Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
//===- HexagonEarlyIfConv.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements a Hexagon-specific if-conversion pass that runs on the
// SSA form.
// In SSA it is not straightforward to represent instructions that condi-
// tionally define registers, since a conditionally-defined register may
// only be used under the same condition on which the definition was based.
// To avoid complications of this nature, this patch will only generate
// predicated stores, and speculate other instructions from the "if-conver-
// ted" block.
// The code will recognize CFG patterns where a block with a conditional
// branch "splits" into a "true block" and a "false block". Either of these
// could be omitted (in case of a triangle, for example).
// If after conversion of the side block(s) the CFG allows it, the resul-
// ting blocks may be merged. If the "join" block contained PHI nodes, they
// will be replaced with MUX (or MUX-like) instructions to maintain the
// semantics of the PHI.
//
// Example:
//
//         %40 = L2_loadrub_io killed %39, 1
//         %41 = S2_tstbit_i killed %40, 0
//         J2_jumpt killed %41, <%bb.5>, implicit dead %pc
//         J2_jump <%bb.4>, implicit dead %pc
//     Successors according to CFG: %bb.4(62) %bb.5(62)
//
// %bb.4: derived from LLVM BB %if.then
//     Predecessors according to CFG: %bb.3
//         %11 = A2_addp %6, %10
//         S2_storerd_io %32, 16, %11
//     Successors according to CFG: %bb.5
//
// %bb.5: derived from LLVM BB %if.end
//     Predecessors according to CFG: %bb.3 %bb.4
//         %12 = PHI %6, <%bb.3>, %11, <%bb.4>
//         %13 = A2_addp %7, %12
//         %42 = C2_cmpeqi %9, 10
//         J2_jumpf killed %42, <%bb.3>, implicit dead %pc
//         J2_jump <%bb.6>, implicit dead %pc
//     Successors according to CFG: %bb.6(4) %bb.3(124)
//
// would become:
//
//         %40 = L2_loadrub_io killed %39, 1
//         %41 = S2_tstbit_i killed %40, 0
// spec->  %11 = A2_addp %6, %10
// pred->  S2_pstorerdf_io %41, %32, 16, %11
//         %46 = PS_pselect %41, %6, %11
//         %13 = A2_addp %7, %46
//         %42 = C2_cmpeqi %9, 10
//         J2_jumpf killed %42, <%bb.3>, implicit dead %pc
//         J2_jump <%bb.6>, implicit dead %pc
//     Successors according to CFG: %bb.6 %bb.3

#include "Hexagon.h"
#include "HexagonInstrInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/Pass.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <iterator>

#define DEBUG_TYPE "hexagon-eif"

using namespace llvm;

namespace llvm {

  FunctionPass *createHexagonEarlyIfConversion();
  void initializeHexagonEarlyIfConversionPass(PassRegistry& Registry);

} // end namespace llvm

static cl::opt<bool> EnableHexagonBP("enable-hexagon-br-prob", cl::Hidden,
  cl::init(true), cl::desc("Enable branch probability info"));
static cl::opt<unsigned> SizeLimit("eif-limit", cl::init(6), cl::Hidden,
  cl::desc("Size limit in Hexagon early if-conversion"));
static cl::opt<bool> SkipExitBranches("eif-no-loop-exit", cl::init(false),
  cl::Hidden, cl::desc("Do not convert branches that may exit the loop"));

namespace {

  struct PrintMB {
    PrintMB(const MachineBasicBlock *B) : MB(B) {}

    const MachineBasicBlock *MB;
  };
  raw_ostream &operator<< (raw_ostream &OS, const PrintMB &P) {
    if (!P.MB)
      return OS << "<none>";
    return OS << '#' << P.MB->getNumber();
  }

  struct FlowPattern {
    FlowPattern() = default;
    FlowPattern(MachineBasicBlock *B, unsigned PR, MachineBasicBlock *TB,
          MachineBasicBlock *FB, MachineBasicBlock *JB)
      : SplitB(B), TrueB(TB), FalseB(FB), JoinB(JB), PredR(PR) {}

    MachineBasicBlock *SplitB = nullptr;
    MachineBasicBlock *TrueB = nullptr;
    MachineBasicBlock *FalseB = nullptr;
    MachineBasicBlock *JoinB = nullptr;
    unsigned PredR = 0;
  };

  struct PrintFP {
    PrintFP(const FlowPattern &P, const TargetRegisterInfo &T)
      : FP(P), TRI(T) {}

    const FlowPattern &FP;
    const TargetRegisterInfo &TRI;
    friend raw_ostream &operator<< (raw_ostream &OS, const PrintFP &P);
  };
  raw_ostream &operator<<(raw_ostream &OS,
                          const PrintFP &P) LLVM_ATTRIBUTE_UNUSED;
  raw_ostream &operator<<(raw_ostream &OS, const PrintFP &P) {
    OS << "{ SplitB:" << PrintMB(P.FP.SplitB)
       << ", PredR:" << printReg(P.FP.PredR, &P.TRI)
       << ", TrueB:" << PrintMB(P.FP.TrueB)
       << ", FalseB:" << PrintMB(P.FP.FalseB)
       << ", JoinB:" << PrintMB(P.FP.JoinB) << " }";
    return OS;
  }

  class HexagonEarlyIfConversion : public MachineFunctionPass {
  public:
    static char ID;

