Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
//=- X86ScheduleBtVer2.td - X86 BtVer2 (Jaguar) Scheduling ---*- tablegen -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for AMD btver2 (Jaguar) to support
// instruction scheduling and other instruction cost heuristics. Based off AMD Software
// Optimization Guide for AMD Family 16h Processors & Instruction Latency appendix.
//
//===----------------------------------------------------------------------===//

def BtVer2Model : SchedMachineModel {
  // All x86 instructions are modeled as a single micro-op, and btver2 can
  // decode 2 instructions per cycle.
  let IssueWidth = 2;
  let MicroOpBufferSize = 64; // Retire Control Unit
  let LoadLatency = 5; // FPU latency (worse case cf Integer 3 cycle latency)
  let HighLatency = 25;
  let MispredictPenalty = 14; // Minimum branch misdirection penalty
  let PostRAScheduler = 1;

  // FIXME: SSE4/AVX is unimplemented. This flag is set to allow
  // the scheduler to assign a default model to unrecognized opcodes.
  let CompleteModel = 0;
}

let SchedModel = BtVer2Model in {

// Jaguar can issue up to 6 micro-ops in one cycle
def JALU0 : ProcResource<1>; // Integer Pipe0: integer ALU0 (also handle FP->INT jam)
def JALU1 : ProcResource<1>; // Integer Pipe1: integer ALU1/MUL/DIV
def JLAGU : ProcResource<1>; // Integer Pipe2: LAGU
def JSAGU : ProcResource<1>; // Integer Pipe3: SAGU (also handles 3-operand LEA)
def JFPU0 : ProcResource<1>; // Vector/FPU Pipe0: VALU0/VIMUL/FPA
def JFPU1 : ProcResource<1>; // Vector/FPU Pipe1: VALU1/STC/FPM

// The Integer PRF for Jaguar is 64 entries, and it holds the architectural and
// speculative version of the 64-bit integer registers.
// Reference: www.realworldtech.com/jaguar/4/
//
// The processor always keeps the different parts of an integer register
// together. An instruction that writes to a part of a register will therefore
// have a false dependence on any previous write to the same register or any
// part of it.
// Reference: Section 21.10 "AMD Bobcat and Jaguar pipeline: Partial register
// access" - Agner Fog's "microarchitecture.pdf".
def JIntegerPRF : RegisterFile<64, [GR64, CCR], [1, 1], [1, 0],
                               0,  // Max moves that can be eliminated per cycle.
                               1>; // Restrict move elimination to zero regs.

// The Jaguar FP Retire Queue renames SIMD and FP uOps onto a pool of 72 SSE
// registers. Operations on 256-bit data types are cracked into two COPs.
// Reference: www.realworldtech.com/jaguar/4/

// The PRF in the floating point unit can eliminate a move from a MMX or SSE
// register that is know to be zero (i.e. it has been zeroed using a zero-idiom
// dependency breaking instruction, or via VZEROALL).
// Reference: Section 21.8 "AMD Bobcat and Jaguar pipeline: Dependency-breaking
// instructions" - Agner Fog's "microarchitecture.pdf"
def JFpuPRF: RegisterFile<72, [VR64, VR128, VR256], [1, 1, 2], [1, 1, 0],
                          0,  // Max moves that can be eliminated per cycle.
                          1>; // Restrict move elimination to zero regs.

// The retire control unit (RCU) can track up to 64 macro-ops in-flight. It can
// retire up to two macro-ops per cycle.
// Reference: "Software Optimization Guide for AMD Family 16h Processors"
def JRCU : RetireControlUnit<64, 2>;

// Integer Pipe Scheduler
def JALU01 : ProcResGroup<[JALU0, JALU1]> {
  let BufferSize=20;
}

// AGU Pipe Scheduler
def JLSAGU : ProcResGroup<[JLAGU, JSAGU]> {
  let BufferSize=12;
}

// Fpu Pipe Scheduler
def JFPU01 : ProcResGroup<[JFPU0, JFPU1]> {
  let BufferSize=18;
}

// Functional units
def JDiv    : ProcResource<1>; // integer division
def JMul    : ProcResource<1>; // integer multiplication
def JVALU0  : ProcResource<1>; // vector integer
def JVALU1  : ProcResource<1>; // vector integer
def JVIMUL  : ProcResource<1>; // vector integer multiplication
def JSTC    : ProcResource<1>; // vector store/convert
def JFPM    : ProcResource<1>; // FP multiplication
def JFPA    : ProcResource<1>; // FP addition

// Functional unit groups
def JFPX  : ProcResGroup<[JFPA, JFPM]>;
def JVALU : ProcResGroup<[JVALU0, JVALU1]>;

// Integer loads are 3 cycles, so ReadAfterLd registers needn't be available until 3
// cycles after the memory operand.
def : ReadAdvance<ReadAfterLd, 3>;

// Vector loads are 5 cycles, so ReadAfterVec*Ld registers needn't be available until 5
// cycles after the memory operand.
def : ReadAdvance<ReadAfterVecLd, 5>;
def : ReadAdvance<ReadAfterVecXLd, 5>;
def : ReadAdvance<ReadAfterVecYLd, 5>;

/// "Additional 6 cycle transfer operation which moves a floating point
/// operation input value from the integer unit to the floating point unit.
/// Reference: AMDfam16h SOG (Appendix A "Instruction Latencies", Section A.2).
def : ReadAdvance<ReadInt2Fpu, -6>;

// Many SchedWrites are defined in pairs with and without a folded load.
// Instructions with folded loads are usually micro-fused, so they only appear
// as two micro-ops when dispatched by the schedulers.
// This multiclass defines the resource usage for variants with and without
// folded loads.
multiclass JWriteResIntPair<X86FoldableSchedWrite SchedRW,
                            list<ProcResourceKind> ExePorts,
                            int Lat, list<int> Res = [], int UOps = 1,
                            int LoadUOps = 0> {
  // Register variant is using a single cycle on ExePort.
  def : WriteRes<SchedRW, ExePorts> {
    let Latency = Lat;
    let ResourceCycles = Res;
    let NumMicroOps = UOps;
  }

  // Memory variant also uses a cycle on JLAGU and adds 3 cycles to the
  // latency.
  def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> {
    let Latency = !add(Lat, 3);
    let ResourceCycles = !if(!empty(Res), [], !listconcat([1], Res));
    let NumMicroOps = !add(UOps, LoadUOps);
  }
}

multiclass JWriteResFpuPair<X86FoldableSchedWrite SchedRW,
                            list<ProcResourceKind> ExePorts,
                            int Lat, list<int> Res = [], int UOps = 1,
                            int LoadUOps = 0> {
  // Register variant is using a single cycle on ExePort.
  def : WriteRes<SchedRW, ExePorts> {
    let Latency = Lat;
    let ResourceCycles = Res;
    let NumMicroOps = UOps;
  }

  // Memory variant also uses a cycle on JLAGU and adds 5 cycles to the
  // latency.
  def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> {
    let Latency = !add(Lat, 5);
    let ResourceCycles = !if(!empty(Res), [], !listconcat([1], Res));
    let NumMicroOps = !add(UOps, LoadUOps);
  }
}

multiclass JWriteResYMMPair<X86FoldableSchedWrite SchedRW,
                            list<ProcResourceKind> ExePorts,
                            int Lat, list<int> Res = [2], int UOps = 2,
                            int LoadUOps = 0> {
  // Register variant is using a single cycle on ExePort.
  def : WriteRes<SchedRW, ExePorts> {
    let Latency = Lat;
    let ResourceCycles = Res;
    let NumMicroOps = UOps;
  }

  // Memory variant also uses 2 cycles on JLAGU and adds 5 cycles to the
  // latency.
  def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> {
    let Latency = !add(Lat, 5);
    let ResourceCycles = !listconcat([2], Res);
    let NumMicroOps = !add(UOps, LoadUOps);
  }
}

// Instructions that have local forwarding disabled have an extra +1cy latency.

