Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
//===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/SystemZInstPrinter.h"
#include "MCTargetDesc/SystemZMCTargetDesc.h"
#include "TargetInfo/SystemZTargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCAsmParserExtension.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/TargetRegistry.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <memory>
#include <string>

using namespace llvm;

// Return true if Expr is in the range [MinValue, MaxValue].
static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) {
  if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
    int64_t Value = CE->getValue();
    return Value >= MinValue && Value <= MaxValue;
  }
  return false;
}

namespace {

enum RegisterKind {
  GR32Reg,
  GRH32Reg,
  GR64Reg,
  GR128Reg,
  FP32Reg,
  FP64Reg,
  FP128Reg,
  VR32Reg,
  VR64Reg,
  VR128Reg,
  AR32Reg,
  CR64Reg,
};

enum MemoryKind {
  BDMem,
  BDXMem,
  BDLMem,
  BDRMem,
  BDVMem
};

class SystemZOperand : public MCParsedAsmOperand {
private:
  enum OperandKind {
    KindInvalid,
    KindToken,
    KindReg,
    KindImm,
    KindImmTLS,
    KindMem
  };

  OperandKind Kind;
  SMLoc StartLoc, EndLoc;

  // A string of length Length, starting at Data.
  struct TokenOp {
    const char *Data;
    unsigned Length;
  };

  // LLVM register Num, which has kind Kind.  In some ways it might be
  // easier for this class to have a register bank (general, floating-point
  // or access) and a raw register number (0-15).  This would postpone the
  // interpretation of the operand to the add*() methods and avoid the need
  // for context-dependent parsing.  However, we do things the current way
  // because of the virtual getReg() method, which needs to distinguish
  // between (say) %r0 used as a single register and %r0 used as a pair.
  // Context-dependent parsing can also give us slightly better error
  // messages when invalid pairs like %r1 are used.
  struct RegOp {
    RegisterKind Kind;
    unsigned Num;
  };

  // Base + Disp + Index, where Base and Index are LLVM registers or 0.
  // MemKind says what type of memory this is and RegKind says what type
  // the base register has (GR32Reg or GR64Reg).  Length is the operand
  // length for D(L,B)-style operands, otherwise it is null.
  struct MemOp {
    unsigned Base : 12;
    unsigned Index : 12;
    unsigned MemKind : 4;
    unsigned RegKind : 4;
    const MCExpr *Disp;
    union {
      const MCExpr *Imm;
      unsigned Reg;
    } Length;
  };

  // Imm is an immediate operand, and Sym is an optional TLS symbol
  // for use with a __tls_get_offset marker relocation.
  struct ImmTLSOp {
    const MCExpr *Imm;
    const MCExpr *Sym;
  };

  union {
    TokenOp Token;
    RegOp Reg;
    const MCExpr *Imm;
    ImmTLSOp ImmTLS;
    MemOp Mem;
  };

  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
    // Add as immediates when possible.  Null MCExpr = 0.
    if (!Expr)
      Inst.addOperand(MCOperand::createImm(0));
    else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
      Inst.addOperand(MCOperand::createImm(CE->getValue()));
    else
      Inst.addOperand(MCOperand::createExpr(Expr));
  }

public:
  SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc)
      : Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {}

  // Create particular kinds of operand.
  static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
                                                       SMLoc EndLoc) {
    return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
  }

  static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
    auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc);
    Op->Token.Data = Str.data();
    Op->Token.Length = Str.size();
    return Op;
  }

  static std::unique_ptr<SystemZOperand>
  createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
    auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
    Op->Reg.Kind = Kind;
    Op->Reg.Num = Num;
    return Op;
  }

  static std::unique_ptr<SystemZOperand>
  createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
    auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
    Op->Imm = Expr;
    return Op;
  }

  static std::unique_ptr<SystemZOperand>
  createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base,
            const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm,
            unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) {
    auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
    Op->Mem.MemKind = MemKind;
    Op->Mem.RegKind = RegKind;
    Op->Mem.Base = Base;
    Op->Mem.Index = Index;
    Op->Mem.Disp = Disp;
    if (MemKind == BDLMem)
      Op->Mem.Length.Imm = LengthImm;
    if (MemKind == BDRMem)
      Op->Mem.Length.Reg = LengthReg;
    return Op;
  }

  static std::unique_ptr<SystemZOperand>
  createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
               SMLoc StartLoc, SMLoc EndLoc) {
    auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
    Op->ImmTLS.Imm = Imm;
    Op->ImmTLS.Sym = Sym;
    return Op;
  }

  // Token operands
  bool isToken() const override {
    return Kind == KindToken;
  }
  StringRef getToken() const {
    assert(Kind == KindToken && "Not a token");
    return StringRef(Token.Data, Token.Length);
  }

  // Register operands.
  bool isReg() const override {
    return Kind == KindReg;
  }
  bool isReg(RegisterKind RegKind) const {
    return Kind == KindReg && Reg.Kind == RegKind;
  }
  unsigned getReg() const override {
    assert(Kind == KindReg && "Not a register");
    return Reg.Num;
  }

  // Immediate operands.
  bool isImm() const override {
    return Kind == KindImm;
  }
  bool isImm(int64_t MinValue, int64_t MaxValue) const {
    return Kind == KindImm && inRange(Imm, MinValue, MaxValue);
  }
  const MCExpr *getImm() const {
    assert(Kind == KindImm && "Not an immediate");
    return Imm;
  }

  // Immediate operands with optional TLS symbol.
  bool isImmTLS() const {
    return Kind == KindImmTLS;
  }

  const ImmTLSOp getImmTLS() const {
    assert(Kind == KindImmTLS && "Not a TLS immediate");
    return ImmTLS;
  }