    HexagonEarlyIfConversion() : MachineFunctionPass(ID) {}

    StringRef getPassName() const override {
      return "Hexagon early if conversion";
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<MachineBranchProbabilityInfo>();
      AU.addRequired<MachineDominatorTree>();
      AU.addPreserved<MachineDominatorTree>();
      AU.addRequired<MachineLoopInfo>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    bool runOnMachineFunction(MachineFunction &MF) override;

  private:
    using BlockSetType = DenseSet<MachineBasicBlock *>;

    bool isPreheader(const MachineBasicBlock *B) const;
    bool matchFlowPattern(MachineBasicBlock *B, MachineLoop *L,
          FlowPattern &FP);
    bool visitBlock(MachineBasicBlock *B, MachineLoop *L);
    bool visitLoop(MachineLoop *L);

    bool hasEHLabel(const MachineBasicBlock *B) const;
    bool hasUncondBranch(const MachineBasicBlock *B) const;
    bool isValidCandidate(const MachineBasicBlock *B) const;
    bool usesUndefVReg(const MachineInstr *MI) const;
    bool isValid(const FlowPattern &FP) const;
    unsigned countPredicateDefs(const MachineBasicBlock *B) const;
    unsigned computePhiCost(const MachineBasicBlock *B,
          const FlowPattern &FP) const;
    bool isProfitable(const FlowPattern &FP) const;
    bool isPredicableStore(const MachineInstr *MI) const;
    bool isSafeToSpeculate(const MachineInstr *MI) const;
    bool isPredicate(unsigned R) const;

    unsigned getCondStoreOpcode(unsigned Opc, bool IfTrue) const;
    void predicateInstr(MachineBasicBlock *ToB, MachineBasicBlock::iterator At,
          MachineInstr *MI, unsigned PredR, bool IfTrue);
    void predicateBlockNB(MachineBasicBlock *ToB,
          MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
          unsigned PredR, bool IfTrue);

    unsigned buildMux(MachineBasicBlock *B, MachineBasicBlock::iterator At,
          const TargetRegisterClass *DRC, unsigned PredR, unsigned TR,
          unsigned TSR, unsigned FR, unsigned FSR);
    void updatePhiNodes(MachineBasicBlock *WhereB, const FlowPattern &FP);
    void convert(const FlowPattern &FP);

    void removeBlock(MachineBasicBlock *B);
    void eliminatePhis(MachineBasicBlock *B);
    void mergeBlocks(MachineBasicBlock *PredB, MachineBasicBlock *SuccB);
    void simplifyFlowGraph(const FlowPattern &FP);

    const HexagonInstrInfo *HII = nullptr;
    const TargetRegisterInfo *TRI = nullptr;
    MachineFunction *MFN = nullptr;
    MachineRegisterInfo *MRI = nullptr;
    MachineDominatorTree *MDT = nullptr;
    MachineLoopInfo *MLI = nullptr;
    BlockSetType Deleted;
    const MachineBranchProbabilityInfo *MBPI = nullptr;
  };

} // end anonymous namespace

char HexagonEarlyIfConversion::ID = 0;

INITIALIZE_PASS(HexagonEarlyIfConversion, "hexagon-early-if",
  "Hexagon early if conversion", false, false)

bool HexagonEarlyIfConversion::isPreheader(const MachineBasicBlock *B) const {
  if (B->succ_size() != 1)
    return false;
  MachineBasicBlock *SB = *B->succ_begin();
  MachineLoop *L = MLI->getLoopFor(SB);
  return L && SB == L->getHeader() && MDT->dominates(B, SB);
}

bool HexagonEarlyIfConversion::matchFlowPattern(MachineBasicBlock *B,
    MachineLoop *L, FlowPattern &FP) {
  LLVM_DEBUG(dbgs() << "Checking flow pattern at " << printMBBReference(*B)
                    << "\n");

  // Interested only in conditional branches, no .new, no new-value, etc.
  // Check the terminators directly, it's easier than handling all responses
  // from analyzeBranch.
  MachineBasicBlock *TB = nullptr, *FB = nullptr;
  MachineBasicBlock::const_iterator T1I = B->getFirstTerminator();
  if (T1I == B->end())
    return false;
  unsigned Opc = T1I->getOpcode();
  if (Opc != Hexagon::J2_jumpt && Opc != Hexagon::J2_jumpf)
    return false;
  Register PredR = T1I->getOperand(0).getReg();

  // Get the layout successor, or 0 if B does not have one.
  MachineFunction::iterator NextBI = std::next(MachineFunction::iterator(B));
  MachineBasicBlock *NextB = (NextBI != MFN->end()) ? &*NextBI : nullptr;

  MachineBasicBlock *T1B = T1I->getOperand(1).getMBB();
  MachineBasicBlock::const_iterator T2I = std::next(T1I);
  // The second terminator should be an unconditional branch.
  assert(T2I == B->end() || T2I->getOpcode() == Hexagon::J2_jump);
  MachineBasicBlock *T2B = (T2I == B->end()) ? NextB
                                             : T2I->getOperand(0).getMBB();
  if (T1B == T2B) {
    // XXX merge if T1B == NextB, or convert branch to unconditional.
    // mark as diamond with both sides equal?
    return false;
  }