// A folded store needs a cycle on the SAGU for the store data, most RMW
// instructions don't need an extra uop.  ALU RMW operations don't seem to
// benefit from STLF, and their observed latency is 6cy. That is the reason why
// this write adds two extra cycles (instead of just 1cy for the store).
defm : X86WriteRes<WriteRMW, [JSAGU], 2, [1], 0>;

////////////////////////////////////////////////////////////////////////////////
// Arithmetic.
////////////////////////////////////////////////////////////////////////////////

defm : JWriteResIntPair<WriteALU,    [JALU01], 1>;
defm : JWriteResIntPair<WriteADC,    [JALU01], 1, [2]>;

defm : X86WriteRes<WriteBSWAP32,     [JALU01], 1, [1], 1>;
defm : X86WriteRes<WriteBSWAP64,     [JALU01], 1, [1], 1>;
defm : X86WriteRes<WriteCMPXCHG,     [JALU01], 3, [3], 5>;
defm : X86WriteRes<WriteCMPXCHGRMW,  [JALU01, JSAGU, JLAGU], 11, [3, 1, 1], 6>;
defm : X86WriteRes<WriteXCHG,        [JALU01], 1, [2], 2>;

defm : JWriteResIntPair<WriteIMul8,     [JALU1, JMul], 3, [1, 1], 1>;
defm : JWriteResIntPair<WriteIMul16,    [JALU1, JMul], 3, [1, 3], 3>;
defm : JWriteResIntPair<WriteIMul16Imm, [JALU1, JMul], 4, [1, 2], 2>;
defm : JWriteResIntPair<WriteIMul16Reg, [JALU1, JMul], 3, [1, 1], 1>;
defm : JWriteResIntPair<WriteIMul32,    [JALU1, JMul], 3, [1, 2], 2>;
defm : JWriteResIntPair<WriteIMul32Imm, [JALU1, JMul], 3, [1, 1], 1>;
defm : JWriteResIntPair<WriteIMul32Reg, [JALU1, JMul], 3, [1, 1], 1>;
defm : JWriteResIntPair<WriteIMul64,    [JALU1, JMul], 6, [1, 4], 2>;  
defm : JWriteResIntPair<WriteIMul64Imm, [JALU1, JMul], 6, [1, 4], 1>;
defm : JWriteResIntPair<WriteIMul64Reg, [JALU1, JMul], 6, [1, 4], 1>;
defm : X86WriteRes<WriteIMulH,          [JALU1], 6, [4], 1>;

defm : JWriteResIntPair<WriteDiv8,   [JALU1, JDiv], 12, [1, 12], 1>;
defm : JWriteResIntPair<WriteDiv16,  [JALU1, JDiv], 17, [1, 17], 2>;
defm : JWriteResIntPair<WriteDiv32,  [JALU1, JDiv], 25, [1, 25], 2>;
defm : JWriteResIntPair<WriteDiv64,  [JALU1, JDiv], 41, [1, 41], 2>;
defm : JWriteResIntPair<WriteIDiv8,  [JALU1, JDiv], 12, [1, 12], 1>;
defm : JWriteResIntPair<WriteIDiv16, [JALU1, JDiv], 17, [1, 17], 2>;
defm : JWriteResIntPair<WriteIDiv32, [JALU1, JDiv], 25, [1, 25], 2>;
defm : JWriteResIntPair<WriteIDiv64, [JALU1, JDiv], 41, [1, 41], 2>;

defm : JWriteResIntPair<WriteCRC32,  [JALU01], 3, [4], 3>;

defm : JWriteResIntPair<WriteCMOV,  [JALU01], 1>; // Conditional move.
defm : X86WriteRes<WriteFCMOV, [JFPU0, JFPA], 3, [1,1], 1>; // x87 conditional move.
def  : WriteRes<WriteSETCC, [JALU01]>; // Setcc.
def  : WriteRes<WriteSETCCStore, [JALU01,JSAGU]>;
def  : WriteRes<WriteLAHFSAHF, [JALU01]>;

defm : X86WriteRes<WriteBitTest,         [JALU01], 1, [1], 1>;
defm : X86WriteRes<WriteBitTestImmLd,    [JALU01,JLAGU], 4, [1,1], 1>;
defm : X86WriteRes<WriteBitTestRegLd,    [JALU01,JLAGU], 4, [1,1], 5>;
defm : X86WriteRes<WriteBitTestSet,      [JALU01], 1, [1], 2>;
defm : X86WriteRes<WriteBitTestSetImmLd, [JALU01,JLAGU], 4, [1,1], 4>;
defm : X86WriteRes<WriteBitTestSetRegLd, [JALU01,JLAGU], 4, [1,1], 8>;

// This is for simple LEAs with one or two input operands.
def : WriteRes<WriteLEA, [JALU01]>;

// Bit counts.
defm : JWriteResIntPair<WriteBSF, [JALU01], 4, [8], 7>;
defm : JWriteResIntPair<WriteBSR, [JALU01], 5, [8], 8>;
defm : JWriteResIntPair<WritePOPCNT,         [JALU01], 1>;
defm : JWriteResIntPair<WriteLZCNT,          [JALU01], 1>;
defm : JWriteResIntPair<WriteTZCNT,          [JALU01], 2, [2], 2>;

// BMI1 BEXTR/BLS, BMI2 BZHI
defm : JWriteResIntPair<WriteBEXTR, [JALU01], 1>;
defm : JWriteResIntPair<WriteBLS,   [JALU01], 2, [2], 2>;
defm : X86WriteResPairUnsupported<WriteBZHI>;

////////////////////////////////////////////////////////////////////////////////
// Integer shifts and rotates.
////////////////////////////////////////////////////////////////////////////////

defm : JWriteResIntPair<WriteShift,    [JALU01], 1>;
defm : JWriteResIntPair<WriteShiftCL,  [JALU01], 1>;
defm : JWriteResIntPair<WriteRotate,   [JALU01], 1>;
defm : JWriteResIntPair<WriteRotateCL, [JALU01], 1>;

// SHLD/SHRD.
defm : X86WriteRes<WriteSHDrri, [JALU01], 3, [6], 6>;
defm : X86WriteRes<WriteSHDrrcl,[JALU01], 4, [8], 7>;
defm : X86WriteRes<WriteSHDmri, [JLAGU, JALU01], 9, [1, 22], 8>;
defm : X86WriteRes<WriteSHDmrcl,[JLAGU, JALU01], 9, [1, 22], 8>;

////////////////////////////////////////////////////////////////////////////////
// Loads, stores, and moves, not folded with other operations.
////////////////////////////////////////////////////////////////////////////////

def : WriteRes<WriteLoad,    [JLAGU]> { let Latency = 3; }
def : WriteRes<WriteStore,   [JSAGU]>;
def : WriteRes<WriteStoreNT, [JSAGU]>;
def : WriteRes<WriteMove,    [JALU01]>;