  // Memory operands.
  bool isMem() const override {
    return Kind == KindMem;
  }
  bool isMem(MemoryKind MemKind) const {
    return (Kind == KindMem &&
            (Mem.MemKind == MemKind ||
             // A BDMem can be treated as a BDXMem in which the index
             // register field is 0.
             (Mem.MemKind == BDMem && MemKind == BDXMem)));
  }
  bool isMem(MemoryKind MemKind, RegisterKind RegKind) const {
    return isMem(MemKind) && Mem.RegKind == RegKind;
  }
  bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const {
    return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff);
  }
  bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const {
    return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287);
  }
  bool isMemDisp12Len4(RegisterKind RegKind) const {
    return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10);
  }
  bool isMemDisp12Len8(RegisterKind RegKind) const {
    return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100);
  }

  const MemOp& getMem() const {
    assert(Kind == KindMem && "Not a Mem operand");
    return Mem;
  }

  // Override MCParsedAsmOperand.
  SMLoc getStartLoc() const override { return StartLoc; }
  SMLoc getEndLoc() const override { return EndLoc; }
  void print(raw_ostream &OS) const override;

  /// getLocRange - Get the range between the first and last token of this
  /// operand.
  SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }

  // Used by the TableGen code to add particular types of operand
  // to an instruction.
  void addRegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands");
    Inst.addOperand(MCOperand::createReg(getReg()));
  }
  void addImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands");
    addExpr(Inst, getImm());
  }
  void addBDAddrOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands");
    assert(isMem(BDMem) && "Invalid operand type");
    Inst.addOperand(MCOperand::createReg(Mem.Base));
    addExpr(Inst, Mem.Disp);
  }
  void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
    assert(N == 3 && "Invalid number of operands");
    assert(isMem(BDXMem) && "Invalid operand type");
    Inst.addOperand(MCOperand::createReg(Mem.Base));
    addExpr(Inst, Mem.Disp);
    Inst.addOperand(MCOperand::createReg(Mem.Index));
  }
  void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
    assert(N == 3 && "Invalid number of operands");
    assert(isMem(BDLMem) && "Invalid operand type");
    Inst.addOperand(MCOperand::createReg(Mem.Base));
    addExpr(Inst, Mem.Disp);
    addExpr(Inst, Mem.Length.Imm);
  }
  void addBDRAddrOperands(MCInst &Inst, unsigned N) const {
    assert(N == 3 && "Invalid number of operands");
    assert(isMem(BDRMem) && "Invalid operand type");
    Inst.addOperand(MCOperand::createReg(Mem.Base));
    addExpr(Inst, Mem.Disp);
    Inst.addOperand(MCOperand::createReg(Mem.Length.Reg));
  }
  void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
    assert(N == 3 && "Invalid number of operands");
    assert(isMem(BDVMem) && "Invalid operand type");
    Inst.addOperand(MCOperand::createReg(Mem.Base));
    addExpr(Inst, Mem.Disp);
    Inst.addOperand(MCOperand::createReg(Mem.Index));
  }
  void addImmTLSOperands(MCInst &Inst, unsigned N) const {
    assert(N == 2 && "Invalid number of operands");
    assert(Kind == KindImmTLS && "Invalid operand type");
    addExpr(Inst, ImmTLS.Imm);
    if (ImmTLS.Sym)
      addExpr(Inst, ImmTLS.Sym);
  }

  // Used by the TableGen code to check for particular operand types.
  bool isGR32() const { return isReg(GR32Reg); }
  bool isGRH32() const { return isReg(GRH32Reg); }
  bool isGRX32() const { return false; }
  bool isGR64() const { return isReg(GR64Reg); }
  bool isGR128() const { return isReg(GR128Reg); }
  bool isADDR32() const { return isReg(GR32Reg); }
  bool isADDR64() const { return isReg(GR64Reg); }
  bool isADDR128() const { return false; }
  bool isFP32() const { return isReg(FP32Reg); }
  bool isFP64() const { return isReg(FP64Reg); }
  bool isFP128() const { return isReg(FP128Reg); }
  bool isVR32() const { return isReg(VR32Reg); }
  bool isVR64() const { return isReg(VR64Reg); }
  bool isVF128() const { return false; }
  bool isVR128() const { return isReg(VR128Reg); }
  bool isAR32() const { return isReg(AR32Reg); }
  bool isCR64() const { return isReg(CR64Reg); }
  bool isAnyReg() const { return (isReg() || isImm(0, 15)); }
  bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); }
  bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); }
  bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); }
  bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); }
  bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); }
  bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); }
  bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); }
  bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); }
  bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); }
  bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); }
  bool isU1Imm() const { return isImm(0, 1); }
  bool isU2Imm() const { return isImm(0, 3); }
  bool isU3Imm() const { return isImm(0, 7); }
  bool isU4Imm() const { return isImm(0, 15); }
  bool isU6Imm() const { return isImm(0, 63); }
  bool isU8Imm() const { return isImm(0, 255); }
  bool isS8Imm() const { return isImm(-128, 127); }
  bool isU12Imm() const { return isImm(0, 4095); }
  bool isU16Imm() const { return isImm(0, 65535); }
  bool isS16Imm() const { return isImm(-32768, 32767); }
  bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
  bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
  bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); }
};

class SystemZAsmParser : public MCTargetAsmParser {
#define GET_ASSEMBLER_HEADER
#include "SystemZGenAsmMatcher.inc"

private:
  MCAsmParser &Parser;
  enum RegisterGroup {
    RegGR,
    RegFP,
    RegV,
    RegAR,
    RegCR
  };
  struct Register {
    RegisterGroup Group;
    unsigned Num;
    SMLoc StartLoc, EndLoc;
  };

  bool parseRegister(Register &Reg, bool RestoreOnFailure = false);

  bool parseIntegerRegister(Register &Reg, RegisterGroup Group);

  OperandMatchResultTy parseRegister(OperandVector &Operands,
                                     RegisterKind Kind);

  OperandMatchResultTy parseAnyRegister(OperandVector &Operands);

  bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2,
                    Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length,
                    bool HasLength = false, bool HasVectorIndex = false);
  bool parseAddressRegister(Register &Reg);

  bool ParseDirectiveInsn(SMLoc L);

  OperandMatchResultTy parseAddress(OperandVector &Operands,
                                    MemoryKind MemKind,
                                    RegisterKind RegKind);

  OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal,
                                  int64_t MaxVal, bool AllowTLS);

  bool parseOperand(OperandVector &Operands, StringRef Mnemonic);

public:
  SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
                   const MCInstrInfo &MII,
                   const MCTargetOptions &Options)
    : MCTargetAsmParser(Options, sti, MII), Parser(parser) {
    MCAsmParserExtension::Initialize(Parser);

    // Alias the .word directive to .short.
    parser.addAliasForDirective(".word", ".short");

    // Initialize the set of available features.
    setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
  }

  // Override MCTargetAsmParser.
  bool ParseDirective(AsmToken DirectiveID) override;
  bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
  bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc,
                     bool RestoreOnFailure);
  OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
                                        SMLoc &EndLoc) override;
  bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
                        SMLoc NameLoc, OperandVector &Operands) override;
  bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
                               OperandVector &Operands, MCStreamer &Out,
                               uint64_t &ErrorInfo,
                               bool MatchingInlineAsm) override;

  // Used by the TableGen code to parse particular operand types.
  OperandMatchResultTy parseGR32(OperandVector &Operands) {
    return parseRegister(Operands, GR32Reg);
  }
  OperandMatchResultTy parseGRH32(OperandVector &Operands) {
    return parseRegister(Operands, GRH32Reg);
  }
  OperandMatchResultTy parseGRX32(OperandVector &Operands) {
    llvm_unreachable("GRX32 should only be used for pseudo instructions");
  }
  OperandMatchResultTy parseGR64(OperandVector &Operands) {
    return parseRegister(Operands, GR64Reg);
  }
  OperandMatchResultTy parseGR128(OperandVector &Operands) {
    return parseRegister(Operands, GR128Reg);
  }
  OperandMatchResultTy parseADDR32(OperandVector &Operands) {
    // For the AsmParser, we will accept %r0 for ADDR32 as well.
    return parseRegister(Operands, GR32Reg);
  }
  OperandMatchResultTy parseADDR64(OperandVector &Operands) {
    // For the AsmParser, we will accept %r0 for ADDR64 as well.
    return parseRegister(Operands, GR64Reg);
  }
  OperandMatchResultTy parseADDR128(OperandVector &Operands) {
    llvm_unreachable("Shouldn't be used as an operand");
  }
  OperandMatchResultTy parseFP32(OperandVector &Operands) {
    return parseRegister(Operands, FP32Reg);
  }
  OperandMatchResultTy parseFP64(OperandVector &Operands) {
    return parseRegister(Operands, FP64Reg);
  }
  OperandMatchResultTy parseFP128(OperandVector &Operands) {
    return parseRegister(Operands, FP128Reg);
  }
  OperandMatchResultTy parseVR32(OperandVector &Operands) {
    return parseRegister(Operands, VR32Reg);
  }
  OperandMatchResultTy parseVR64(OperandVector &Operands) {
    return parseRegister(Operands, VR64Reg);
  }
  OperandMatchResultTy parseVF128(OperandVector &Operands) {
    llvm_unreachable("Shouldn't be used as an operand");
  }
  OperandMatchResultTy parseVR128(OperandVector &Operands) {
    return parseRegister(Operands, VR128Reg);
  }
  OperandMatchResultTy parseAR32(OperandVector &Operands) {
    return parseRegister(Operands, AR32Reg);
  }
  OperandMatchResultTy parseCR64(OperandVector &Operands) {
    return parseRegister(Operands, CR64Reg);
  }
  OperandMatchResultTy parseAnyReg(OperandVector &Operands) {
    return parseAnyRegister(Operands);
  }
  OperandMatchResultTy parseBDAddr32(OperandVector &Operands) {
    return parseAddress(Operands, BDMem, GR32Reg);
  }
  OperandMatchResultTy parseBDAddr64(OperandVector &Operands) {
    return parseAddress(Operands, BDMem, GR64Reg);
  }
  OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) {
    return parseAddress(Operands, BDXMem, GR64Reg);
  }
  OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) {
    return parseAddress(Operands, BDLMem, GR64Reg);
  }
  OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) {
    return parseAddress(Operands, BDRMem, GR64Reg);
  }
  OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) {
    return parseAddress(Operands, BDVMem, GR64Reg);
  }
  OperandMatchResultTy parsePCRel12(OperandVector &Operands) {
    return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false);
  }
  OperandMatchResultTy parsePCRel16(OperandVector &Operands) {
    return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
  }
  OperandMatchResultTy parsePCRel24(OperandVector &Operands) {
    return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false);
  }
  OperandMatchResultTy parsePCRel32(OperandVector &Operands) {
    return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
  }
  OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) {
    return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
  }
  OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) {
    return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
  }
};

} // end anonymous namespace

#define GET_REGISTER_MATCHER
#define GET_SUBTARGET_FEATURE_NAME
#define GET_MATCHER_IMPLEMENTATION
#define GET_MNEMONIC_SPELL_CHECKER
#include "SystemZGenAsmMatcher.inc"

// Used for the .insn directives; contains information needed to parse the
// operands in the directive.
struct InsnMatchEntry {
  StringRef Format;
  uint64_t Opcode;
  int32_t NumOperands;
  MatchClassKind OperandKinds[5];
};

// For equal_range comparison.
struct CompareInsn {
  bool operator() (const InsnMatchEntry &LHS, StringRef RHS) {
    return LHS.Format < RHS;
  }
  bool operator() (StringRef LHS, const InsnMatchEntry &RHS) {
    return LHS < RHS.Format;
  }
  bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) {
    return LHS.Format < RHS.Format;
  }
};