  // Record the true/false blocks in such a way that "true" means "if (PredR)",
  // and "false" means "if (!PredR)".
  if (Opc == Hexagon::J2_jumpt)
    TB = T1B, FB = T2B;
  else
    TB = T2B, FB = T1B;

  if (!MDT->properlyDominates(B, TB) || !MDT->properlyDominates(B, FB))
    return false;

  // Detect triangle first. In case of a triangle, one of the blocks TB/FB
  // can fall through into the other, in other words, it will be executed
  // in both cases. We only want to predicate the block that is executed
  // conditionally.
  assert(TB && FB && "Failed to find triangle control flow blocks");
  unsigned TNP = TB->pred_size(), FNP = FB->pred_size();
  unsigned TNS = TB->succ_size(), FNS = FB->succ_size();

  // A block is predicable if it has one predecessor (it must be B), and
  // it has a single successor. In fact, the block has to end either with
  // an unconditional branch (which can be predicated), or with a fall-
  // through.
  // Also, skip blocks that do not belong to the same loop.
  bool TOk = (TNP == 1 && TNS == 1 && MLI->getLoopFor(TB) == L);
  bool FOk = (FNP == 1 && FNS == 1 && MLI->getLoopFor(FB) == L);

  // If requested (via an option), do not consider branches where the
  // true and false targets do not belong to the same loop.
  if (SkipExitBranches && MLI->getLoopFor(TB) != MLI->getLoopFor(FB))
    return false;

  // If neither is predicable, there is nothing interesting.
  if (!TOk && !FOk)
    return false;

  MachineBasicBlock *TSB = (TNS > 0) ? *TB->succ_begin() : nullptr;
  MachineBasicBlock *FSB = (FNS > 0) ? *FB->succ_begin() : nullptr;
  MachineBasicBlock *JB = nullptr;

  if (TOk) {
    if (FOk) {
      if (TSB == FSB)
        JB = TSB;
      // Diamond: "if (P) then TB; else FB;".
    } else {
      // TOk && !FOk
      if (TSB == FB)
        JB = FB;
      FB = nullptr;
    }
  } else {
    // !TOk && FOk  (at least one must be true by now).
    if (FSB == TB)
      JB = TB;
    TB = nullptr;
  }
  // Don't try to predicate loop preheaders.
  if ((TB && isPreheader(TB)) || (FB && isPreheader(FB))) {
    LLVM_DEBUG(dbgs() << "One of blocks " << PrintMB(TB) << ", " << PrintMB(FB)
                      << " is a loop preheader. Skipping.\n");
    return false;
  }

  FP = FlowPattern(B, PredR, TB, FB, JB);
  LLVM_DEBUG(dbgs() << "Detected " << PrintFP(FP, *TRI) << "\n");
  return true;
}

// KLUDGE: HexagonInstrInfo::analyzeBranch won't work on a block that
// contains EH_LABEL.
bool HexagonEarlyIfConversion::hasEHLabel(const MachineBasicBlock *B) const {
  for (auto &I : *B)
    if (I.isEHLabel())
      return true;
  return false;
}

// KLUDGE: HexagonInstrInfo::analyzeBranch may be unable to recognize
// that a block can never fall-through.
bool HexagonEarlyIfConversion::hasUncondBranch(const MachineBasicBlock *B)
      const {
  MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
  while (I != E) {
    if (I->isBarrier())
      return true;
    ++I;
  }
  return false;
}

bool HexagonEarlyIfConversion::isValidCandidate(const MachineBasicBlock *B)
      const {
  if (!B)
    return true;
  if (B->isEHPad() || B->hasAddressTaken())
    return false;
  if (B->succ_size() == 0)
    return false;

  for (auto &MI : *B) {
    if (MI.isDebugInstr())
      continue;
    if (MI.isConditionalBranch())
      return false;
    unsigned Opc = MI.getOpcode();
    bool IsJMP = (Opc == Hexagon::J2_jump);
    if (!isPredicableStore(&MI) && !IsJMP && !isSafeToSpeculate(&MI))
      return false;
    // Look for predicate registers defined by this instruction. It's ok
    // to speculate such an instruction, but the predicate register cannot
    // be used outside of this block (or else it won't be possible to
    // update the use of it after predication). PHI uses will be updated
    // to use a result of a MUX, and a MUX cannot be created for predicate
    // registers.
    for (const MachineOperand &MO : MI.operands()) {
      if (!MO.isReg() || !MO.isDef())
        continue;
      Register R = MO.getReg();
      if (!Register::isVirtualRegister(R))
        continue;
      if (!isPredicate(R))
        continue;
      for (auto U = MRI->use_begin(R); U != MRI->use_end(); ++U)
        if (U->getParent()->isPHI())
          return false;
    }
  }
  return true;
}

bool HexagonEarlyIfConversion::usesUndefVReg(const MachineInstr *MI) const {
  for (const MachineOperand &MO : MI->operands()) {
    if (!MO.isReg() || !MO.isUse())
      continue;
    Register R = MO.getReg();
    if (!Register::isVirtualRegister(R))
      continue;
    const MachineInstr *DefI = MRI->getVRegDef(R);
    // "Undefined" virtual registers are actually defined via IMPLICIT_DEF.
    assert(DefI && "Expecting a reaching def in MRI");
    if (DefI->isImplicitDef())
      return true;
  }
  return false;
}

