Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
//===-- CoalesceBranches.cpp - Coalesce blocks with the same condition ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Coalesce basic blocks guarded by the same branch condition into a single
/// basic block.
///
//===----------------------------------------------------------------------===//

#include "PPC.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"

using namespace llvm;

#define DEBUG_TYPE "ppc-branch-coalescing"

STATISTIC(NumBlocksCoalesced, "Number of blocks coalesced");
STATISTIC(NumPHINotMoved, "Number of PHI Nodes that cannot be merged");
STATISTIC(NumBlocksNotCoalesced, "Number of blocks not coalesced");

//===----------------------------------------------------------------------===//
//                               PPCBranchCoalescing
//===----------------------------------------------------------------------===//
///
/// Improve scheduling by coalescing branches that depend on the same condition.
/// This pass looks for blocks that are guarded by the same branch condition
/// and attempts to merge the blocks together. Such opportunities arise from
/// the expansion of select statements in the IR.
///
/// This pass does not handle implicit operands on branch statements. In order
/// to run on targets that use implicit operands, changes need to be made in the
/// canCoalesceBranch and canMerge methods.
///
/// Example: the following LLVM IR
///
///     %test = icmp eq i32 %x 0
///     %tmp1 = select i1 %test, double %a, double 2.000000e-03
///     %tmp2 = select i1 %test, double %b, double 5.000000e-03
///
/// expands to the following machine code:
///
/// %bb.0: derived from LLVM BB %entry
///    liveins: %f1 %f3 %x6
///        <SNIP1>
///        %0 = COPY %f1; F8RC:%0
///        %5 = CMPLWI killed %4, 0; CRRC:%5 GPRC:%4
///        %8 = LXSDX %zero8, killed %7, implicit %rm;
///                    mem:LD8[ConstantPool] F8RC:%8 G8RC:%7
///        BCC 76, %5, <%bb.2>; CRRC:%5
///    Successors according to CFG: %bb.1(?%) %bb.2(?%)
///
/// %bb.1: derived from LLVM BB %entry
///    Predecessors according to CFG: %bb.0
///    Successors according to CFG: %bb.2(?%)
///
/// %bb.2: derived from LLVM BB %entry
///    Predecessors according to CFG: %bb.0 %bb.1
///        %9 = PHI %8, <%bb.1>, %0, <%bb.0>;
///                    F8RC:%9,%8,%0
///        <SNIP2>
///        BCC 76, %5, <%bb.4>; CRRC:%5
///    Successors according to CFG: %bb.3(?%) %bb.4(?%)
///
/// %bb.3: derived from LLVM BB %entry
///    Predecessors according to CFG: %bb.2
///    Successors according to CFG: %bb.4(?%)
///
/// %bb.4: derived from LLVM BB %entry
///    Predecessors according to CFG: %bb.2 %bb.3
///        %13 = PHI %12, <%bb.3>, %2, <%bb.2>;
///                     F8RC:%13,%12,%2
///        <SNIP3>
///        BLR8 implicit %lr8, implicit %rm, implicit %f1
///
/// When this pattern is detected, branch coalescing will try to collapse
/// it by moving code in %bb.2 to %bb.0 and/or %bb.4 and removing %bb.3.
///
/// If all conditions are meet, IR should collapse to:
///
/// %bb.0: derived from LLVM BB %entry
///    liveins: %f1 %f3 %x6
///        <SNIP1>
///        %0 = COPY %f1; F8RC:%0
///        %5 = CMPLWI killed %4, 0; CRRC:%5 GPRC:%4
///        %8 = LXSDX %zero8, killed %7, implicit %rm;
///                     mem:LD8[ConstantPool] F8RC:%8 G8RC:%7
///        <SNIP2>
///        BCC 76, %5, <%bb.4>; CRRC:%5
///    Successors according to CFG: %bb.1(0x2aaaaaaa / 0x80000000 = 33.33%)
///      %bb.4(0x55555554 / 0x80000000 = 66.67%)
///
/// %bb.1: derived from LLVM BB %entry
///    Predecessors according to CFG: %bb.0
///    Successors according to CFG: %bb.4(0x40000000 / 0x80000000 = 50.00%)
///
/// %bb.4: derived from LLVM BB %entry
///    Predecessors according to CFG: %bb.0 %bb.1
///        %9 = PHI %8, <%bb.1>, %0, <%bb.0>;
///                    F8RC:%9,%8,%0
///        %13 = PHI %12, <%bb.1>, %2, <%bb.0>;
///                     F8RC:%13,%12,%2
///        <SNIP3>
///        BLR8 implicit %lr8, implicit %rm, implicit %f1
///
/// Branch Coalescing does not split blocks, it moves everything in the same
/// direction ensuring it does not break use/definition semantics.
///
/// PHI nodes and its corresponding use instructions are moved to its successor
/// block if there are no uses within the successor block PHI nodes.  PHI
/// node ordering cannot be assumed.
///
/// Non-PHI can be moved up to the predecessor basic block or down to the
/// successor basic block following any PHI instructions. Whether it moves
/// up or down depends on whether the register(s) defined in the instructions
/// are used in current block or in any PHI instructions at the beginning of
/// the successor block.