// Table initializing information for parsing the .insn directive.
static struct InsnMatchEntry InsnMatchTable[] = {
  /* Format, Opcode, NumOperands, OperandKinds */
  { "e", SystemZ::InsnE, 1,
    { MCK_U16Imm } },
  { "ri", SystemZ::InsnRI, 3,
    { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } },
  { "rie", SystemZ::InsnRIE, 4,
    { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
  { "ril", SystemZ::InsnRIL, 3,
    { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } },
  { "rilu", SystemZ::InsnRILU, 3,
    { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } },
  { "ris", SystemZ::InsnRIS, 5,
    { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } },
  { "rr", SystemZ::InsnRR, 3,
    { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } },
  { "rre", SystemZ::InsnRRE, 3,
    { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } },
  { "rrf", SystemZ::InsnRRF, 5,
    { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } },
  { "rrs", SystemZ::InsnRRS, 5,
    { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } },
  { "rs", SystemZ::InsnRS, 4,
    { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
  { "rse", SystemZ::InsnRSE, 4,
    { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
  { "rsi", SystemZ::InsnRSI, 4,
    { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
  { "rsy", SystemZ::InsnRSY, 4,
    { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } },
  { "rx", SystemZ::InsnRX, 3,
    { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
  { "rxe", SystemZ::InsnRXE, 3,
    { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
  { "rxf", SystemZ::InsnRXF, 4,
    { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
  { "rxy", SystemZ::InsnRXY, 3,
    { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } },
  { "s", SystemZ::InsnS, 2,
    { MCK_U32Imm, MCK_BDAddr64Disp12 } },
  { "si", SystemZ::InsnSI, 3,
    { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } },
  { "sil", SystemZ::InsnSIL, 3,
    { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } },
  { "siy", SystemZ::InsnSIY, 3,
    { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } },
  { "ss", SystemZ::InsnSS, 4,
    { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
  { "sse", SystemZ::InsnSSE, 3,
    { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } },
  { "ssf", SystemZ::InsnSSF, 4,
    { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }
};

static void printMCExpr(const MCExpr *E, raw_ostream &OS) {
  if (!E)
    return;
  if (auto *CE = dyn_cast<MCConstantExpr>(E))
    OS << *CE;
  else if (auto *UE = dyn_cast<MCUnaryExpr>(E))
    OS << *UE;
  else if (auto *BE = dyn_cast<MCBinaryExpr>(E))
    OS << *BE;
  else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E))
    OS << *SRE;
  else
    OS << *E;
}

void SystemZOperand::print(raw_ostream &OS) const {
  switch (Kind) {
  case KindToken:
    OS << "Token:" << getToken();
    break;
  case KindReg:
    OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg());
    break;
  case KindImm:
    OS << "Imm:";
    printMCExpr(getImm(), OS);
    break;
  case KindImmTLS:
    OS << "ImmTLS:";
    printMCExpr(getImmTLS().Imm, OS);
    if (getImmTLS().Sym) {
      OS << ", ";
      printMCExpr(getImmTLS().Sym, OS);
    }
    break;
  case KindMem: {
    const MemOp &Op = getMem();
    OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp);
    if (Op.Base) {
      OS << "(";
      if (Op.MemKind == BDLMem)
        OS << *cast<MCConstantExpr>(Op.Length.Imm) << ",";
      else if (Op.MemKind == BDRMem)
        OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ",";
      if (Op.Index)
        OS << SystemZInstPrinter::getRegisterName(Op.Index) << ",";
      OS << SystemZInstPrinter::getRegisterName(Op.Base);
      OS << ")";
    }
    break;
  }
  case KindInvalid:
    break;
  }
}

// Parse one register of the form %<prefix><number>.
bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) {
  Reg.StartLoc = Parser.getTok().getLoc();

  // Eat the % prefix.
  if (Parser.getTok().isNot(AsmToken::Percent))
    return Error(Parser.getTok().getLoc(), "register expected");
  const AsmToken &PercentTok = Parser.getTok();
  Parser.Lex();

  // Expect a register name.
  if (Parser.getTok().isNot(AsmToken::Identifier)) {
    if (RestoreOnFailure)
      getLexer().UnLex(PercentTok);
    return Error(Reg.StartLoc, "invalid register");
  }

  // Check that there's a prefix.
  StringRef Name = Parser.getTok().getString();
  if (Name.size() < 2) {
    if (RestoreOnFailure)
      getLexer().UnLex(PercentTok);
    return Error(Reg.StartLoc, "invalid register");
  }
  char Prefix = Name[0];

  // Treat the rest of the register name as a register number.
  if (Name.substr(1).getAsInteger(10, Reg.Num)) {
    if (RestoreOnFailure)
      getLexer().UnLex(PercentTok);
    return Error(Reg.StartLoc, "invalid register");
  }

  // Look for valid combinations of prefix and number.
  if (Prefix == 'r' && Reg.Num < 16)
    Reg.Group = RegGR;
  else if (Prefix == 'f' && Reg.Num < 16)
    Reg.Group = RegFP;
  else if (Prefix == 'v' && Reg.Num < 32)
    Reg.Group = RegV;
  else if (Prefix == 'a' && Reg.Num < 16)
    Reg.Group = RegAR;
  else if (Prefix == 'c' && Reg.Num < 16)
    Reg.Group = RegCR;
  else {
    if (RestoreOnFailure)
      getLexer().UnLex(PercentTok);
    return Error(Reg.StartLoc, "invalid register");
  }

  Reg.EndLoc = Parser.getTok().getLoc();
  Parser.Lex();
  return false;
}

// Parse a register of kind Kind and add it to Operands.
OperandMatchResultTy
SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterKind Kind) {
  Register Reg;
  RegisterGroup Group;
  switch (Kind) {
  case GR32Reg:
  case GRH32Reg:
  case GR64Reg:
  case GR128Reg:
    Group = RegGR;
    break;
  case FP32Reg:
  case FP64Reg:
  case FP128Reg:
    Group = RegFP;
    break;
  case VR32Reg:
  case VR64Reg:
  case VR128Reg:
    Group = RegV;
    break;
  case AR32Reg:
    Group = RegAR;
    break;
  case CR64Reg:
    Group = RegCR;
    break;
  }

  // Handle register names of the form %<prefix><number>
  if (Parser.getTok().is(AsmToken::Percent)) {
    if (parseRegister(Reg))
      return MatchOperand_ParseFail;