bool HexagonEarlyIfConversion::isValid(const FlowPattern &FP) const {
  if (hasEHLabel(FP.SplitB))  // KLUDGE: see function definition
    return false;
  if (FP.TrueB && !isValidCandidate(FP.TrueB))
    return false;
  if (FP.FalseB && !isValidCandidate(FP.FalseB))
    return false;
  // Check the PHIs in the join block. If any of them use a register
  // that is defined as IMPLICIT_DEF, do not convert this. This can
  // legitimately happen if one side of the split never executes, but
  // the compiler is unable to prove it. That side may then seem to
  // provide an "undef" value to the join block, however it will never
  // execute at run-time. If we convert this case, the "undef" will
  // be used in a MUX instruction, and that may seem like actually
  // using an undefined value to other optimizations. This could lead
  // to trouble further down the optimization stream, cause assertions
  // to fail, etc.
  if (FP.JoinB) {
    const MachineBasicBlock &B = *FP.JoinB;
    for (auto &MI : B) {
      if (!MI.isPHI())
        break;
      if (usesUndefVReg(&MI))
        return false;
      Register DefR = MI.getOperand(0).getReg();
      if (isPredicate(DefR))
        return false;
    }
  }
  return true;
}

unsigned HexagonEarlyIfConversion::computePhiCost(const MachineBasicBlock *B,
      const FlowPattern &FP) const {
  if (B->pred_size() < 2)
    return 0;

  unsigned Cost = 0;
  for (const MachineInstr &MI : *B) {
    if (!MI.isPHI())
      break;
    // If both incoming blocks are one of the TrueB/FalseB/SplitB, then
    // a MUX may be needed. Otherwise the PHI will need to be updated at
    // no extra cost.
    // Find the interesting PHI operands for further checks.
    SmallVector<unsigned,2> Inc;
    for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
      const MachineBasicBlock *BB = MI.getOperand(i+1).getMBB();
      if (BB == FP.SplitB || BB == FP.TrueB || BB == FP.FalseB)
        Inc.push_back(i);
    }
    assert(Inc.size() <= 2);
    if (Inc.size() < 2)
      continue;

    const MachineOperand &RA = MI.getOperand(1);
    const MachineOperand &RB = MI.getOperand(3);
    assert(RA.isReg() && RB.isReg());
    // Must have a MUX if the phi uses a subregister.
    if (RA.getSubReg() != 0 || RB.getSubReg() != 0) {
      Cost++;
      continue;
    }
    const MachineInstr *Def1 = MRI->getVRegDef(RA.getReg());
    const MachineInstr *Def3 = MRI->getVRegDef(RB.getReg());
    if (!HII->isPredicable(*Def1) || !HII->isPredicable(*Def3))
      Cost++;
  }
  return Cost;
}

unsigned HexagonEarlyIfConversion::countPredicateDefs(
      const MachineBasicBlock *B) const {
  unsigned PredDefs = 0;
  for (auto &MI : *B) {
    for (const MachineOperand &MO : MI.operands()) {
      if (!MO.isReg() || !MO.isDef())
        continue;
      Register R = MO.getReg();
      if (!Register::isVirtualRegister(R))
        continue;
      if (isPredicate(R))
        PredDefs++;
    }
  }
  return PredDefs;
}

bool HexagonEarlyIfConversion::isProfitable(const FlowPattern &FP) const {
  BranchProbability JumpProb(1, 10);
  BranchProbability Prob(9, 10);
  if (MBPI && FP.TrueB && !FP.FalseB &&
      (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) < JumpProb ||
       MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob))
    return false;

  if (MBPI && !FP.TrueB && FP.FalseB &&
      (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) < JumpProb ||
       MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob))
    return false;

  if (FP.TrueB && FP.FalseB) {
    // Do not IfCovert if the branch is one sided.
    if (MBPI) {
      if (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob)
        return false;
      if (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob)
        return false;
    }

    // If both sides are predicable, convert them if they join, and the
    // join block has no other predecessors.
    MachineBasicBlock *TSB = *FP.TrueB->succ_begin();
    MachineBasicBlock *FSB = *FP.FalseB->succ_begin();
    if (TSB != FSB)
      return false;
    if (TSB->pred_size() != 2)
      return false;
  }

  // Calculate the total size of the predicated blocks.
  // Assume instruction counts without branches to be the approximation of
  // the code size. If the predicated blocks are smaller than a packet size,
  // approximate the spare room in the packet that could be filled with the
  // predicated/speculated instructions.
  auto TotalCount = [] (const MachineBasicBlock *B, unsigned &Spare) {
    if (!B)
      return 0u;
    unsigned T = std::count_if(B->begin(), B->getFirstTerminator(),
                               [](const MachineInstr &MI) {
                                 return !MI.isMetaInstruction();
                               });
    if (T < HEXAGON_PACKET_SIZE)
      Spare += HEXAGON_PACKET_SIZE-T;
    return T;
  };
  unsigned Spare = 0;
  unsigned TotalIn = TotalCount(FP.TrueB, Spare) + TotalCount(FP.FalseB, Spare);
  LLVM_DEBUG(
      dbgs() << "Total number of instructions to be predicated/speculated: "
             << TotalIn << ", spare room: " << Spare << "\n");
  if (TotalIn >= SizeLimit+Spare)
    return false;