namespace {

class PPCBranchCoalescing : public MachineFunctionPass {
  struct CoalescingCandidateInfo {
    MachineBasicBlock *BranchBlock;       // Block containing the branch
    MachineBasicBlock *BranchTargetBlock; // Block branched to
    MachineBasicBlock *FallThroughBlock;  // Fall-through if branch not taken
    SmallVector<MachineOperand, 4> Cond;
    bool MustMoveDown;
    bool MustMoveUp;

    CoalescingCandidateInfo();
    void clear();
  };

  MachineDominatorTree *MDT;
  MachinePostDominatorTree *MPDT;
  const TargetInstrInfo *TII;
  MachineRegisterInfo *MRI;

  void initialize(MachineFunction &F);
  bool canCoalesceBranch(CoalescingCandidateInfo &Cand);
  bool identicalOperands(ArrayRef<MachineOperand> OperandList1,
                         ArrayRef<MachineOperand> OperandList2) const;
  bool validateCandidates(CoalescingCandidateInfo &SourceRegion,
                          CoalescingCandidateInfo &TargetRegion) const;

public:
  static char ID;

  PPCBranchCoalescing() : MachineFunctionPass(ID) {
    initializePPCBranchCoalescingPass(*PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<MachineDominatorTree>();
    AU.addRequired<MachinePostDominatorTree>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  StringRef getPassName() const override { return "Branch Coalescing"; }

  bool mergeCandidates(CoalescingCandidateInfo &SourceRegion,
                       CoalescingCandidateInfo &TargetRegion);
  bool canMoveToBeginning(const MachineInstr &MI,
                          const MachineBasicBlock &MBB) const;
  bool canMoveToEnd(const MachineInstr &MI,
                    const MachineBasicBlock &MBB) const;
  bool canMerge(CoalescingCandidateInfo &SourceRegion,
                CoalescingCandidateInfo &TargetRegion) const;
  void moveAndUpdatePHIs(MachineBasicBlock *SourceRegionMBB,
                         MachineBasicBlock *TargetRegionMBB);
  bool runOnMachineFunction(MachineFunction &MF) override;
};
} // End anonymous namespace.

char PPCBranchCoalescing::ID = 0;
/// createPPCBranchCoalescingPass - returns an instance of the Branch Coalescing
/// Pass
FunctionPass *llvm::createPPCBranchCoalescingPass() {
  return new PPCBranchCoalescing();
}

INITIALIZE_PASS_BEGIN(PPCBranchCoalescing, DEBUG_TYPE,
                      "Branch Coalescing", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
INITIALIZE_PASS_END(PPCBranchCoalescing, DEBUG_TYPE, "Branch Coalescing",
                    false, false)