// Load/store MXCSR.
def : WriteRes<WriteLDMXCSR, [JLAGU]> { let Latency = 3; }
def : WriteRes<WriteSTMXCSR, [JSAGU]>;

// Treat misc copies as a move.
def : InstRW<[WriteMove], (instrs COPY)>;

////////////////////////////////////////////////////////////////////////////////
// Idioms that clear a register, like xorps %xmm0, %xmm0.
// These can often bypass execution ports completely.
////////////////////////////////////////////////////////////////////////////////

def : WriteRes<WriteZero,  []>;

////////////////////////////////////////////////////////////////////////////////
// Branches don't produce values, so they have no latency, but they still
// consume resources. Indirect branches can fold loads.
////////////////////////////////////////////////////////////////////////////////

defm : JWriteResIntPair<WriteJump,  [JALU01], 1>;

////////////////////////////////////////////////////////////////////////////////
// Special case scheduling classes.
////////////////////////////////////////////////////////////////////////////////

def : WriteRes<WriteSystem,     [JALU01]> { let Latency = 100; }
def : WriteRes<WriteMicrocoded, [JALU01]> { let Latency = 100; }
def : WriteRes<WriteFence,  [JSAGU]>;

// Nops don't have dependencies, so there's no actual latency, but we set this
// to '1' to tell the scheduler that the nop uses an ALU slot for a cycle.
def : WriteRes<WriteNop, [JALU01]> { let Latency = 1; }

def JWriteCMPXCHG8rr : SchedWriteRes<[JALU01]> {
  let Latency = 3;
  let ResourceCycles = [3];
  let NumMicroOps = 3;
}

def JWriteLOCK_CMPXCHG8rm : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
  let Latency = 16;
  let ResourceCycles = [3,16,16];
  let NumMicroOps = 5;
}

def JWriteLOCK_CMPXCHGrm : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
  let Latency = 17;
  let ResourceCycles = [3,17,17];
  let NumMicroOps = 6;
}

def JWriteCMPXCHG8rm : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
  let Latency = 11;
  let ResourceCycles = [3,1,1];
  let NumMicroOps = 5;
}

def JWriteCMPXCHG8B : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
  let Latency = 11;
  let ResourceCycles = [3,1,1];
  let NumMicroOps = 18;
}

def JWriteCMPXCHG16B : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
  let Latency = 32;
  let ResourceCycles = [6,1,1];
  let NumMicroOps = 28;
}

def JWriteLOCK_CMPXCHG8B : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
  let Latency = 19;
  let ResourceCycles = [3,19,19];
  let NumMicroOps = 18;
}

def JWriteLOCK_CMPXCHG16B : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
  let Latency = 38;
  let ResourceCycles = [6,38,38];
  let NumMicroOps = 28;
}

def JWriteCMPXCHGVariant :  SchedWriteVariant<[
  SchedVar<MCSchedPredicate<IsAtomicCompareAndSwap8B>,  [JWriteLOCK_CMPXCHG8B]>,
  SchedVar<MCSchedPredicate<IsAtomicCompareAndSwap16B>, [JWriteLOCK_CMPXCHG16B]>,
  SchedVar<MCSchedPredicate<IsAtomicCompareAndSwap_8>,  [JWriteLOCK_CMPXCHG8rm]>,
  SchedVar<MCSchedPredicate<IsAtomicCompareAndSwap>,    [JWriteLOCK_CMPXCHGrm]>,
  SchedVar<MCSchedPredicate<IsCompareAndSwap8B>,        [JWriteCMPXCHG8B]>,
  SchedVar<MCSchedPredicate<IsCompareAndSwap16B>,       [JWriteCMPXCHG16B]>,
  SchedVar<MCSchedPredicate<IsRegMemCompareAndSwap_8>,  [JWriteCMPXCHG8rm]>,
  SchedVar<MCSchedPredicate<IsRegMemCompareAndSwap>,    [WriteCMPXCHGRMW]>,
  SchedVar<MCSchedPredicate<IsRegRegCompareAndSwap_8>,  [JWriteCMPXCHG8rr]>,
  SchedVar<NoSchedPred,                                 [WriteCMPXCHG]>
]>;

// The first five reads are contributed by the memory load operand.
// We ignore those reads and set a read-advance for the other input operands
// including the implicit read of RAX.
def : InstRW<[JWriteCMPXCHGVariant,
              ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
              ReadAfterLd, ReadAfterLd], (instrs LCMPXCHG8, LCMPXCHG16,
                                                 LCMPXCHG32, LCMPXCHG64,
                                                 CMPXCHG8rm, CMPXCHG16rm,
                                                 CMPXCHG32rm, CMPXCHG64rm)>;

def : InstRW<[JWriteCMPXCHGVariant], (instrs CMPXCHG8rr, CMPXCHG16rr,
                                             CMPXCHG32rr, CMPXCHG64rr)>;

def : InstRW<[JWriteCMPXCHGVariant,
              // Ignore reads contributed by the memory operand.
              ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault,
              // Add a read-advance to every implicit register read.
              ReadAfterLd, ReadAfterLd, ReadAfterLd, ReadAfterLd], (instrs LCMPXCHG8B, LCMPXCHG16B,
                                                                           CMPXCHG8B, CMPXCHG16B)>;

def JWriteLOCK_ALURMW : SchedWriteRes<[JALU01, JLAGU, JSAGU]> {
  let Latency = 19;
  let ResourceCycles = [1,19,19];
  let NumMicroOps = 1;
}

def JWriteLOCK_ALURMWVariant :  SchedWriteVariant<[
  SchedVar<MCSchedPredicate<CheckLockPrefix>, [JWriteLOCK_ALURMW]>,
  SchedVar<NoSchedPred,                       [WriteALURMW]>
]>;
def : InstRW<[JWriteLOCK_ALURMWVariant], (instrs INC8m, INC16m, INC32m, INC64m,
                                                 DEC8m, DEC16m, DEC32m, DEC64m,
                                                 NOT8m, NOT16m, NOT32m, NOT64m,
                                                 NEG8m, NEG16m, NEG32m, NEG64m)>;

def JWriteXCHG8rr_XADDrr : SchedWriteRes<[JALU01]> {
  let Latency = 2;
  let ResourceCycles = [3];
  let NumMicroOps = 3;
}
def : InstRW<[JWriteXCHG8rr_XADDrr], (instrs XCHG8rr, XADD8rr, XADD16rr,
                                                      XADD32rr, XADD64rr)>;

// This write defines the latency of the in/out register operand of a non-atomic
// XADDrm. This is the first of a pair of writes that model non-atomic
// XADDrm instructions (the second write definition is JWriteXADDrm_LdSt_Part).
//
// We need two writes because the instruction latency differs from the output
// register operand latency. In particular, the first write describes the first
// (and only) output register operand of the instruction.  However, the
// instruction latency is set to the MAX of all the write latencies. That's why
// a second write is needed in this case (see example below).
//
// Example:
//     XADD %ecx, (%rsp)      ## Instruction latency: 11cy
//                            ## ECX write Latency: 3cy
//
// Register ECX becomes available in 3 cycles. That is because the value of ECX
// is exchanged with the value read from the stack pointer, and the load-to-use
// latency is assumed to be 3cy.
def JWriteXADDrm_XCHG_Part : SchedWriteRes<[JALU01]> {
  let Latency = 3;  // load-to-use latency
  let ResourceCycles = [3];
  let NumMicroOps = 3;
}