  // Count the number of PHI nodes that will need to be updated (converted
  // to MUX). Those can be later converted to predicated instructions, so
  // they aren't always adding extra cost.
  // KLUDGE: Also, count the number of predicate register definitions in
  // each block. The scheduler may increase the pressure of these and cause
  // expensive spills (e.g. bitmnp01).
  unsigned TotalPh = 0;
  unsigned PredDefs = countPredicateDefs(FP.SplitB);
  if (FP.JoinB) {
    TotalPh = computePhiCost(FP.JoinB, FP);
    PredDefs += countPredicateDefs(FP.JoinB);
  } else {
    if (FP.TrueB && FP.TrueB->succ_size() > 0) {
      MachineBasicBlock *SB = *FP.TrueB->succ_begin();
      TotalPh += computePhiCost(SB, FP);
      PredDefs += countPredicateDefs(SB);
    }
    if (FP.FalseB && FP.FalseB->succ_size() > 0) {
      MachineBasicBlock *SB = *FP.FalseB->succ_begin();
      TotalPh += computePhiCost(SB, FP);
      PredDefs += countPredicateDefs(SB);
    }
  }
  LLVM_DEBUG(dbgs() << "Total number of extra muxes from converted phis: "
                    << TotalPh << "\n");
  if (TotalIn+TotalPh >= SizeLimit+Spare)
    return false;

  LLVM_DEBUG(dbgs() << "Total number of predicate registers: " << PredDefs
                    << "\n");
  if (PredDefs > 4)
    return false;

  return true;
}

bool HexagonEarlyIfConversion::visitBlock(MachineBasicBlock *B,
      MachineLoop *L) {
  bool Changed = false;

  // Visit all dominated blocks from the same loop first, then process B.
  MachineDomTreeNode *N = MDT->getNode(B);

  using GTN = GraphTraits<MachineDomTreeNode *>;

  // We will change CFG/DT during this traversal, so take precautions to
  // avoid problems related to invalidated iterators. In fact, processing
  // a child C of B cannot cause another child to be removed, but it can
  // cause a new child to be added (which was a child of C before C itself
  // was removed. This new child C, however, would have been processed
  // prior to processing B, so there is no need to process it again.
  // Simply keep a list of children of B, and traverse that list.
  using DTNodeVectType = SmallVector<MachineDomTreeNode *, 4>;
  DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
  for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) {
    MachineBasicBlock *SB = (*I)->getBlock();
    if (!Deleted.count(SB))
      Changed |= visitBlock(SB, L);
  }
  // When walking down the dominator tree, we want to traverse through
  // blocks from nested (other) loops, because they can dominate blocks
  // that are in L. Skip the non-L blocks only after the tree traversal.
  if (MLI->getLoopFor(B) != L)
    return Changed;

  FlowPattern FP;
  if (!matchFlowPattern(B, L, FP))
    return Changed;

  if (!isValid(FP)) {
    LLVM_DEBUG(dbgs() << "Conversion is not valid\n");
    return Changed;
  }
  if (!isProfitable(FP)) {
    LLVM_DEBUG(dbgs() << "Conversion is not profitable\n");
    return Changed;
  }

  convert(FP);
  simplifyFlowGraph(FP);
  return true;
}

bool HexagonEarlyIfConversion::visitLoop(MachineLoop *L) {
  MachineBasicBlock *HB = L ? L->getHeader() : nullptr;
  LLVM_DEBUG((L ? dbgs() << "Visiting loop H:" << PrintMB(HB)
                : dbgs() << "Visiting function")
             << "\n");
  bool Changed = false;
  if (L) {
    for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
      Changed |= visitLoop(*I);
  }

  MachineBasicBlock *EntryB = GraphTraits<MachineFunction*>::getEntryNode(MFN);
  Changed |= visitBlock(L ? HB : EntryB, L);
  return Changed;
}

bool HexagonEarlyIfConversion::isPredicableStore(const MachineInstr *MI)
      const {
  // HexagonInstrInfo::isPredicable will consider these stores are non-
  // -predicable if the offset would become constant-extended after
  // predication.
  unsigned Opc = MI->getOpcode();
  switch (Opc) {
    case Hexagon::S2_storerb_io:
    case Hexagon::S2_storerbnew_io:
    case Hexagon::S2_storerh_io:
    case Hexagon::S2_storerhnew_io:
    case Hexagon::S2_storeri_io:
    case Hexagon::S2_storerinew_io:
    case Hexagon::S2_storerd_io:
    case Hexagon::S4_storeirb_io:
    case Hexagon::S4_storeirh_io:
    case Hexagon::S4_storeiri_io:
      return true;
  }

