imm = MI.getOperand(Op + 1);

  unsigned RegNo = CTX.getRegisterInfo()->getEncodingValue(Reg.getReg());
  unsigned Align = 0;

  switch (Imm.getImm()) {
  default: break;
  case 2:
  case 4:
  case 8:  Align = 0x01; break;
  case 16: Align = 0x03; break;
  }

  return RegNo | (Align << 4);
}

unsigned ARMMCCodeEmitter::
getAddrMode6OffsetOpValue(const MCInst &MI, unsigned Op,
                          SmallVectorImpl<MCFixup> &Fixups,
                          const MCSubtargetInfo &STI) const {
  const MCOperand &MO = MI.getOperand(Op);
  if (MO.getReg() == 0) return 0x0D;
  return CTX.getRegisterInfo()->getEncodingValue(MO.getReg());
}

unsigned ARMMCCodeEmitter::
getShiftRight8Imm(const MCInst &MI, unsigned Op,
                  SmallVectorImpl<MCFixup> &Fixups,
                  const MCSubtargetInfo &STI) const {
  return 8 - MI.getOperand(Op).getImm();
}

unsigned ARMMCCodeEmitter::
getShiftRight16Imm(const MCInst &MI, unsigned Op,
                   SmallVectorImpl<MCFixup> &Fixups,
                   const MCSubtargetInfo &STI) const {
  return 16 - MI.getOperand(Op).getImm();
}

unsigned ARMMCCodeEmitter::
getShiftRight32Imm(const MCInst &MI, unsigned Op,
                   SmallVectorImpl<MCFixup> &Fixups,
                   const MCSubtargetInfo &STI) const {
  return 32 - MI.getOperand(Op).getImm();
}

unsigned ARMMCCodeEmitter::
getShiftRight64Imm(const MCInst &MI, unsigned Op,
                   SmallVectorImpl<MCFixup> &Fixups,
                   const MCSubtargetInfo &STI) const {
  return 64 - MI.getOperand(Op).getImm();
}

void ARMMCCodeEmitter::
encodeInstruction(const MCInst &MI, raw_ostream &OS,
                  SmallVectorImpl<MCFixup> &Fixups,
                  const MCSubtargetInfo &STI) const {
  // Pseudo instructions don't get encoded.
  const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
  uint64_t TSFlags = Desc.TSFlags;
  if ((TSFlags & ARMII::FormMask) == ARMII::Pseudo)
    return;

  int Size;
  if (Desc.getSize() == 2 || Desc.getSize() == 4)
    Size = Desc.getSize();
  else
    llvm_unreachable("Unexpected instruction size!");

  uint32_t Binary = getBinaryCodeForInstr(MI, Fixups, STI);
  // Thumb 32-bit wide instructions need to emit the high order halfword
  // first.
  if (isThumb(STI) && Size == 4) {
    EmitConstant(Binary >> 16, 2, OS);
    EmitConstant(Binary & 0xffff, 2, OS);
  } else
    EmitConstant(Binary, Size, OS);
  ++MCNumEmitted;  // Keep track of the # of mi's emitted.
}

template <bool isNeg, ARM::Fixups fixup>
uint32_t
ARMMCCodeEmitter::getBFTargetOpValue(const MCInst &MI, unsigned OpIdx,
                                     SmallVectorImpl<MCFixup> &Fixups,
                                     const MCSubtargetInfo &STI) const {
  const MCOperand MO = MI.getOperand(OpIdx);
  if (MO.isExpr())
    return ::getBranchTargetOpValue(MI, OpIdx, fixup, Fixups, STI);
  return isNeg ? -(MO.getImm() >> 1) : (MO.getImm() >> 1);
}

uint32_t
ARMMCCodeEmitter::getBFAfterTargetOpValue(const MCInst &MI, unsigned OpIdx,
                                          SmallVectorImpl<MCFixup> &Fixups,
                                          const MCSubtargetInfo &STI) const {
  const MCOperand MO = MI.getOperand(OpIdx);
  const MCOperand BranchMO = MI.getOperand(0);