// This write defines the latency of the in/out register operand of an atomic
// XADDrm. This is the first of a sequence of two writes used to model atomic
// XADD instructions. The second write of the sequence is JWriteXCHGrm_LdSt_Part.
//
//
// Example:
//    LOCK XADD %ecx, (%rsp)     ## Instruction Latency: 16cy
//                               ## ECX write Latency: 11cy
//
// The value of ECX becomes available only after 11cy from the start of
// execution. This write is used to specifically set that operand latency. 
def JWriteLOCK_XADDrm_XCHG_Part : SchedWriteRes<[JALU01]> {
  let Latency = 11;
  let ResourceCycles = [3];
  let NumMicroOps = 3;
}

// This write defines the latency of the in/out register operand of an atomic
// XCHGrm. This write is the first of a sequence of two writes that describe
// atomic XCHG operations. We need two writes because the instruction latency
// differs from the output register write latency.  We want to make sure that
// the output register operand becomes visible after 11cy. However, we want to
// set the instruction latency to 16cy.
def JWriteXCHGrm_XCHG_Part : SchedWriteRes<[JALU01]> {
  let Latency = 11;
  let ResourceCycles = [2];
  let NumMicroOps = 2;
}

def JWriteXADDrm_LdSt_Part : SchedWriteRes<[JLAGU, JSAGU]> {
  let Latency = 11;
  let ResourceCycles = [1, 1];
  let NumMicroOps = 1;
}

def JWriteXCHGrm_LdSt_Part : SchedWriteRes<[JLAGU, JSAGU]> {
  let Latency = 16;
  let ResourceCycles = [16, 16];
  let NumMicroOps = 1;
}

def JWriteXADDrm_Part1 : SchedWriteVariant<[
  SchedVar<MCSchedPredicate<CheckLockPrefix>, [JWriteLOCK_XADDrm_XCHG_Part]>,
  SchedVar<NoSchedPred,                       [JWriteXADDrm_XCHG_Part]>
]>;

def JWriteXADDrm_Part2 : SchedWriteVariant<[
  SchedVar<MCSchedPredicate<CheckLockPrefix>, [JWriteXCHGrm_LdSt_Part]>,
  SchedVar<NoSchedPred,                       [JWriteXADDrm_LdSt_Part]>
]>;

def : InstRW<[JWriteXADDrm_Part1, JWriteXADDrm_Part2, ReadAfterLd],
                 (instrs XADD8rm, XADD16rm, XADD32rm, XADD64rm,
                         LXADD8, LXADD16, LXADD32, LXADD64)>;

def : InstRW<[JWriteXCHGrm_XCHG_Part, JWriteXCHGrm_LdSt_Part, ReadAfterLd],
                 (instrs XCHG8rm, XCHG16rm, XCHG32rm, XCHG64rm)>;


////////////////////////////////////////////////////////////////////////////////
// Floating point. This covers both scalar and vector operations.
////////////////////////////////////////////////////////////////////////////////

defm : X86WriteRes<WriteFLD0,          [JFPU1, JSTC], 3, [1,1], 1>;
defm : X86WriteRes<WriteFLD1,          [JFPU1, JSTC], 3, [1,1], 1>;
defm : X86WriteRes<WriteFLDC,          [JFPU1, JSTC], 3, [1,1], 1>;
defm : X86WriteRes<WriteFLoad,         [JLAGU, JFPU01, JFPX], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFLoadX,        [JLAGU], 5, [1], 1>;
defm : X86WriteRes<WriteFLoadY,        [JLAGU], 5, [2], 2>;
defm : X86WriteRes<WriteFMaskedLoad,   [JLAGU, JFPU01, JFPX], 6, [1, 2, 2], 1>;
defm : X86WriteRes<WriteFMaskedLoadY,  [JLAGU, JFPU01, JFPX], 6, [2, 4, 4], 2>;

defm : X86WriteRes<WriteFStore,        [JSAGU, JFPU1,  JSTC], 2, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFStoreX,       [JSAGU, JFPU1,  JSTC], 1, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFStoreY,       [JSAGU, JFPU1,  JSTC], 1, [2, 2, 2], 2>;
defm : X86WriteRes<WriteFStoreNT,      [JSAGU, JFPU1,  JSTC], 3, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFStoreNTX,     [JSAGU, JFPU1,  JSTC], 3, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFStoreNTY,     [JSAGU, JFPU1,  JSTC], 3, [2, 2, 2], 1>;

defm : X86WriteRes<WriteFMaskedStore32,  [JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01], 16, [1,1, 5, 5,4,4,4], 19>;
defm : X86WriteRes<WriteFMaskedStore64,  [JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01], 13, [1,1, 2, 2,2,2,2], 10>;
defm : X86WriteRes<WriteFMaskedStore32Y, [JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01], 22, [1,1,10,10,8,8,8], 36>;
defm : X86WriteRes<WriteFMaskedStore64Y, [JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01], 16, [1,1, 4, 4,4,4,4], 18>;

defm : X86WriteRes<WriteFMove,         [JFPU01, JFPX], 1, [1, 1], 1>;
defm : X86WriteRes<WriteFMoveX,        [JFPU01, JFPX], 1, [1, 1], 1>;
defm : X86WriteRes<WriteFMoveY,        [JFPU01, JFPX], 1, [2, 2], 2>;

defm : X86WriteRes<WriteEMMS,          [JFPU01, JFPX], 2, [1, 1], 1>;