  // TargetInstrInfo::isPredicable takes a non-const pointer.
  return MI->mayStore() && HII->isPredicable(const_cast<MachineInstr&>(*MI));
}

bool HexagonEarlyIfConversion::isSafeToSpeculate(const MachineInstr *MI)
      const {
  if (MI->mayLoadOrStore())
    return false;
  if (MI->isCall() || MI->isBarrier() || MI->isBranch())
    return false;
  if (MI->hasUnmodeledSideEffects())
    return false;
  if (MI->getOpcode() == TargetOpcode::LIFETIME_END)
    return false;

  return true;
}

bool HexagonEarlyIfConversion::isPredicate(unsigned R) const {
  const TargetRegisterClass *RC = MRI->getRegClass(R);
  return RC == &Hexagon::PredRegsRegClass ||
         RC == &Hexagon::HvxQRRegClass;
}

unsigned HexagonEarlyIfConversion::getCondStoreOpcode(unsigned Opc,
      bool IfTrue) const {
  return HII->getCondOpcode(Opc, !IfTrue);
}

void HexagonEarlyIfConversion::predicateInstr(MachineBasicBlock *ToB,
      MachineBasicBlock::iterator At, MachineInstr *MI,
      unsigned PredR, bool IfTrue) {
  DebugLoc DL;
  if (At != ToB->end())
    DL = At->getDebugLoc();
  else if (!ToB->empty())
    DL = ToB->back().getDebugLoc();

  unsigned Opc = MI->getOpcode();

  if (isPredicableStore(MI)) {
    unsigned COpc = getCondStoreOpcode(Opc, IfTrue);
    assert(COpc);
    MachineInstrBuilder MIB = BuildMI(*ToB, At, DL, HII->get(COpc));
    MachineInstr::mop_iterator MOI = MI->operands_begin();
    if (HII->isPostIncrement(*MI)) {
      MIB.add(*MOI);
      ++MOI;
    }
    MIB.addReg(PredR);
    for (const MachineOperand &MO : make_range(MOI, MI->operands_end()))
      MIB.add(MO);

    // Set memory references.
    MIB.cloneMemRefs(*MI);

    MI->eraseFromParent();
    return;
  }

  if (Opc == Hexagon::J2_jump) {
    MachineBasicBlock *TB = MI->getOperand(0).getMBB();
    const MCInstrDesc &D = HII->get(IfTrue ? Hexagon::J2_jumpt
                                           : Hexagon::J2_jumpf);
    BuildMI(*ToB, At, DL, D)
      .addReg(PredR)
      .addMBB(TB);
    MI->eraseFromParent();
    return;
  }

  // Print the offending instruction unconditionally as we are about to
  // abort.
  dbgs() << *MI;
  llvm_unreachable("Unexpected instruction");
}

// Predicate/speculate non-branch instructions from FromB into block ToB.
// Leave the branches alone, they will be handled later. Btw, at this point
// FromB should have at most one branch, and it should be unconditional.
void HexagonEarlyIfConversion::predicateBlockNB(MachineBasicBlock *ToB,
      MachineBasicBlock::iterator At, MachineBasicBlock *FromB,
      unsigned PredR, bool IfTrue) {
  LLVM_DEBUG(dbgs() << "Predicating block " << PrintMB(FromB) << "\n");
  MachineBasicBlock::iterator End = FromB->getFirstTerminator();
  MachineBasicBlock::iterator I, NextI;

  for (I = FromB->begin(); I != End; I = NextI) {
    assert(!I->isPHI());
    NextI = std::next(I);
    if (isSafeToSpeculate(&*I))
      ToB->splice(At, FromB, I);
    else
      predicateInstr(ToB, At, &*I, PredR, IfTrue);
  }
}

unsigned HexagonEarlyIfConversion::buildMux(MachineBasicBlock *B,
      MachineBasicBlock::iterator At, const TargetRegisterClass *DRC,
      unsigned PredR, unsigned TR, unsigned TSR, unsigned FR, unsigned FSR) {
  unsigned Opc = 0;
  switch (DRC->getID()) {
    case Hexagon::IntRegsRegClassID:
    case Hexagon::IntRegsLow8RegClassID:
      Opc = Hexagon::C2_mux;
      break;
    case Hexagon::DoubleRegsRegClassID:
    case Hexagon::GeneralDoubleLow8RegsRegClassID:
      Opc = Hexagon::PS_pselect;
      break;
    case Hexagon::HvxVRRegClassID:
      Opc = Hexagon::PS_vselect;
      break;
    case Hexagon::HvxWRRegClassID:
      Opc = Hexagon::PS_wselect;
      break;
    default:
      llvm_unreachable("unexpected register type");
  }
  const MCInstrDesc &D = HII->get(Opc);

  DebugLoc DL = B->findBranchDebugLoc();
  Register MuxR = MRI->createVirtualRegister(DRC);
  BuildMI(*B, At, DL, D, MuxR)
    .addReg(PredR)
    .addReg(TR, 0, TSR)
    .addReg(FR, 0, FSR);
  return MuxR;
}

void HexagonEarlyIfConversion::updatePhiNodes(MachineBasicBlock *WhereB,
      const FlowPattern &FP) {
  // Visit all PHI nodes in the WhereB block and generate MUX instructions
  // in the split block. Update the PHI nodes with the values of the MUX.
  auto NonPHI = WhereB->getFirstNonPHI();
  for (auto I = WhereB->begin(); I != NonPHI; ++I) {
    MachineInstr *PN = &*I;
    // Registers and subregisters corresponding to TrueB, FalseB and SplitB.
    unsigned TR = 0, TSR = 0, FR = 0, FSR = 0, SR = 0, SSR = 0;
    for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
      const MachineOperand &RO = PN->getOperand(i), &BO = PN->getOperand(i+1);
      if (BO.getMBB() == FP.SplitB)
        SR = RO.getReg(), SSR = RO.getSubReg();
      else if (BO.getMBB() == FP.TrueB)
        TR = RO.getReg(), TSR = RO.getSubReg();
      else if (BO.getMBB() == FP.FalseB)
        FR = RO.getReg(), FSR = RO.getSubReg();
      else
        continue;
      PN->RemoveOperand(i+1);
      PN->RemoveOperand(i);
    }
    if (TR == 0)
      TR = SR, TSR = SSR;
    else if (FR == 0)
      FR = SR, FSR = SSR;