    // Check the parsed register group "Reg.Group" with the expected "Group"
    // Have to error out if user specified wrong prefix.
    switch (Group) {
    case RegGR:
    case RegFP:
    case RegAR:
    case RegCR:
      if (Group != Reg.Group) {
        Error(Reg.StartLoc, "invalid operand for instruction");
        return MatchOperand_ParseFail;
      }
      break;
    case RegV:
      if (Reg.Group != RegV && Reg.Group != RegFP) {
        Error(Reg.StartLoc, "invalid operand for instruction");
        return MatchOperand_ParseFail;
      }
      break;
    }
  } else if (Parser.getTok().is(AsmToken::Integer)) {
    if (parseIntegerRegister(Reg, Group))
      return MatchOperand_ParseFail;
  }
  // Otherwise we didn't match a register operand.
  else
    return MatchOperand_NoMatch;

  // Determine the LLVM register number according to Kind.
  const unsigned *Regs;
  switch (Kind) {
  case GR32Reg:  Regs = SystemZMC::GR32Regs;  break;
  case GRH32Reg: Regs = SystemZMC::GRH32Regs; break;
  case GR64Reg:  Regs = SystemZMC::GR64Regs;  break;
  case GR128Reg: Regs = SystemZMC::GR128Regs; break;
  case FP32Reg:  Regs = SystemZMC::FP32Regs;  break;
  case FP64Reg:  Regs = SystemZMC::FP64Regs;  break;
  case FP128Reg: Regs = SystemZMC::FP128Regs; break;
  case VR32Reg:  Regs = SystemZMC::VR32Regs;  break;
  case VR64Reg:  Regs = SystemZMC::VR64Regs;  break;
  case VR128Reg: Regs = SystemZMC::VR128Regs; break;
  case AR32Reg:  Regs = SystemZMC::AR32Regs;  break;
  case CR64Reg:  Regs = SystemZMC::CR64Regs;  break;
  }
  if (Regs[Reg.Num] == 0) {
    Error(Reg.StartLoc, "invalid register pair");
    return MatchOperand_ParseFail;
  }

  Operands.push_back(
      SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc));
  return MatchOperand_Success;
}

// Parse any type of register (including integers) and add it to Operands.
OperandMatchResultTy
SystemZAsmParser::parseAnyRegister(OperandVector &Operands) {
  // Handle integer values.
  if (Parser.getTok().is(AsmToken::Integer)) {
    const MCExpr *Register;
    SMLoc StartLoc = Parser.getTok().getLoc();
    if (Parser.parseExpression(Register))
      return MatchOperand_ParseFail;

    if (auto *CE = dyn_cast<MCConstantExpr>(Register)) {
      int64_t Value = CE->getValue();
      if (Value < 0 || Value > 15) {
        Error(StartLoc, "invalid register");
        return MatchOperand_ParseFail;
      }
    }

    SMLoc EndLoc =
      SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);

    Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc));
  }
  else {
    Register Reg;
    if (parseRegister(Reg))
      return MatchOperand_ParseFail;

    // Map to the correct register kind.
    RegisterKind Kind;
    unsigned RegNo;
    if (Reg.Group == RegGR) {
      Kind = GR64Reg;
      RegNo = SystemZMC::GR64Regs[Reg.Num];
    }
    else if (Reg.Group == RegFP) {
      Kind = FP64Reg;
      RegNo = SystemZMC::FP64Regs[Reg.Num];
    }
    else if (Reg.Group == RegV) {
      Kind = VR128Reg;
      RegNo = SystemZMC::VR128Regs[Reg.Num];
    }
    else if (Reg.Group == RegAR) {
      Kind = AR32Reg;
      RegNo = SystemZMC::AR32Regs[Reg.Num];
    }
    else if (Reg.Group == RegCR) {
      Kind = CR64Reg;
      RegNo = SystemZMC::CR64Regs[Reg.Num];
    }
    else {
      return MatchOperand_ParseFail;
    }

    Operands.push_back(SystemZOperand::createReg(Kind, RegNo,
                                                 Reg.StartLoc, Reg.EndLoc));
  }
  return MatchOperand_Success;
}

bool SystemZAsmParser::parseIntegerRegister(Register &Reg,
                                            RegisterGroup Group) {
  Reg.StartLoc = Parser.getTok().getLoc();
  // We have an integer token
  const MCExpr *Register;
  if (Parser.parseExpression(Register))
    return true;

  const auto *CE = dyn_cast<MCConstantExpr>(Register);
  if (!CE)
    return true;

  int64_t MaxRegNum = (Group == RegV) ? 31 : 15;
  int64_t Value = CE->getValue();
  if (Value < 0 || Value > MaxRegNum) {
    Error(Parser.getTok().getLoc(), "invalid register");
    return true;
  }

  // Assign the Register Number
  Reg.Num = (unsigned)Value;
  Reg.Group = Group;
  Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);

  // At this point, successfully parsed an integer register.
  return false;
}

// Parse a memory operand into Reg1, Reg2, Disp, and Length.
bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1,
                                    bool &HaveReg2, Register &Reg2,
                                    const MCExpr *&Disp, const MCExpr *&Length,
                                    bool HasLength, bool HasVectorIndex) {
  // Parse the displacement, which must always be present.
  if (getParser().parseExpression(Disp))
    return true;

  // Parse the optional base and index.
  HaveReg1 = false;
  HaveReg2 = false;
  Length = nullptr;

  // If we have a scenario as below:
  //   vgef %v0, 0(0), 0
  // This is an example of a "BDVMem" instruction type.
  //
  // So when we parse this as an integer register, the register group
  // needs to be tied to "RegV". Usually when the prefix is passed in
  // as %<prefix><reg-number> its easy to check which group it should belong to
  // However, if we're passing in just the integer there's no real way to
  // "check" what register group it should belong to.
  //
  // When the user passes in the register as an integer, the user assumes that
  // the compiler is responsible for substituting it as the right kind of
  // register. Whereas, when the user specifies a "prefix", the onus is on
  // the user to make sure they pass in the right kind of register.
  //
  // The restriction only applies to the first Register (i.e. Reg1). Reg2 is
  // always a general register. Reg1 should be of group RegV if "HasVectorIndex"
  // (i.e. insn is of type BDVMem) is true.
  RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR;

  if (getLexer().is(AsmToken::LParen)) {
    Parser.Lex();