defm : JWriteResFpuPair<WriteFAdd,         [JFPU0, JFPA],  3>;
defm : JWriteResFpuPair<WriteFAddX,        [JFPU0, JFPA],  3>;
defm : JWriteResYMMPair<WriteFAddY,        [JFPU0, JFPA],  3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFAddZ>;
defm : JWriteResFpuPair<WriteFAdd64,       [JFPU0, JFPA],  3>;
defm : JWriteResFpuPair<WriteFAdd64X,      [JFPU0, JFPA],  3>;
defm : JWriteResYMMPair<WriteFAdd64Y,      [JFPU0, JFPA],  3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFAdd64Z>;
defm : JWriteResFpuPair<WriteFCmp,         [JFPU0, JFPA],  2>;
defm : JWriteResFpuPair<WriteFCmpX,        [JFPU0, JFPA],  2>;
defm : JWriteResYMMPair<WriteFCmpY,        [JFPU0, JFPA],  2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFCmpZ>;
defm : JWriteResFpuPair<WriteFCmp64,       [JFPU0, JFPA],  2>;
defm : JWriteResFpuPair<WriteFCmp64X,      [JFPU0, JFPA],  2>;
defm : JWriteResYMMPair<WriteFCmp64Y,      [JFPU0, JFPA],  2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFCmp64Z>;
defm : JWriteResFpuPair<WriteFCom,  [JFPU0, JFPA, JALU0],  3>;
defm : JWriteResFpuPair<WriteFComX, [JFPU0, JFPA, JALU0],  3>;
defm : JWriteResFpuPair<WriteFMul,         [JFPU1, JFPM],  2>;
defm : JWriteResFpuPair<WriteFMulX,        [JFPU1, JFPM],  2>;
defm : JWriteResYMMPair<WriteFMulY,        [JFPU1, JFPM],  2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFMulZ>;
defm : JWriteResFpuPair<WriteFMul64,       [JFPU1, JFPM],  4, [1,2]>;
defm : JWriteResFpuPair<WriteFMul64X,      [JFPU1, JFPM],  4, [1,2]>;
defm : JWriteResYMMPair<WriteFMul64Y,      [JFPU1, JFPM],  4, [2,4], 2>;
defm : X86WriteResPairUnsupported<WriteFMul64Z>;
defm : X86WriteResPairUnsupported<WriteFMA>;
defm : X86WriteResPairUnsupported<WriteFMAX>;
defm : X86WriteResPairUnsupported<WriteFMAY>;
defm : X86WriteResPairUnsupported<WriteFMAZ>;
defm : JWriteResFpuPair<WriteDPPD,   [JFPU1, JFPM, JFPA],  9, [1, 3, 3],  3>;
defm : JWriteResFpuPair<WriteDPPS,   [JFPU1, JFPM, JFPA], 11, [1, 3, 3],  5>;
defm : JWriteResYMMPair<WriteDPPSY,  [JFPU1, JFPM, JFPA], 12, [2, 6, 6], 10>;
defm : X86WriteResPairUnsupported<WriteDPPSZ>;
defm : JWriteResFpuPair<WriteFRcp,         [JFPU1, JFPM],  2>;
defm : JWriteResFpuPair<WriteFRcpX,        [JFPU1, JFPM],  2>;
defm : JWriteResYMMPair<WriteFRcpY,        [JFPU1, JFPM],  2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFRcpZ>;
defm : JWriteResFpuPair<WriteFRsqrt,       [JFPU1, JFPM],  2>;
defm : JWriteResFpuPair<WriteFRsqrtX,      [JFPU1, JFPM],  2>;
defm : JWriteResYMMPair<WriteFRsqrtY,      [JFPU1, JFPM],  2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFRsqrtZ>;
defm : JWriteResFpuPair<WriteFDiv,         [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResFpuPair<WriteFDivX,        [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResYMMPair<WriteFDivY,        [JFPU1, JFPM], 38, [2, 38], 2>;
defm : X86WriteResPairUnsupported<WriteFDivZ>;
defm : JWriteResFpuPair<WriteFDiv64,       [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResFpuPair<WriteFDiv64X,      [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResYMMPair<WriteFDiv64Y,      [JFPU1, JFPM], 38, [2, 38], 2>;
defm : X86WriteResPairUnsupported<WriteFDiv64Z>;
defm : JWriteResFpuPair<WriteFSqrt,        [JFPU1, JFPM], 21, [1, 21]>;
defm : JWriteResFpuPair<WriteFSqrtX,       [JFPU1, JFPM], 21, [1, 21]>;
defm : JWriteResYMMPair<WriteFSqrtY,       [JFPU1, JFPM], 42, [2, 42], 2>;
defm : X86WriteResPairUnsupported<WriteFSqrtZ>;
defm : JWriteResFpuPair<WriteFSqrt64,      [JFPU1, JFPM], 27, [1, 27]>;
defm : JWriteResFpuPair<WriteFSqrt64X,     [JFPU1, JFPM], 27, [1, 27]>;
defm : JWriteResYMMPair<WriteFSqrt64Y,     [JFPU1, JFPM], 54, [2, 54], 2>;
defm : X86WriteResPairUnsupported<WriteFSqrt64Z>;
defm : JWriteResFpuPair<WriteFSqrt80,      [JFPU1, JFPM], 35, [1, 35]>;
defm : JWriteResFpuPair<WriteFSign,        [JFPU1, JFPM],  2>;
defm : JWriteResFpuPair<WriteFRnd,         [JFPU1, JSTC],  3>;
defm : JWriteResYMMPair<WriteFRndY,        [JFPU1, JSTC],  3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFRndZ>;
defm : JWriteResFpuPair<WriteFLogic,      [JFPU01, JFPX],  1>;
defm : JWriteResYMMPair<WriteFLogicY,     [JFPU01, JFPX],  1, [2, 2], 2>;
defm : X86WriteResPairUnsupported<WriteFLogicZ>;
defm : JWriteResFpuPair<WriteFTest,       [JFPU0, JFPA, JALU0], 3>;
defm : JWriteResYMMPair<WriteFTestY ,     [JFPU01, JFPX, JFPA, JALU0], 4, [2, 2, 2, 1], 3>;
defm : X86WriteResPairUnsupported<WriteFTestZ>;
defm : JWriteResFpuPair<WriteFShuffle,    [JFPU01, JFPX],  1>;
defm : JWriteResYMMPair<WriteFShuffleY,   [JFPU01, JFPX],  1, [2, 2], 2>;
defm : X86WriteResPairUnsupported<WriteFShuffleZ>;
defm : JWriteResFpuPair<WriteFVarShuffle, [JFPU01, JFPX],  3, [1, 4], 3>; // +1cy latency.
defm : JWriteResYMMPair<WriteFVarShuffleY,[JFPU01, JFPX],  4, [2, 6], 6>; // +1cy latency.
defm : X86WriteResPairUnsupported<WriteFVarShuffleZ>;
defm : JWriteResFpuPair<WriteFBlend,      [JFPU01, JFPX],  1>;
defm : JWriteResYMMPair<WriteFBlendY,     [JFPU01, JFPX],  1, [2, 2], 2>;
defm : X86WriteResPairUnsupported<WriteFBlendZ>;
defm : JWriteResFpuPair<WriteFVarBlend,   [JFPU01, JFPX],  2, [4, 4], 3>;
defm : JWriteResYMMPair<WriteFVarBlendY,  [JFPU01, JFPX],  3, [6, 6], 6>;
defm : X86WriteResPairUnsupported<WriteFVarBlendZ>;
defm : JWriteResFpuPair<WriteFShuffle256, [JFPU01, JFPX],  1, [2, 2], 2>;
defm : X86WriteResPairUnsupported<WriteFVarShuffle256>;

////////////////////////////////////////////////////////////////////////////////
// Conversions.
////////////////////////////////////////////////////////////////////////////////

defm : JWriteResFpuPair<WriteCvtSS2I,      [JFPU1, JSTC, JFPU0, JFPA, JALU0], 7, [1,1,1,1,1], 2>;
defm : JWriteResFpuPair<WriteCvtPS2I,      [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPS2IY,     [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtPS2IZ>;
defm : JWriteResFpuPair<WriteCvtSD2I,      [JFPU1, JSTC, JFPU0, JFPA, JALU0], 7, [1,1,1,1,1], 2>;
defm : JWriteResFpuPair<WriteCvtPD2I,      [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPD2IY,     [JFPU1, JSTC, JFPX], 6, [2,2,4], 3>;
defm : X86WriteResPairUnsupported<WriteCvtPD2IZ>;

defm : X86WriteRes<WriteCvtI2SS,           [JFPU1, JSTC], 4, [1,1], 2>;
defm : X86WriteRes<WriteCvtI2SSLd,         [JLAGU, JFPU1, JSTC], 9, [1,1,1], 1>;
defm : JWriteResFpuPair<WriteCvtI2PS,      [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtI2PSY,     [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtI2PSZ>;
defm : X86WriteRes<WriteCvtI2SD,           [JFPU1, JSTC], 4, [1,1], 2>;
defm : X86WriteRes<WriteCvtI2SDLd,         [JLAGU, JFPU1, JSTC], 9, [1,1,1], 1>;
defm : JWriteResFpuPair<WriteCvtI2PD,      [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtI2PDY,     [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtI2PDZ>;