    assert(TR || FR);
    unsigned MuxR = 0, MuxSR = 0;

    if (TR && FR) {
      Register DR = PN->getOperand(0).getReg();
      const TargetRegisterClass *RC = MRI->getRegClass(DR);
      MuxR = buildMux(FP.SplitB, FP.SplitB->getFirstTerminator(), RC,
                      FP.PredR, TR, TSR, FR, FSR);
    } else if (TR) {
      MuxR = TR;
      MuxSR = TSR;
    } else {
      MuxR = FR;
      MuxSR = FSR;
    }

    PN->addOperand(MachineOperand::CreateReg(MuxR, false, false, false, false,
                                             false, false, MuxSR));
    PN->addOperand(MachineOperand::CreateMBB(FP.SplitB));
  }
}

void HexagonEarlyIfConversion::convert(const FlowPattern &FP) {
  MachineBasicBlock *TSB = nullptr, *FSB = nullptr;
  MachineBasicBlock::iterator OldTI = FP.SplitB->getFirstTerminator();
  assert(OldTI != FP.SplitB->end());
  DebugLoc DL = OldTI->getDebugLoc();

  if (FP.TrueB) {
    TSB = *FP.TrueB->succ_begin();
    predicateBlockNB(FP.SplitB, OldTI, FP.TrueB, FP.PredR, true);
  }
  if (FP.FalseB) {
    FSB = *FP.FalseB->succ_begin();
    MachineBasicBlock::iterator At = FP.SplitB->getFirstTerminator();
    predicateBlockNB(FP.SplitB, At, FP.FalseB, FP.PredR, false);
  }

  // Regenerate new terminators in the split block and update the successors.
  // First, remember any information that may be needed later and remove the
  // existing terminators/successors from the split block.
  MachineBasicBlock *SSB = nullptr;
  FP.SplitB->erase(OldTI, FP.SplitB->end());
  while (FP.SplitB->succ_size() > 0) {
    MachineBasicBlock *T = *FP.SplitB->succ_begin();
    // It's possible that the split block had a successor that is not a pre-
    // dicated block. This could only happen if there was only one block to
    // be predicated. Example:
    //   split_b:
    //     if (p) jump true_b
    //     jump unrelated2_b
    //   unrelated1_b:
    //     ...
    //   unrelated2_b:  ; can have other predecessors, so it's not "false_b"
    //     jump other_b
    //   true_b:        ; only reachable from split_b, can be predicated
    //     ...
    //
    // Find this successor (SSB) if it exists.
    if (T != FP.TrueB && T != FP.FalseB) {
      assert(!SSB);
      SSB = T;
    }
    FP.SplitB->removeSuccessor(FP.SplitB->succ_begin());
  }

  // Insert new branches and update the successors of the split block. This
  // may create unconditional branches to the layout successor, etc., but
  // that will be cleaned up later. For now, make sure that correct code is
  // generated.
  if (FP.JoinB) {
    assert(!SSB || SSB == FP.JoinB);
    BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jump))
      .addMBB(FP.JoinB);
    FP.SplitB->addSuccessor(FP.JoinB);
  } else {
    bool HasBranch = false;
    if (TSB) {
      BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jumpt))
        .addReg(FP.PredR)
        .addMBB(TSB);
      FP.SplitB->addSuccessor(TSB);
      HasBranch = true;
    }
    if (FSB) {
      const MCInstrDesc &D = HasBranch ? HII->get(Hexagon::J2_jump)
                                       : HII->get(Hexagon::J2_jumpf);
      MachineInstrBuilder MIB = BuildMI(*FP.SplitB, FP.SplitB->end(), DL, D);
      if (!HasBranch)
        MIB.addReg(FP.PredR);
      MIB.addMBB(FSB);
      FP.SplitB->addSuccessor(FSB);
    }
    if (SSB) {
      // This cannot happen if both TSB and FSB are set. [TF]SB are the
      // successor blocks of the TrueB and FalseB (or null of the TrueB
      // or FalseB block is null). SSB is the potential successor block
      // of the SplitB that is neither TrueB nor FalseB.
      BuildMI(*FP.SplitB, FP.SplitB->end(), DL, HII->get(Hexagon::J2_jump))
        .addMBB(SSB);
      FP.SplitB->addSuccessor(SSB);
    }
  }

  // What is left to do is to update the PHI nodes that could have entries
  // referring to predicated blocks.
  if (FP.JoinB) {
    updatePhiNodes(FP.JoinB, FP);
  } else {
    if (TSB)
      updatePhiNodes(TSB, FP);
    if (FSB)
      updatePhiNodes(FSB, FP);
    // Nothing to update in SSB, since SSB's predecessors haven't changed.
  }
}

void HexagonEarlyIfConversion::removeBlock(MachineBasicBlock *B) {
  LLVM_DEBUG(dbgs() << "Removing block " << PrintMB(B) << "\n");