PPCBranchCoalescing::CoalescingCandidateInfo::CoalescingCandidateInfo()
    : BranchBlock(nullptr), BranchTargetBlock(nullptr),
      FallThroughBlock(nullptr), MustMoveDown(false), MustMoveUp(false) {}

void PPCBranchCoalescing::CoalescingCandidateInfo::clear() {
  BranchBlock = nullptr;
  BranchTargetBlock = nullptr;
  FallThroughBlock = nullptr;
  Cond.clear();
  MustMoveDown = false;
  MustMoveUp = false;
}

void PPCBranchCoalescing::initialize(MachineFunction &MF) {
  MDT = &getAnalysis<MachineDominatorTree>();
  MPDT = &getAnalysis<MachinePostDominatorTree>();
  TII = MF.getSubtarget().getInstrInfo();
  MRI = &MF.getRegInfo();
}

///
/// Analyze the branch statement to determine if it can be coalesced. This
/// method analyses the branch statement for the given candidate to determine
/// if it can be coalesced. If the branch can be coalesced, then the
/// BranchTargetBlock and the FallThroughBlock are recorded in the specified
/// Candidate.
///
///\param[in,out] Cand The coalescing candidate to analyze
///\return true if and only if the branch can be coalesced, false otherwise
///
bool PPCBranchCoalescing::canCoalesceBranch(CoalescingCandidateInfo &Cand) {
  LLVM_DEBUG(dbgs() << "Determine if branch block "
                    << Cand.BranchBlock->getNumber() << " can be coalesced:");
  MachineBasicBlock *FalseMBB = nullptr;

  if (TII->analyzeBranch(*Cand.BranchBlock, Cand.BranchTargetBlock, FalseMBB,
                         Cand.Cond)) {
    LLVM_DEBUG(dbgs() << "TII unable to Analyze Branch - skip\n");
    return false;
  }

  for (auto &I : Cand.BranchBlock->terminators()) {
    LLVM_DEBUG(dbgs() << "Looking at terminator : " << I << "\n");
    if (!I.isBranch())
      continue;

    // The analyzeBranch method does not include any implicit operands.
    // This is not an issue on PPC but must be handled on other targets.
    // For this pass to be made target-independent, the analyzeBranch API
    // need to be updated to support implicit operands and there would
    // need to be a way to verify that any implicit operands would not be
    // clobbered by merging blocks.  This would include identifying the
    // implicit operands as well as the basic block they are defined in.
    // This could be done by changing the analyzeBranch API to have it also
    // record and return the implicit operands and the blocks where they are
    // defined. Alternatively, the BranchCoalescing code would need to be
    // extended to identify the implicit operands.  The analysis in canMerge
    // must then be extended to prove that none of the implicit operands are
    // changed in the blocks that are combined during coalescing.
    if (I.getNumOperands() != I.getNumExplicitOperands()) {
      LLVM_DEBUG(dbgs() << "Terminator contains implicit operands - skip : "
                        << I << "\n");
      return false;
    }
  }

  if (Cand.BranchBlock->isEHPad() || Cand.BranchBlock->hasEHPadSuccessor()) {
    LLVM_DEBUG(dbgs() << "EH Pad - skip\n");
    return false;
  }

  if (Cand.BranchBlock->mayHaveInlineAsmBr()) {
    LLVM_DEBUG(dbgs() << "Inline Asm Br - skip\n");
    return false;
  }

  // For now only consider triangles (i.e, BranchTargetBlock is set,
  // FalseMBB is null, and BranchTargetBlock is a successor to BranchBlock)
  if (!Cand.BranchTargetBlock || FalseMBB ||
      !Cand.BranchBlock->isSuccessor(Cand.BranchTargetBlock)) {
    LLVM_DEBUG(dbgs() << "Does not form a triangle - skip\n");
    return false;
  }

  // Ensure there are only two successors
  if (Cand.BranchBlock->succ_size() != 2) {
    LLVM_DEBUG(dbgs() << "Does not have 2 successors - skip\n");
    return false;
  }

  // Sanity check - the block must be able to fall through
  assert(Cand.BranchBlock->canFallThrough() &&
         "Expecting the block to fall through!");