    if (getLexer().is(AsmToken::Percent)) {
      // Parse the first register.
      HaveReg1 = true;
      if (parseRegister(Reg1))
        return true;
    }
    // So if we have an integer as the first token in ([tok1], ..), it could:
    // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of
    // instructions)
    // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions)
    else if (getLexer().is(AsmToken::Integer)) {
      if (HasLength) {
        // Instruction has a "Length" field, safe to parse the first token as
        // the "Length" field
        if (getParser().parseExpression(Length))
          return true;
      } else {
        // Otherwise, if the instruction has no "Length" field, parse the
        // token as a "Register". We don't have to worry about whether the
        // instruction is invalid here, because the caller will take care of
        // error reporting.
        HaveReg1 = true;
        if (parseIntegerRegister(Reg1, RegGroup))
          return true;
      }
    } else {
      // If its not an integer or a percent token, then if the instruction
      // is reported to have a "Length" then, parse it as "Length".
      if (HasLength) {
        if (getParser().parseExpression(Length))
          return true;
      }
    }

    // Check whether there's a second register.
    if (getLexer().is(AsmToken::Comma)) {
      Parser.Lex();
      HaveReg2 = true;

      if (getLexer().is(AsmToken::Integer)) {
        if (parseIntegerRegister(Reg2, RegGR))
          return true;
      } else {
        if (parseRegister(Reg2))
          return true;
      }
    }

    // Consume the closing bracket.
    if (getLexer().isNot(AsmToken::RParen))
      return Error(Parser.getTok().getLoc(), "unexpected token in address");
    Parser.Lex();
  }
  return false;
}

// Verify that Reg is a valid address register (base or index).
bool
SystemZAsmParser::parseAddressRegister(Register &Reg) {
  if (Reg.Group == RegV) {
    Error(Reg.StartLoc, "invalid use of vector addressing");
    return true;
  } else if (Reg.Group != RegGR) {
    Error(Reg.StartLoc, "invalid address register");
    return true;
  }
  return false;
}

// Parse a memory operand and add it to Operands.  The other arguments
// are as above.
OperandMatchResultTy
SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind,
                               RegisterKind RegKind) {
  SMLoc StartLoc = Parser.getTok().getLoc();
  unsigned Base = 0, Index = 0, LengthReg = 0;
  Register Reg1, Reg2;
  bool HaveReg1, HaveReg2;
  const MCExpr *Disp;
  const MCExpr *Length;

  bool HasLength = (MemKind == BDLMem) ? true : false;
  bool HasVectorIndex = (MemKind == BDVMem) ? true : false;
  if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength,
                   HasVectorIndex))
    return MatchOperand_ParseFail;

  const unsigned *Regs;
  switch (RegKind) {
  case GR32Reg: Regs = SystemZMC::GR32Regs; break;
  case GR64Reg: Regs = SystemZMC::GR64Regs; break;
  default: llvm_unreachable("invalid RegKind");
  }

  switch (MemKind) {
  case BDMem:
    // If we have Reg1, it must be an address register.
    if (HaveReg1) {
      if (parseAddressRegister(Reg1))
        return MatchOperand_ParseFail;
      Base = Regs[Reg1.Num];
    }
    // There must be no Reg2.
    if (HaveReg2) {
      Error(StartLoc, "invalid use of indexed addressing");
      return MatchOperand_ParseFail;
    }
    break;
  case BDXMem:
    // If we have Reg1, it must be an address register.
    if (HaveReg1) {
      if (parseAddressRegister(Reg1))
        return MatchOperand_ParseFail;
      // If the are two registers, the first one is the index and the
      // second is the base.
      if (HaveReg2)
        Index = Regs[Reg1.Num];
      else
        Base = Regs[Reg1.Num];
    }
    // If we have Reg2, it must be an address register.
    if (HaveReg2) {
      if (parseAddressRegister(Reg2))
        return MatchOperand_ParseFail;
      Base = Regs[Reg2.Num];
    }
    break;
  case BDLMem:
    // If we have Reg2, it must be an address register.
    if (HaveReg2) {
      if (parseAddressRegister(Reg2))
        return MatchOperand_ParseFail;
      Base = Regs[Reg2.Num];
    }
    // We cannot support base+index addressing.
    if (HaveReg1 && HaveReg2) {
      Error(StartLoc, "invalid use of indexed addressing");
      return MatchOperand_ParseFail;
    }
    // We must have a length.
    if (!Length) {
      Error(StartLoc, "missing length in address");
      return MatchOperand_ParseFail;
    }
    break;
  case BDRMem:
    // We must have Reg1, and it must be a GPR.
    if (!HaveReg1 || Reg1.Group != RegGR) {
      Error(StartLoc, "invalid operand for instruction");
      return MatchOperand_ParseFail;
    }
    LengthReg = SystemZMC::GR64Regs[Reg1.Num];
    // If we have Reg2, it must be an address register.
    if (HaveReg2) {
      if (parseAddressRegister(Reg2))
        return MatchOperand_ParseFail;
      Base = Regs[Reg2.Num];
    }
    break;
  case BDVMem:
    // We must have Reg1, and it must be a vector register.
    if (!HaveReg1 || Reg1.Group != RegV) {
      Error(StartLoc, "vector index required in address");
      return MatchOperand_ParseFail;
    }
    Index = SystemZMC::VR128Regs[Reg1.Num];
    // If we have Reg2, it must be an address register.
    if (HaveReg2) {
      if (parseAddressRegister(Reg2))
        return MatchOperand_ParseFail;
      Base = Regs[Reg2.Num];
    }
    break;
  }

  SMLoc EndLoc =
      SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
  Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp,
                                               Index, Length, LengthReg,
                                               StartLoc, EndLoc));
  return MatchOperand_Success;
}

bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) {
  StringRef IDVal = DirectiveID.getIdentifier();

  if (IDVal == ".insn")
    return ParseDirectiveInsn(DirectiveID.getLoc());

  return true;
}

/// ParseDirectiveInsn
/// ::= .insn [ format, encoding, (operands (, operands)*) ]
bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) {
  MCAsmParser &Parser = getParser();