  // Transfer the immediate dominator information from B to its descendants.
  MachineDomTreeNode *N = MDT->getNode(B);
  MachineDomTreeNode *IDN = N->getIDom();
  if (IDN) {
    MachineBasicBlock *IDB = IDN->getBlock();

    using GTN = GraphTraits<MachineDomTreeNode *>;
    using DTNodeVectType = SmallVector<MachineDomTreeNode *, 4>;

    DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N));
    for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) {
      MachineBasicBlock *SB = (*I)->getBlock();
      MDT->changeImmediateDominator(SB, IDB);
    }
  }

  while (B->succ_size() > 0)
    B->removeSuccessor(B->succ_begin());

  for (auto I = B->pred_begin(), E = B->pred_end(); I != E; ++I)
    (*I)->removeSuccessor(B, true);

  Deleted.insert(B);
  MDT->eraseNode(B);
  MFN->erase(B->getIterator());
}

void HexagonEarlyIfConversion::eliminatePhis(MachineBasicBlock *B) {
  LLVM_DEBUG(dbgs() << "Removing phi nodes from block " << PrintMB(B) << "\n");
  MachineBasicBlock::iterator I, NextI, NonPHI = B->getFirstNonPHI();
  for (I = B->begin(); I != NonPHI; I = NextI) {
    NextI = std::next(I);
    MachineInstr *PN = &*I;
    assert(PN->getNumOperands() == 3 && "Invalid phi node");
    MachineOperand &UO = PN->getOperand(1);
    Register UseR = UO.getReg(), UseSR = UO.getSubReg();
    Register DefR = PN->getOperand(0).getReg();
    unsigned NewR = UseR;
    if (UseSR) {
      // MRI.replaceVregUsesWith does not allow to update the subregister,
      // so instead of doing the use-iteration here, create a copy into a
      // "non-subregistered" register.
      const DebugLoc &DL = PN->getDebugLoc();
      const TargetRegisterClass *RC = MRI->getRegClass(DefR);
      NewR = MRI->createVirtualRegister(RC);
      NonPHI = BuildMI(*B, NonPHI, DL, HII->get(TargetOpcode::COPY), NewR)
        .addReg(UseR, 0, UseSR);
    }
    MRI->replaceRegWith(DefR, NewR);
    B->erase(I);
  }
}

void HexagonEarlyIfConversion::mergeBlocks(MachineBasicBlock *PredB,
      MachineBasicBlock *SuccB) {
  LLVM_DEBUG(dbgs() << "Merging blocks " << PrintMB(PredB) << " and "
                    << PrintMB(SuccB) << "\n");
  bool TermOk = hasUncondBranch(SuccB);
  eliminatePhis(SuccB);
  HII->removeBranch(*PredB);
  PredB->removeSuccessor(SuccB);
  PredB->splice(PredB->end(), SuccB, SuccB->begin(), SuccB->end());
  PredB->transferSuccessorsAndUpdatePHIs(SuccB);
  MachineBasicBlock *OldLayoutSuccessor = SuccB->getNextNode();
  removeBlock(SuccB);
  if (!TermOk)
    PredB->updateTerminator(OldLayoutSuccessor);
}

void HexagonEarlyIfConversion::simplifyFlowGraph(const FlowPattern &FP) {
  MachineBasicBlock *OldLayoutSuccessor = FP.SplitB->getNextNode();
  if (FP.TrueB)
    removeBlock(FP.TrueB);
  if (FP.FalseB)
    removeBlock(FP.FalseB);

  FP.SplitB->updateTerminator(OldLayoutSuccessor);
  if (FP.SplitB->succ_size() != 1)
    return;

  MachineBasicBlock *SB = *FP.SplitB->succ_begin();
  if (SB->pred_size() != 1)
    return;

  // By now, the split block has only one successor (SB), and SB has only
  // one predecessor. We can try to merge them. We will need to update ter-
  // minators in FP.Split+SB, and that requires working analyzeBranch, which
  // fails on Hexagon for blocks that have EH_LABELs. However, if SB ends
  // with an unconditional branch, we won't need to touch the terminators.
  if (!hasEHLabel(SB) || hasUncondBranch(SB))
    mergeBlocks(FP.SplitB, SB);
}

bool HexagonEarlyIfConversion::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  auto &ST = MF.getSubtarget<HexagonSubtarget>();
  HII = ST.getInstrInfo();
  TRI = ST.getRegisterInfo();
  MFN = &MF;
  MRI = &MF.getRegInfo();
  MDT = &getAnalysis<MachineDominatorTree>();
  MLI = &getAnalysis<MachineLoopInfo>();
  MBPI = EnableHexagonBP ? &getAnalysis<MachineBranchProbabilityInfo>() :
    nullptr;

  Deleted.clear();
  bool Changed = false;

  for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I)
    Changed |= visitLoop(*I);
  Changed |= visitLoop(nullptr);

  return Changed;
}

//===----------------------------------------------------------------------===//
//                         Public Constructor Functions
//===----------------------------------------------------------------------===//
FunctionPass *llvm::createHexagonEarlyIfConversion() {
  return new HexagonEarlyIfConversion();
}