defm : JWriteResFpuPair<WriteCvtSS2SD,      [JFPU1, JSTC], 7, [1,2], 2>;
defm : JWriteResFpuPair<WriteCvtPS2PD,      [JFPU1, JSTC], 2, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPS2PDY,     [JFPU1, JSTC], 2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtPS2PDZ>;

defm : JWriteResFpuPair<WriteCvtSD2SS,    [JFPU1, JSTC], 7, [1,2], 2>;
defm : JWriteResFpuPair<WriteCvtPD2PS,    [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPD2PSY,   [JFPU1, JSTC, JFPX], 6, [2,2,4], 3>;
defm : X86WriteResPairUnsupported<WriteCvtPD2PSZ>;

defm : JWriteResFpuPair<WriteCvtPH2PS,     [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPH2PSY,    [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtPH2PSZ>;

defm : X86WriteRes<WriteCvtPS2PH,                 [JFPU1, JSTC], 3, [1,1], 1>;
defm : X86WriteRes<WriteCvtPS2PHY,          [JFPU1, JSTC, JFPX], 6, [2,2,2], 3>;
defm : X86WriteResUnsupported<WriteCvtPS2PHZ>;
defm : X86WriteRes<WriteCvtPS2PHSt,        [JFPU1, JSTC, JSAGU], 4, [1,1,1], 1>;
defm : X86WriteRes<WriteCvtPS2PHYSt, [JFPU1, JSTC, JFPX, JSAGU], 7, [2,2,2,1], 3>;
defm : X86WriteResUnsupported<WriteCvtPS2PHZSt>;

////////////////////////////////////////////////////////////////////////////////
// Vector integer operations.
////////////////////////////////////////////////////////////////////////////////

defm : X86WriteRes<WriteVecLoad,          [JLAGU, JFPU01, JVALU], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecLoadX,         [JLAGU], 5, [1], 1>;
defm : X86WriteRes<WriteVecLoadY,         [JLAGU], 5, [2], 2>;
defm : X86WriteRes<WriteVecLoadNT,        [JLAGU, JFPU01, JVALU], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecLoadNTY,       [JLAGU, JFPU01, JVALU], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecMaskedLoad,    [JLAGU, JFPU01, JVALU], 6, [1, 2, 2], 1>;
defm : X86WriteRes<WriteVecMaskedLoadY,   [JLAGU, JFPU01, JVALU], 6, [2, 4, 4], 2>;

defm : X86WriteRes<WriteVecStore,         [JSAGU, JFPU1,   JSTC], 2, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecStoreX,        [JSAGU, JFPU1,   JSTC], 1, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecStoreY,        [JSAGU, JFPU1,   JSTC], 1, [2, 2, 2], 2>;
defm : X86WriteRes<WriteVecStoreNT,       [JSAGU, JFPU1,   JSTC], 2, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecStoreNTY,      [JSAGU, JFPU1,   JSTC], 2, [2, 2, 2], 1>;
defm : X86WriteResUnsupported<WriteVecMaskedStore32>;
defm : X86WriteResUnsupported<WriteVecMaskedStore64>;
defm : X86WriteResUnsupported<WriteVecMaskedStore32Y>;
defm : X86WriteResUnsupported<WriteVecMaskedStore64Y>;

defm : X86WriteRes<WriteVecMove,          [JFPU01, JVALU], 1, [1, 1], 1>;
defm : X86WriteRes<WriteVecMoveX,         [JFPU01, JVALU], 1, [1, 1], 1>;
defm : X86WriteRes<WriteVecMoveY,         [JFPU01, JVALU], 1, [2, 2], 2>;
defm : X86WriteRes<WriteVecMoveToGpr,     [JFPU0, JFPA, JALU0], 4, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecMoveFromGpr,   [JFPU01, JFPX], 8, [1, 1], 2>;

defm : JWriteResFpuPair<WriteVecALU,      [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecALUX,     [JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WriteVecALUY>;
defm : X86WriteResPairUnsupported<WriteVecALUZ>;
defm : JWriteResFpuPair<WriteVecShift,    [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecShiftX,   [JFPU01, JVALU], 2>; // +1cy latency.
defm : X86WriteResPairUnsupported<WriteVecShiftY>;
defm : X86WriteResPairUnsupported<WriteVecShiftZ>;
defm : JWriteResFpuPair<WriteVecShiftImm, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecShiftImmX,[JFPU01, JVALU], 2>; // +1cy latency.
defm : X86WriteResPairUnsupported<WriteVecShiftImmY>;
defm : X86WriteResPairUnsupported<WriteVecShiftImmZ>;
defm : X86WriteResPairUnsupported<WriteVarVecShift>;
defm : X86WriteResPairUnsupported<WriteVarVecShiftY>;
defm : X86WriteResPairUnsupported<WriteVarVecShiftZ>;
defm : JWriteResFpuPair<WriteVecIMul,     [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WriteVecIMulX,    [JFPU0, JVIMUL], 2>;
defm : X86WriteResPairUnsupported<WriteVecIMulY>;
defm : X86WriteResPairUnsupported<WriteVecIMulZ>;
defm : JWriteResFpuPair<WritePMULLD,      [JFPU0, JFPU01, JVIMUL, JVALU], 4, [2, 1, 2, 1], 3>;
defm : X86WriteResPairUnsupported<WritePMULLDY>;
defm : X86WriteResPairUnsupported<WritePMULLDZ>;
defm : JWriteResFpuPair<WriteMPSAD,       [JFPU0, JVIMUL], 3, [1, 2], 3>;
defm : X86WriteResPairUnsupported<WriteMPSADY>;
defm : X86WriteResPairUnsupported<WriteMPSADZ>;
defm : JWriteResFpuPair<WritePSADBW,      [JFPU01, JVALU], 2>;
defm : JWriteResFpuPair<WritePSADBWX,     [JFPU01, JVALU], 2>;
defm : X86WriteResPairUnsupported<WritePSADBWY>;
defm : X86WriteResPairUnsupported<WritePSADBWZ>;
defm : JWriteResFpuPair<WritePHMINPOS,    [JFPU01, JVALU], 2>;
defm : JWriteResFpuPair<WriteShuffle,     [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteShuffleX,    [JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WriteShuffleY>;
defm : X86WriteResPairUnsupported<WriteShuffleZ>;
defm : JWriteResFpuPair<WriteVarShuffle,  [JFPU01, JVALU], 2, [1, 1], 1>;
defm : JWriteResFpuPair<WriteVarShuffleX, [JFPU01, JVALU], 2, [1, 4], 3>;
defm : X86WriteResPairUnsupported<WriteVarShuffleY>;
defm : X86WriteResPairUnsupported<WriteVarShuffleZ>;
defm : JWriteResFpuPair<WriteBlend,       [JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WriteBlendY>;
defm : X86WriteResPairUnsupported<WriteBlendZ>;
defm : JWriteResFpuPair<WriteVarBlend,    [JFPU01, JVALU], 2, [4, 4], 3>;
defm : X86WriteResPairUnsupported<WriteVarBlendY>;
defm : X86WriteResPairUnsupported<WriteVarBlendZ>;
defm : JWriteResFpuPair<WriteVecLogic,    [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecLogicX,   [JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WriteVecLogicY>;
defm : X86WriteResPairUnsupported<WriteVecLogicZ>;
defm : JWriteResFpuPair<WriteVecTest,     [JFPU0, JFPA, JALU0], 3>;
defm : JWriteResYMMPair<WriteVecTestY,    [JFPU01, JFPX, JFPA, JALU0], 4, [2, 2, 2, 1], 3>;
defm : X86WriteResPairUnsupported<WriteVecTestZ>;
defm : X86WriteResPairUnsupported<WriteShuffle256>;
defm : X86WriteResPairUnsupported<WriteVarShuffle256>;