  // Expect instruction format as identifier.
  StringRef Format;
  SMLoc ErrorLoc = Parser.getTok().getLoc();
  if (Parser.parseIdentifier(Format))
    return Error(ErrorLoc, "expected instruction format");

  SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;

  // Find entry for this format in InsnMatchTable.
  auto EntryRange =
    std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable),
                     Format, CompareInsn());

  // If first == second, couldn't find a match in the table.
  if (EntryRange.first == EntryRange.second)
    return Error(ErrorLoc, "unrecognized format");

  struct InsnMatchEntry *Entry = EntryRange.first;

  // Format should match from equal_range.
  assert(Entry->Format == Format);

  // Parse the following operands using the table's information.
  for (int i = 0; i < Entry->NumOperands; i++) {
    MatchClassKind Kind = Entry->OperandKinds[i];

    SMLoc StartLoc = Parser.getTok().getLoc();

    // Always expect commas as separators for operands.
    if (getLexer().isNot(AsmToken::Comma))
      return Error(StartLoc, "unexpected token in directive");
    Lex();

    // Parse operands.
    OperandMatchResultTy ResTy;
    if (Kind == MCK_AnyReg)
      ResTy = parseAnyReg(Operands);
    else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20)
      ResTy = parseBDXAddr64(Operands);
    else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20)
      ResTy = parseBDAddr64(Operands);
    else if (Kind == MCK_PCRel32)
      ResTy = parsePCRel32(Operands);
    else if (Kind == MCK_PCRel16)
      ResTy = parsePCRel16(Operands);
    else {
      // Only remaining operand kind is an immediate.
      const MCExpr *Expr;
      SMLoc StartLoc = Parser.getTok().getLoc();

      // Expect immediate expression.
      if (Parser.parseExpression(Expr))
        return Error(StartLoc, "unexpected token in directive");

      SMLoc EndLoc =
        SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);

      Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
      ResTy = MatchOperand_Success;
    }

    if (ResTy != MatchOperand_Success)
      return true;
  }

  // Build the instruction with the parsed operands.
  MCInst Inst = MCInstBuilder(Entry->Opcode);

  for (size_t i = 0; i < Operands.size(); i++) {
    MCParsedAsmOperand &Operand = *Operands[i];
    MatchClassKind Kind = Entry->OperandKinds[i];

    // Verify operand.
    unsigned Res = validateOperandClass(Operand, Kind);
    if (Res != Match_Success)
      return Error(Operand.getStartLoc(), "unexpected operand type");

    // Add operands to instruction.
    SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand);
    if (ZOperand.isReg())
      ZOperand.addRegOperands(Inst, 1);
    else if (ZOperand.isMem(BDMem))
      ZOperand.addBDAddrOperands(Inst, 2);
    else if (ZOperand.isMem(BDXMem))
      ZOperand.addBDXAddrOperands(Inst, 3);
    else if (ZOperand.isImm())
      ZOperand.addImmOperands(Inst, 1);
    else
      llvm_unreachable("unexpected operand type");
  }

  // Emit as a regular instruction.
  Parser.getStreamer().emitInstruction(Inst, getSTI());

  return false;
}

bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
                                     SMLoc &EndLoc, bool RestoreOnFailure) {
  Register Reg;
  if (parseRegister(Reg, RestoreOnFailure))
    return true;
  if (Reg.Group == RegGR)
    RegNo = SystemZMC::GR64Regs[Reg.Num];
  else if (Reg.Group == RegFP)
    RegNo = SystemZMC::FP64Regs[Reg.Num];
  else if (Reg.Group == RegV)
    RegNo = SystemZMC::VR128Regs[Reg.Num];
  else if (Reg.Group == RegAR)
    RegNo = SystemZMC::AR32Regs[Reg.Num];
  else if (Reg.Group == RegCR)
    RegNo = SystemZMC::CR64Regs[Reg.Num];
  StartLoc = Reg.StartLoc;
  EndLoc = Reg.EndLoc;
  return false;
}

bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
                                     SMLoc &EndLoc) {
  return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false);
}

OperandMatchResultTy SystemZAsmParser::tryParseRegister(unsigned &RegNo,
                                                        SMLoc &StartLoc,
                                                        SMLoc &EndLoc) {
  bool Result =
      ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true);
  bool PendingErrors = getParser().hasPendingError();
  getParser().clearPendingErrors();
  if (PendingErrors)
    return MatchOperand_ParseFail;
  if (Result)
    return MatchOperand_NoMatch;
  return MatchOperand_Success;
}

bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info,
                                        StringRef Name, SMLoc NameLoc,
                                        OperandVector &Operands) {
  Operands.push_back(SystemZOperand::createToken(Name, NameLoc));

  // Read the remaining operands.
  if (getLexer().isNot(AsmToken::EndOfStatement)) {
    // Read the first operand.
    if (parseOperand(Operands, Name)) {
      return true;
    }

    // Read any subsequent operands.
    while (getLexer().is(AsmToken::Comma)) {
      Parser.Lex();
      if (parseOperand(Operands, Name)) {
        return true;
      }
    }
    if (getLexer().isNot(AsmToken::EndOfStatement)) {
      SMLoc Loc = getLexer().getLoc();
      return Error(Loc, "unexpected token in argument list");
    }
  }

  // Consume the EndOfStatement.
  Parser.Lex();
  return false;
}

bool SystemZAsmParser::parseOperand(OperandVector &Operands,
                                    StringRef Mnemonic) {
  // Check if the current operand has a custom associated parser, if so, try to
  // custom parse the operand, or fallback to the general approach.  Force all
  // features to be available during the operand check, or else we will fail to
  // find the custom parser, and then we will later get an InvalidOperand error
  // instead of a MissingFeature errror.
  FeatureBitset AvailableFeatures = getAvailableFeatures();
  FeatureBitset All;
  All.set();
  setAvailableFeatures(All);
  OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
  setAvailableFeatures(AvailableFeatures);
  if (ResTy == MatchOperand_Success)
    return false;

  // If there wasn't a custom match, try the generic matcher below. Otherwise,
  // there was a match, but an error occurred, in which case, just return that
  // the operand parsing failed.
  if (ResTy == MatchOperand_ParseFail)
    return true;