  // We have already ensured there are exactly two successors to
  // BranchBlock and that BranchTargetBlock is a successor to BranchBlock.
  // Ensure the single fall though block is empty.
  MachineBasicBlock *Succ =
    (*Cand.BranchBlock->succ_begin() == Cand.BranchTargetBlock)
    ? *Cand.BranchBlock->succ_rbegin()
    : *Cand.BranchBlock->succ_begin();

  assert(Succ && "Expecting a valid fall-through block\n");

  if (!Succ->empty()) {
    LLVM_DEBUG(dbgs() << "Fall-through block contains code -- skip\n");
    return false;
  }

  if (!Succ->isSuccessor(Cand.BranchTargetBlock)) {
    LLVM_DEBUG(
        dbgs()
        << "Successor of fall through block is not branch taken block\n");
    return false;
  }

  Cand.FallThroughBlock = Succ;
  LLVM_DEBUG(dbgs() << "Valid Candidate\n");
  return true;
}

///
/// Determine if the two operand lists are identical
///
/// \param[in] OpList1 operand list
/// \param[in] OpList2 operand list
/// \return true if and only if the operands lists are identical
///
bool PPCBranchCoalescing::identicalOperands(
    ArrayRef<MachineOperand> OpList1, ArrayRef<MachineOperand> OpList2) const {

  if (OpList1.size() != OpList2.size()) {
    LLVM_DEBUG(dbgs() << "Operand list is different size\n");
    return false;
  }

  for (unsigned i = 0; i < OpList1.size(); ++i) {
    const MachineOperand &Op1 = OpList1[i];
    const MachineOperand &Op2 = OpList2[i];

    LLVM_DEBUG(dbgs() << "Op1: " << Op1 << "\n"
                      << "Op2: " << Op2 << "\n");

    if (Op1.isIdenticalTo(Op2)) {
      // filter out instructions with physical-register uses
      if (Op1.isReg() &&
          Register::isPhysicalRegister(Op1.getReg())
          // If the physical register is constant then we can assume the value
          // has not changed between uses.
          && !(Op1.isUse() && MRI->isConstantPhysReg(Op1.getReg()))) {
        LLVM_DEBUG(dbgs() << "The operands are not provably identical.\n");
        return false;
      }
      LLVM_DEBUG(dbgs() << "Op1 and Op2 are identical!\n");
      continue;
    }

    // If the operands are not identical, but are registers, check to see if the
    // definition of the register produces the same value. If they produce the
    // same value, consider them to be identical.
    if (Op1.isReg() && Op2.isReg() &&
        Register::isVirtualRegister(Op1.getReg()) &&
        Register::isVirtualRegister(Op2.getReg())) {
      MachineInstr *Op1Def = MRI->getVRegDef(Op1.getReg());
      MachineInstr *Op2Def = MRI->getVRegDef(Op2.getReg());
      if (TII->produceSameValue(*Op1Def, *Op2Def, MRI)) {
        LLVM_DEBUG(dbgs() << "Op1Def: " << *Op1Def << " and " << *Op2Def
                          << " produce the same value!\n");
      } else {
        LLVM_DEBUG(dbgs() << "Operands produce different values\n");
        return false;
      }
    } else {
      LLVM_DEBUG(dbgs() << "The operands are not provably identical.\n");
      return false;
    }
  }

  return true;
}

///
/// Moves ALL PHI instructions in SourceMBB to beginning of TargetMBB
/// and update them to refer to the new block.  PHI node ordering
/// cannot be assumed so it does not matter where the PHI instructions
/// are moved to in TargetMBB.
///
/// \param[in] SourceMBB block to move PHI instructions from
/// \param[in] TargetMBB block to move PHI instructions to
///
void PPCBranchCoalescing::moveAndUpdatePHIs(MachineBasicBlock *SourceMBB,
                                         MachineBasicBlock *TargetMBB) {

  MachineBasicBlock::iterator MI = SourceMBB->begin();
  MachineBasicBlock::iterator ME = SourceMBB->getFirstNonPHI();

  if (MI == ME) {
    LLVM_DEBUG(dbgs() << "SourceMBB contains no PHI instructions.\n");
    return;
  }