////////////////////////////////////////////////////////////////////////////////
// Vector insert/extract operations.
////////////////////////////////////////////////////////////////////////////////

defm : X86WriteRes<WriteVecInsert,      [JFPU01, JVALU], 1, [1,1], 2>;
defm : X86WriteRes<WriteVecInsertLd,    [JFPU01, JVALU, JLAGU], 4, [1,1,1], 1>;
defm : X86WriteRes<WriteVecExtract,     [JFPU0, JFPA, JALU0], 3, [1,1,1], 1>;
defm : X86WriteRes<WriteVecExtractSt,   [JFPU1, JSTC, JSAGU], 3, [1,1,1], 1>;

////////////////////////////////////////////////////////////////////////////////
// SSE42 String instructions.
////////////////////////////////////////////////////////////////////////////////

defm : JWriteResFpuPair<WritePCmpIStrI, [JFPU1, JVALU1, JFPU0, JFPA, JALU0], 7, [2, 2, 1, 1, 1], 3>;
defm : JWriteResFpuPair<WritePCmpIStrM, [JFPU1, JVALU1, JFPU0, JFPA, JALU0], 8, [2, 2, 1, 1, 1], 3>;
defm : JWriteResFpuPair<WritePCmpEStrI, [JFPU1, JSAGU, JLAGU, JVALU, JVALU1, JFPA, JALU0], 14, [1, 2, 2, 6, 4, 1, 1], 9>;
defm : JWriteResFpuPair<WritePCmpEStrM, [JFPU1, JSAGU, JLAGU, JVALU, JVALU1, JFPA, JALU0], 14, [1, 2, 2, 6, 4, 1, 1], 9>;

////////////////////////////////////////////////////////////////////////////////
// MOVMSK Instructions.
////////////////////////////////////////////////////////////////////////////////

def  : WriteRes<WriteFMOVMSK,    [JFPU0, JFPA, JALU0]> { let Latency = 3; }
def  : WriteRes<WriteVecMOVMSK,  [JFPU0, JFPA, JALU0]> { let Latency = 3; }
defm : X86WriteResUnsupported<WriteVecMOVMSKY>;
def  : WriteRes<WriteMMXMOVMSK,  [JFPU0, JFPA, JALU0]> { let Latency = 3; }

////////////////////////////////////////////////////////////////////////////////
// AES Instructions.
////////////////////////////////////////////////////////////////////////////////

defm : JWriteResFpuPair<WriteAESIMC,      [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WriteAESKeyGen,   [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WriteAESDecEnc,   [JFPU01, JVALU, JFPU0, JVIMUL], 3, [1,1,1,1], 2>;

////////////////////////////////////////////////////////////////////////////////
// Horizontal add/sub  instructions.
////////////////////////////////////////////////////////////////////////////////

defm : JWriteResFpuPair<WriteFHAdd,         [JFPU0, JFPA], 4>;            // +1cy latency.
defm : JWriteResYMMPair<WriteFHAddY,        [JFPU0, JFPA], 4, [2,2], 2>;  // +1cy latency.
defm : JWriteResFpuPair<WritePHAdd,         [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WritePHAddX,        [JFPU01, JVALU], 2>;          // +1cy latency.
defm : X86WriteResPairUnsupported<WritePHAddY>;

////////////////////////////////////////////////////////////////////////////////
// Carry-less multiplication instructions.
////////////////////////////////////////////////////////////////////////////////

defm : JWriteResFpuPair<WriteCLMul,       [JFPU0, JVIMUL], 2>;

////////////////////////////////////////////////////////////////////////////////
// SSE4A instructions.
////////////////////////////////////////////////////////////////////////////////

def JWriteINSERTQ: SchedWriteRes<[JFPU01, JVALU]> {
  let Latency = 2;
  let ResourceCycles = [1, 4];
}
def : InstRW<[JWriteINSERTQ], (instrs INSERTQ, INSERTQI)>;

////////////////////////////////////////////////////////////////////////////////
// AVX instructions.
////////////////////////////////////////////////////////////////////////////////

def JWriteVecExtractF128: SchedWriteRes<[JFPU01, JFPX]>;
def : InstRW<[JWriteVecExtractF128], (instrs VEXTRACTF128rr)>;

def JWriteVBROADCASTYLd: SchedWriteRes<[JLAGU, JFPU01, JFPX]> {
  let Latency = 6;
  let ResourceCycles = [1, 2, 4];
  let NumMicroOps = 2;
}
def : InstRW<[JWriteVBROADCASTYLd], (instrs VBROADCASTSDYrm,
                                            VBROADCASTSSYrm,
                                            VBROADCASTF128)>;

def JWriteJVZEROALL: SchedWriteRes<[]> {
  let Latency = 90;
  let NumMicroOps = 73;
}
def : InstRW<[JWriteJVZEROALL], (instrs VZEROALL)>;

def JWriteJVZEROUPPER: SchedWriteRes<[]> {
  let Latency = 46;
  let NumMicroOps = 37;
}
def : InstRW<[JWriteJVZEROUPPER], (instrs VZEROUPPER)>;

///////////////////////////////////////////////////////////////////////////////
//  SSE2/AVX Store Selected Bytes of Double Quadword - (V)MASKMOVDQ
///////////////////////////////////////////////////////////////////////////////

def JWriteMASKMOVDQU: SchedWriteRes<[JFPU0, JFPA, JFPU1, JSTC, JLAGU, JSAGU, JALU01]> {
  let Latency = 34;
  let ResourceCycles = [1, 1, 2, 2, 2, 16, 42];
  let NumMicroOps = 63;
}
def : InstRW<[JWriteMASKMOVDQU], (instrs MASKMOVDQU, MASKMOVDQU64,
                                         VMASKMOVDQU, VMASKMOVDQU64)>;

///////////////////////////////////////////////////////////////////////////////
//  SchedWriteVariant definitions.
///////////////////////////////////////////////////////////////////////////////

def JWriteZeroLatency : SchedWriteRes<[]> {
  let Latency = 0;
}

def JWriteZeroIdiomYmm : SchedWriteRes<[JFPU01, JFPX]> {
  let NumMicroOps = 2;
}

// Certain instructions that use the same register for both source
// operands do not have a real dependency on the previous contents of the
// register, and thus, do not have to wait before completing. They can be
// optimized out at register renaming stage.
// Reference: Section 10.8 of the "Software Optimization Guide for AMD Family
// 15h Processors".
// Reference: Agner's Fog "The microarchitecture of Intel, AMD and VIA CPUs",
// Section 21.8 [Dependency-breaking instructions].