  if (MO.isExpr()) {
    assert(BranchMO.isExpr());
    const MCExpr *DiffExpr = MCBinaryExpr::createSub(
        MO.getExpr(), BranchMO.getExpr(), CTX);
    MCFixupKind Kind = MCFixupKind(ARM::fixup_bfcsel_else_target);
    Fixups.push_back(llvm::MCFixup::create(0, DiffExpr, Kind, MI.getLoc()));
    return 0;
  }

  assert(MO.isImm() && BranchMO.isImm());
  int Diff = MO.getImm() - BranchMO.getImm();
  assert(Diff == 4 || Diff == 2);

  return Diff == 4;
}

uint32_t ARMMCCodeEmitter::getVPTMaskOpValue(const MCInst &MI, unsigned OpIdx,
                                             SmallVectorImpl<MCFixup> &Fixups,
                                             const MCSubtargetInfo &STI)const {
  const MCOperand MO = MI.getOperand(OpIdx);
  assert(MO.isImm() && "Unexpected operand type!");

  int Value = MO.getImm();
  int Imm = 0;

  // VPT Masks are actually encoded as a series of invert/don't invert bits,
  // rather than true/false bits.
  unsigned PrevBit = 0;
  for (int i = 3; i >= 0; --i) {
    unsigned Bit = (Value >> i) & 1;

    // Check if we are at the end of the mask.
    if ((Value & ~(~0U << i)) == 0) {
      Imm |= (1 << i);
      break;
    }

    // Convert the bit in the mask based on the previous bit.
    if (Bit != PrevBit)
      Imm |= (1 << i);

    PrevBit = Bit;
  }

  return Imm;
}

uint32_t ARMMCCodeEmitter::getRestrictedCondCodeOpValue(
    const MCInst &MI, unsigned OpIdx, SmallVectorImpl<MCFixup> &Fixups,
    const MCSubtargetInfo &STI) const {

  const MCOperand MO = MI.getOperand(OpIdx);
  assert(MO.isImm() && "Unexpected operand type!");

  switch (MO.getImm()) {
  default:
    assert(0 && "Unexpected Condition!");
    return 0;
  case ARMCC::HS:
  case ARMCC::EQ:
    return 0;
  case ARMCC::HI:
  case ARMCC::NE:
    return 1;
  case ARMCC::GE:
    return 4;
  case ARMCC::LT:
    return 5;
  case ARMCC::GT:
    return 6;
  case ARMCC::LE:
    return 7;
  }
}

uint32_t ARMMCCodeEmitter::
getPowerTwoOpValue(const MCInst &MI, unsigned OpIdx,
                   SmallVectorImpl<MCFixup> &Fixups,
                   const MCSubtargetInfo &STI) const {
  const MCOperand &MO = MI.getOperand(OpIdx);
  assert(MO.isImm() && "Unexpected operand type!");
  return countTrailingZeros((uint64_t)MO.getImm());
}

template <unsigned start>
uint32_t ARMMCCodeEmitter::
getMVEPairVectorIndexOpValue(const MCInst &MI, unsigned OpIdx,
                             SmallVectorImpl<MCFixup> &Fixups,
                             const MCSubtargetInfo &STI) const {
  const MCOperand MO = MI.getOperand(OpIdx);
  assert(MO.isImm() && "Unexpected operand type!");

  int Value = MO.getImm();
  return Value - start;
}

#include "ARMGenMCCodeEmitter.inc"

MCCodeEmitter *llvm::createARMLEMCCodeEmitter(const MCInstrInfo &MCII,
                                              const MCRegisterInfo &MRI,
                                              MCContext &Ctx) {
  return new ARMMCCodeEmitter(MCII, Ctx, true);
}

MCCodeEmitter *llvm::createARMBEMCCodeEmitter(const MCInstrInfo &MCII,
                                              const MCRegisterInfo &MRI,
                                              MCContext &Ctx) {
  return new ARMMCCodeEmitter(MCII, Ctx, false);
}