  // Update all PHI instructions in SourceMBB and move to top of TargetMBB
  for (MachineBasicBlock::iterator Iter = MI; Iter != ME; Iter++) {
    MachineInstr &PHIInst = *Iter;
    for (unsigned i = 2, e = PHIInst.getNumOperands() + 1; i != e; i += 2) {
      MachineOperand &MO = PHIInst.getOperand(i);
      if (MO.getMBB() == SourceMBB)
        MO.setMBB(TargetMBB);
    }
  }
  TargetMBB->splice(TargetMBB->begin(), SourceMBB, MI, ME);
}

///
/// This function checks if MI can be moved to the beginning of the TargetMBB
/// following PHI instructions. A MI instruction can be moved to beginning of
/// the TargetMBB if there are no uses of it within the TargetMBB PHI nodes.
///
/// \param[in] MI the machine instruction to move.
/// \param[in] TargetMBB the machine basic block to move to
/// \return true if it is safe to move MI to beginning of TargetMBB,
///         false otherwise.
///
bool PPCBranchCoalescing::canMoveToBeginning(const MachineInstr &MI,
                                          const MachineBasicBlock &TargetMBB
                                          ) const {

  LLVM_DEBUG(dbgs() << "Checking if " << MI << " can move to beginning of "
                    << TargetMBB.getNumber() << "\n");

  for (auto &Def : MI.defs()) { // Looking at Def
    for (auto &Use : MRI->use_instructions(Def.getReg())) {
      if (Use.isPHI() && Use.getParent() == &TargetMBB) {
        LLVM_DEBUG(dbgs() << "    *** used in a PHI -- cannot move ***\n");
        return false;
      }
    }
  }

  LLVM_DEBUG(dbgs() << "  Safe to move to the beginning.\n");
  return true;
}

///
/// This function checks if MI can be moved to the end of the TargetMBB,
/// immediately before the first terminator.  A MI instruction can be moved
/// to then end of the TargetMBB if no PHI node defines what MI uses within
/// it's own MBB.
///
/// \param[in] MI the machine instruction to move.
/// \param[in] TargetMBB the machine basic block to move to
/// \return true if it is safe to move MI to end of TargetMBB,
///         false otherwise.
///
bool PPCBranchCoalescing::canMoveToEnd(const MachineInstr &MI,
                                    const MachineBasicBlock &TargetMBB
                                    ) const {

  LLVM_DEBUG(dbgs() << "Checking if " << MI << " can move to end of "
                    << TargetMBB.getNumber() << "\n");

  for (auto &Use : MI.uses()) {
    if (Use.isReg() && Register::isVirtualRegister(Use.getReg())) {
      MachineInstr *DefInst = MRI->getVRegDef(Use.getReg());
      if (DefInst->isPHI() && DefInst->getParent() == MI.getParent()) {
        LLVM_DEBUG(dbgs() << "    *** Cannot move this instruction ***\n");
        return false;
      } else {
        LLVM_DEBUG(
            dbgs() << "    *** def is in another block -- safe to move!\n");
      }
    }
  }

  LLVM_DEBUG(dbgs() << "  Safe to move to the end.\n");
  return true;
}

///
/// This method checks to ensure the two coalescing candidates follows the
/// expected pattern required for coalescing.
///
/// \param[in] SourceRegion The candidate to move statements from
/// \param[in] TargetRegion The candidate to move statements to
/// \return true if all instructions in SourceRegion.BranchBlock can be merged
/// into a block in TargetRegion; false otherwise.
///
bool PPCBranchCoalescing::validateCandidates(
    CoalescingCandidateInfo &SourceRegion,
    CoalescingCandidateInfo &TargetRegion) const {

  if (TargetRegion.BranchTargetBlock != SourceRegion.BranchBlock)
    llvm_unreachable("Expecting SourceRegion to immediately follow TargetRegion");
  else if (!MDT->dominates(TargetRegion.BranchBlock, SourceRegion.BranchBlock))
    llvm_unreachable("Expecting TargetRegion to dominate SourceRegion");
  else if (!MPDT->dominates(SourceRegion.BranchBlock, TargetRegion.BranchBlock))
    llvm_unreachable("Expecting SourceRegion to post-dominate TargetRegion");
  else if (!TargetRegion.FallThroughBlock->empty() ||
           !SourceRegion.FallThroughBlock->empty())
    llvm_unreachable("Expecting fall-through blocks to be empty");