  // Check for a register.  All real register operands should have used
  // a context-dependent parse routine, which gives the required register
  // class.  The code is here to mop up other cases, like those where
  // the instruction isn't recognized.
  if (Parser.getTok().is(AsmToken::Percent)) {
    Register Reg;
    if (parseRegister(Reg))
      return true;
    Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
    return false;
  }

  // The only other type of operand is an immediate or address.  As above,
  // real address operands should have used a context-dependent parse routine,
  // so we treat any plain expression as an immediate.
  SMLoc StartLoc = Parser.getTok().getLoc();
  Register Reg1, Reg2;
  bool HaveReg1, HaveReg2;
  const MCExpr *Expr;
  const MCExpr *Length;
  if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length,
                   /*HasLength*/ true, /*HasVectorIndex*/ true))
    return true;
  // If the register combination is not valid for any instruction, reject it.
  // Otherwise, fall back to reporting an unrecognized instruction.
  if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV
      && parseAddressRegister(Reg1))
    return true;
  if (HaveReg2 && parseAddressRegister(Reg2))
    return true;

  SMLoc EndLoc =
    SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
  if (HaveReg1 || HaveReg2 || Length)
    Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
  else
    Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
  return false;
}

static std::string SystemZMnemonicSpellCheck(StringRef S,
                                             const FeatureBitset &FBS,
                                             unsigned VariantID = 0);

bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
                                               OperandVector &Operands,
                                               MCStreamer &Out,
                                               uint64_t &ErrorInfo,
                                               bool MatchingInlineAsm) {
  MCInst Inst;
  unsigned MatchResult;

  FeatureBitset MissingFeatures;
  MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
                                     MissingFeatures, MatchingInlineAsm);
  switch (MatchResult) {
  case Match_Success:
    Inst.setLoc(IDLoc);
    Out.emitInstruction(Inst, getSTI());
    return false;

  case Match_MissingFeature: {
    assert(MissingFeatures.any() && "Unknown missing feature!");
    // Special case the error message for the very common case where only
    // a single subtarget feature is missing
    std::string Msg = "instruction requires:";
    for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) {
      if (MissingFeatures[I]) {
        Msg += " ";
        Msg += getSubtargetFeatureName(I);
      }
    }
    return Error(IDLoc, Msg);
  }

  case Match_InvalidOperand: {
    SMLoc ErrorLoc = IDLoc;
    if (ErrorInfo != ~0ULL) {
      if (ErrorInfo >= Operands.size())
        return Error(IDLoc, "too few operands for instruction");

      ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
      if (ErrorLoc == SMLoc())
        ErrorLoc = IDLoc;
    }
    return Error(ErrorLoc, "invalid operand for instruction");
  }

  case Match_MnemonicFail: {
    FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
    std::string Suggestion = SystemZMnemonicSpellCheck(
      ((SystemZOperand &)*Operands[0]).getToken(), FBS);
    return Error(IDLoc, "invalid instruction" + Suggestion,
                 ((SystemZOperand &)*Operands[0]).getLocRange());
  }
  }

  llvm_unreachable("Unexpected match type");
}

OperandMatchResultTy
SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal,
                             int64_t MaxVal, bool AllowTLS) {
  MCContext &Ctx = getContext();
  MCStreamer &Out = getStreamer();
  const MCExpr *Expr;
  SMLoc StartLoc = Parser.getTok().getLoc();
  if (getParser().parseExpression(Expr))
    return MatchOperand_NoMatch;

  auto isOutOfRangeConstant = [&](const MCExpr *E) -> bool {
    if (auto *CE = dyn_cast<MCConstantExpr>(E)) {
      int64_t Value = CE->getValue();
      if ((Value & 1) || Value < MinVal || Value > MaxVal)
        return true;
    }
    return false;
  };

  // For consistency with the GNU assembler, treat immediates as offsets
  // from ".".
  if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
    if (isOutOfRangeConstant(CE)) {
      Error(StartLoc, "offset out of range");
      return MatchOperand_ParseFail;
    }
    int64_t Value = CE->getValue();
    MCSymbol *Sym = Ctx.createTempSymbol();
    Out.emitLabel(Sym);
    const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
                                                 Ctx);
    Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx);
  }

  // For consistency with the GNU assembler, conservatively assume that a
  // constant offset must by itself be within the given size range.
  if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr))
    if (isOutOfRangeConstant(BE->getLHS()) ||
        isOutOfRangeConstant(BE->getRHS())) {
      Error(StartLoc, "offset out of range");
      return MatchOperand_ParseFail;
    }

  // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
  const MCExpr *Sym = nullptr;
  if (AllowTLS && getLexer().is(AsmToken::Colon)) {
    Parser.Lex();

    if (Parser.getTok().isNot(AsmToken::Identifier)) {
      Error(Parser.getTok().getLoc(), "unexpected token");
      return MatchOperand_ParseFail;
    }

    MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
    StringRef Name = Parser.getTok().getString();
    if (Name == "tls_gdcall")
      Kind = MCSymbolRefExpr::VK_TLSGD;
    else if (Name == "tls_ldcall")
      Kind = MCSymbolRefExpr::VK_TLSLDM;
    else {
      Error(Parser.getTok().getLoc(), "unknown TLS tag");
      return MatchOperand_ParseFail;
    }
    Parser.Lex();

    if (Parser.getTok().isNot(AsmToken::Colon)) {
      Error(Parser.getTok().getLoc(), "unexpected token");
      return MatchOperand_ParseFail;
    }
    Parser.Lex();

    if (Parser.getTok().isNot(AsmToken::Identifier)) {
      Error(Parser.getTok().getLoc(), "unexpected token");
      return MatchOperand_ParseFail;
    }

    StringRef Identifier = Parser.getTok().getString();
    Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier),
                                  Kind, Ctx);
    Parser.Lex();
  }

  SMLoc EndLoc =
    SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);

  if (AllowTLS)
    Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
                                                    StartLoc, EndLoc));
  else
    Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));

  return MatchOperand_Success;
}

// Force static initialization.
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() {
  RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget());
}