  return true;
}

///
/// This method determines whether the two coalescing candidates can be merged.
/// In order to be merged, all instructions must be able to
///   1. Move to the beginning of the SourceRegion.BranchTargetBlock;
///   2. Move to the end of the TargetRegion.BranchBlock.
/// Merging involves moving the instructions in the
/// TargetRegion.BranchTargetBlock (also SourceRegion.BranchBlock).
///
/// This function first try to move instructions from the
/// TargetRegion.BranchTargetBlock down, to the beginning of the
/// SourceRegion.BranchTargetBlock. This is not possible if any register defined
/// in TargetRegion.BranchTargetBlock is used in a PHI node in the
/// SourceRegion.BranchTargetBlock. In this case, check whether the statement
/// can be moved up, to the end of the TargetRegion.BranchBlock (immediately
/// before the branch statement). If it cannot move, then these blocks cannot
/// be merged.
///
/// Note that there is no analysis for moving instructions past the fall-through
/// blocks because they are confirmed to be empty. An assert is thrown if they
/// are not.
///
/// \param[in] SourceRegion The candidate to move statements from
/// \param[in] TargetRegion The candidate to move statements to
/// \return true if all instructions in SourceRegion.BranchBlock can be merged
///         into a block in TargetRegion, false otherwise.
///
bool PPCBranchCoalescing::canMerge(CoalescingCandidateInfo &SourceRegion,
                                CoalescingCandidateInfo &TargetRegion) const {
  if (!validateCandidates(SourceRegion, TargetRegion))
    return false;

  // Walk through PHI nodes first and see if they force the merge into the
  // SourceRegion.BranchTargetBlock.
  for (MachineBasicBlock::iterator
           I = SourceRegion.BranchBlock->instr_begin(),
           E = SourceRegion.BranchBlock->getFirstNonPHI();
       I != E; ++I) {
    for (auto &Def : I->defs())
      for (auto &Use : MRI->use_instructions(Def.getReg())) {
        if (Use.isPHI() && Use.getParent() == SourceRegion.BranchTargetBlock) {
          LLVM_DEBUG(dbgs()
                     << "PHI " << *I
                     << " defines register used in another "
                        "PHI within branch target block -- can't merge\n");
          NumPHINotMoved++;
          return false;
        }
        if (Use.getParent() == SourceRegion.BranchBlock) {
          LLVM_DEBUG(dbgs() << "PHI " << *I
                            << " defines register used in this "
                               "block -- all must move down\n");
          SourceRegion.MustMoveDown = true;
        }
      }
  }

  // Walk through the MI to see if they should be merged into
  // TargetRegion.BranchBlock (up) or SourceRegion.BranchTargetBlock (down)
  for (MachineBasicBlock::iterator
           I = SourceRegion.BranchBlock->getFirstNonPHI(),
           E = SourceRegion.BranchBlock->end();
       I != E; ++I) {
    if (!canMoveToBeginning(*I, *SourceRegion.BranchTargetBlock)) {
      LLVM_DEBUG(dbgs() << "Instruction " << *I
                        << " cannot move down - must move up!\n");
      SourceRegion.MustMoveUp = true;
    }
    if (!canMoveToEnd(*I, *TargetRegion.BranchBlock)) {
      LLVM_DEBUG(dbgs() << "Instruction " << *I
                        << " cannot move up - must move down!\n");
      SourceRegion.MustMoveDown = true;
    }
  }

  return (SourceRegion.MustMoveUp && SourceRegion.MustMoveDown) ? false : true;
}

/// Merge the instructions from SourceRegion.BranchBlock,
/// SourceRegion.BranchTargetBlock, and SourceRegion.FallThroughBlock into
/// TargetRegion.BranchBlock, TargetRegion.BranchTargetBlock and
/// TargetRegion.FallThroughBlock respectively.
///
/// The successors for blocks in TargetRegion will be updated to use the
/// successors from blocks in SourceRegion. Finally, the blocks in SourceRegion
/// will be removed from the function.
///
/// A region consists of a BranchBlock, a FallThroughBlock, and a
/// BranchTargetBlock. Branch coalesce works on patterns where the
/// TargetRegion's BranchTargetBlock must also be the SourceRegions's
/// BranchBlock.
///
///  Before mergeCandidates:
///
///  +---------------------------+
///  |  TargetRegion.BranchBlock |
///  +---------------------------+
///     /        |
///    /   +--------------------------------+
///   |    |  TargetRegion.FallThroughBlock |
///    \   +--------------------------------+
///     \        |
///  +----------------------------------+
///  |  TargetRegion.BranchTargetBlock  |
///  |  SourceRegion.BranchBlock        |
///  +----------------------------------+
///     /        |
///    /   +--------------------------------+
///   |    |  SourceRegion.FallThroughBlock |
///    \   +--------------------------------+
///     \        |
///  +----------------------------------+
///  |  SourceRegion.BranchTargetBlock  |
///  +----------------------------------+
///
///  After mergeCandidates:
///
///  +-----------------------------+
///  |  TargetRegion.BranchBlock   |
///  |  SourceRegion.BranchBlock   |
///  +-----------------------------+
///     /        |
///    /   +---------------------------------+
///   |    |  TargetRegion.FallThroughBlock  |
///   |    |  SourceRegion.FallThroughBlock  |
///    \   +---------------------------------+
///     \        |
///  +----------------------------------+
///  |  SourceRegion.BranchTargetBlock  |
///  +----------------------------------+
///
/// \param[in] SourceRegion The candidate to move blocks from
/// \param[in] TargetRegion The candidate to move blocks to
///
bool PPCBranchCoalescing::mergeCandidates(CoalescingCandidateInfo &SourceRegion,
                                       CoalescingCandidateInfo &TargetRegion) {

  if (SourceRegion.MustMoveUp && SourceRegion.MustMoveDown) {
    llvm_unreachable("Cannot have both MustMoveDown and MustMoveUp set!");
    return false;
  }

  if (!validateCandidates(SourceRegion, TargetRegion))
    return false;

  // Start the merging process by first handling the BranchBlock.
  // Move any PHIs in SourceRegion.BranchBlock down to the branch-taken block
  moveAndUpdatePHIs(SourceRegion.BranchBlock, SourceRegion.BranchTargetBlock);

  // Move remaining instructions in SourceRegion.BranchBlock into
  // TargetRegion.BranchBlock
  MachineBasicBlock::iterator firstInstr =
      SourceRegion.BranchBlock->getFirstNonPHI();
  MachineBasicBlock::iterator lastInstr =
      SourceRegion.BranchBlock->getFirstTerminator();

  MachineBasicBlock *Source = SourceRegion.MustMoveDown
                                  ? SourceRegion.BranchTargetBlock
                                  : TargetRegion.BranchBlock;

  MachineBasicBlock::iterator Target =
      SourceRegion.MustMoveDown
          ? SourceRegion.BranchTargetBlock->getFirstNonPHI()
          : TargetRegion.BranchBlock->getFirstTerminator();

  Source->splice(Target, SourceRegion.BranchBlock, firstInstr, lastInstr);

  // Once PHI and instructions have been moved we need to clean up the
  // control flow.

  // Remove SourceRegion.FallThroughBlock before transferring successors of
  // SourceRegion.BranchBlock to TargetRegion.BranchBlock.
  SourceRegion.BranchBlock->removeSuccessor(SourceRegion.FallThroughBlock);
  TargetRegion.BranchBlock->transferSuccessorsAndUpdatePHIs(
      SourceRegion.BranchBlock);
  // Update branch in TargetRegion.BranchBlock to jump to
  // SourceRegion.BranchTargetBlock
  // In this case, TargetRegion.BranchTargetBlock == SourceRegion.BranchBlock.
  TargetRegion.BranchBlock->ReplaceUsesOfBlockWith(
      SourceRegion.BranchBlock, SourceRegion.BranchTargetBlock);
  // Remove the branch statement(s) in SourceRegion.BranchBlock
  MachineBasicBlock::iterator I =
      SourceRegion.BranchBlock->terminators().begin();
  while (I != SourceRegion.BranchBlock->terminators().end()) {
    MachineInstr &CurrInst = *I;
    ++I;
    if (CurrInst.isBranch())
      CurrInst.eraseFromParent();
  }

  // Fall-through block should be empty since this is part of the condition
  // to coalesce the branches.
  assert(TargetRegion.FallThroughBlock->empty() &&
         "FallThroughBlocks should be empty!");

  // Transfer successor information and move PHIs down to the
  // branch-taken block.
  TargetRegion.FallThroughBlock->transferSuccessorsAndUpdatePHIs(
      SourceRegion.FallThroughBlock);
  TargetRegion.FallThroughBlock->removeSuccessor(SourceRegion.BranchBlock);

  // Remove the blocks from the function.
  assert(SourceRegion.BranchBlock->empty() &&
         "Expecting branch block to be empty!");
  SourceRegion.BranchBlock->eraseFromParent();

  assert(SourceRegion.FallThroughBlock->empty() &&
         "Expecting fall-through block to be empty!\n");
  SourceRegion.FallThroughBlock->eraseFromParent();

  NumBlocksCoalesced++;
  return true;
}

bool PPCBranchCoalescing::runOnMachineFunction(MachineFunction &MF) {

  if (skipFunction(MF.getFunction()) || MF.empty())
    return false;

  bool didSomething = false;

  LLVM_DEBUG(dbgs() << "******** Branch Coalescing ********\n");
  initialize(MF);

  LLVM_DEBUG(dbgs() << "Function: "; MF.dump(); dbgs() << "\n");

  CoalescingCandidateInfo Cand1, Cand2;
  // Walk over blocks and find candidates to merge
  // Continue trying to merge with the first candidate found, as long as merging
  // is successfull.
  for (MachineBasicBlock &MBB : MF) {
    bool MergedCandidates = false;
    do {
      MergedCandidates = false;
      Cand1.clear();
      Cand2.clear();

      Cand1.BranchBlock = &MBB;

      // If unable to coalesce the branch, then continue to next block
      if (!canCoalesceBranch(Cand1))
        break;

      Cand2.BranchBlock = Cand1.BranchTargetBlock;
      if (!canCoalesceBranch(Cand2))
        break;

      // Sanity check
      // The branch-taken block of the second candidate should post-dominate the
      // first candidate
      assert(MPDT->dominates(Cand2.BranchTargetBlock, Cand1.BranchBlock) &&
             "Branch-taken block should post-dominate first candidate");

      if (!identicalOperands(Cand1.Cond, Cand2.Cond)) {
        LLVM_DEBUG(dbgs() << "Blocks " << Cand1.BranchBlock->getNumber()
                          << " and " << Cand2.BranchBlock->getNumber()
                          << " have different branches\n");
        break;
      }
      if (!canMerge(Cand2, Cand1)) {
        LLVM_DEBUG(dbgs() << "Cannot merge blocks "
                          << Cand1.BranchBlock->getNumber() << " and "
                          << Cand2.BranchBlock->getNumber() << "\n");
        NumBlocksNotCoalesced++;
        continue;
      }
      LLVM_DEBUG(dbgs() << "Merging blocks " << Cand1.BranchBlock->getNumber()
                        << " and " << Cand1.BranchTargetBlock->getNumber()
                        << "\n");
      MergedCandidates = mergeCandidates(Cand2, Cand1);
      if (MergedCandidates)
        didSomething = true;

      LLVM_DEBUG(dbgs() << "Function after merging: "; MF.dump();
                 dbgs() << "\n");
    } while (MergedCandidates);
  }

#ifndef NDEBUG
  // Verify MF is still valid after branch coalescing
  if (didSomething)
    MF.verify(nullptr, "Error in code produced by branch coalescing");
#endif // NDEBUG

  LLVM_DEBUG(dbgs() << "Finished Branch Coalescing\n");
  return didSomething;
}