def JWriteZeroIdiom : SchedWriteVariant<[
    SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
    SchedVar<NoSchedPred,                          [WriteALU]>
]>;
def : InstRW<[JWriteZeroIdiom], (instrs SUB32rr, SUB64rr,
                                        XOR32rr, XOR64rr)>;

def JWriteFZeroIdiom : SchedWriteVariant<[
    SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
    SchedVar<NoSchedPred,                          [WriteFLogic]>
]>;
def : InstRW<[JWriteFZeroIdiom], (instrs XORPSrr, VXORPSrr, XORPDrr, VXORPDrr,
                                         ANDNPSrr, VANDNPSrr,
                                         ANDNPDrr, VANDNPDrr)>;

def JWriteFZeroIdiomY : SchedWriteVariant<[
    SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroIdiomYmm]>,
    SchedVar<NoSchedPred,                          [WriteFLogicY]>
]>;
def : InstRW<[JWriteFZeroIdiomY], (instrs VXORPSYrr, VXORPDYrr,
                                          VANDNPSYrr, VANDNPDYrr)>;

def JWriteVZeroIdiomLogic : SchedWriteVariant<[
    SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
    SchedVar<NoSchedPred,                          [WriteVecLogic]>
]>;
def : InstRW<[JWriteVZeroIdiomLogic], (instrs MMX_PXORirr, MMX_PANDNirr)>;

def JWriteVZeroIdiomLogicX : SchedWriteVariant<[
    SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
    SchedVar<NoSchedPred,                          [WriteVecLogicX]>
]>;
def : InstRW<[JWriteVZeroIdiomLogicX], (instrs PXORrr, VPXORrr,
                                               PANDNrr, VPANDNrr)>;

def JWriteVZeroIdiomALU : SchedWriteVariant<[
    SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
    SchedVar<NoSchedPred,                          [WriteVecALU]>
]>;
def : InstRW<[JWriteVZeroIdiomALU], (instrs MMX_PSUBBirr, MMX_PSUBDirr,
                                            MMX_PSUBQirr, MMX_PSUBWirr,
                                            MMX_PSUBSBirr, MMX_PSUBSWirr,
                                            MMX_PSUBUSBirr, MMX_PSUBUSWirr,
                                            MMX_PCMPGTBirr, MMX_PCMPGTDirr,
                                            MMX_PCMPGTWirr)>;

def JWriteVZeroIdiomALUX : SchedWriteVariant<[
    SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
    SchedVar<NoSchedPred,                          [WriteVecALUX]>
]>;
def : InstRW<[JWriteVZeroIdiomALUX], (instrs PSUBBrr, VPSUBBrr,
                                             PSUBDrr, VPSUBDrr,
                                             PSUBQrr, VPSUBQrr,
                                             PSUBWrr, VPSUBWrr,
                                             PSUBSBrr, VPSUBSBrr,
                                             PSUBSWrr, VPSUBSWrr,
                                             PSUBUSBrr, VPSUBUSBrr,
                                             PSUBUSWrr, VPSUBUSWrr,
                                             PCMPGTBrr, VPCMPGTBrr,
                                             PCMPGTDrr, VPCMPGTDrr,
                                             PCMPGTQrr, VPCMPGTQrr,
                                             PCMPGTWrr, VPCMPGTWrr)>;

def JWriteVPERM2F128 : SchedWriteVariant<[
  SchedVar<MCSchedPredicate<ZeroIdiomVPERMPredicate>, [JWriteZeroIdiomYmm]>,
  SchedVar<NoSchedPred,                               [WriteFShuffle256]>
]>;
def : InstRW<[JWriteVPERM2F128], (instrs VPERM2F128rr)>;

// This write is used for slow LEA instructions.
def JWrite3OpsLEA : SchedWriteRes<[JALU1, JSAGU]> {
  let Latency = 2;
}

// On Jaguar, a slow LEA is either a 3Ops LEA (base, index, offset), or an LEA
// with a `Scale` value different than 1.
def JSlowLEAPredicate : MCSchedPredicate<
  CheckAny<[
    // A 3-operand LEA (base, index, offset).
    IsThreeOperandsLEAFn,
    // An LEA with a "Scale" different than 1.
    CheckAll<[
      CheckIsImmOperand<2>,
      CheckNot<CheckImmOperand<2, 1>>
    ]>
  ]>
>;

def JWriteLEA : SchedWriteVariant<[
    SchedVar<JSlowLEAPredicate, [JWrite3OpsLEA]>,
    SchedVar<NoSchedPred,       [WriteLEA]>
]>;

def : InstRW<[JWriteLEA], (instrs LEA32r, LEA64r, LEA64_32r)>;

def JSlowLEA16r : SchedWriteRes<[JALU01]> {
  let Latency = 3;
  let ResourceCycles = [4];
}

def : InstRW<[JSlowLEA16r], (instrs LEA16r)>;

///////////////////////////////////////////////////////////////////////////////
// Dependency breaking instructions.
///////////////////////////////////////////////////////////////////////////////

def : IsZeroIdiomFunction<[
  // GPR Zero-idioms.
  DepBreakingClass<[ SUB32rr, SUB64rr, XOR32rr, XOR64rr ], ZeroIdiomPredicate>,

  // MMX Zero-idioms.
  DepBreakingClass<[
    MMX_PXORirr, MMX_PANDNirr, MMX_PSUBBirr,
    MMX_PSUBDirr, MMX_PSUBQirr, MMX_PSUBWirr,
    MMX_PSUBSBirr, MMX_PSUBSWirr, MMX_PSUBUSBirr, MMX_PSUBUSWirr,
    MMX_PCMPGTBirr, MMX_PCMPGTDirr, MMX_PCMPGTWirr
  ], ZeroIdiomPredicate>,

  // SSE Zero-idioms.
  DepBreakingClass<[
    // fp variants.
    XORPSrr, XORPDrr, ANDNPSrr, ANDNPDrr,

    // int variants.
    PXORrr, PANDNrr,
    PSUBBrr, PSUBWrr, PSUBDrr, PSUBQrr,
    PSUBSBrr, PSUBSWrr, PSUBUSBrr, PSUBUSWrr,
    PCMPGTBrr, PCMPGTDrr, PCMPGTQrr, PCMPGTWrr
  ], ZeroIdiomPredicate>,

  // AVX Zero-idioms.
  DepBreakingClass<[
    // xmm fp variants.
    VXORPSrr, VXORPDrr, VANDNPSrr, VANDNPDrr,

    // xmm int variants.
    VPXORrr, VPANDNrr,
    VPSUBBrr, VPSUBWrr, VPSUBDrr, VPSUBQrr,
    VPSUBSBrr, VPSUBSWrr, VPSUBUSBrr, VPSUBUSWrr,
    VPCMPGTBrr, VPCMPGTWrr, VPCMPGTDrr, VPCMPGTQrr,

    // ymm variants.
    VXORPSYrr, VXORPDYrr, VANDNPSYrr, VANDNPDYrr
  ], ZeroIdiomPredicate>,

  DepBreakingClass<[ VPERM2F128rr ], ZeroIdiomVPERMPredicate>
]>;

def : IsDepBreakingFunction<[
  // GPR
  DepBreakingClass<[ SBB32rr, SBB64rr ], ZeroIdiomPredicate>,
  DepBreakingClass<[ CMP32rr, CMP64rr ], CheckSameRegOperand<0, 1> >,

  // MMX
  DepBreakingClass<[
    MMX_PCMPEQBirr, MMX_PCMPEQDirr, MMX_PCMPEQWirr
  ], ZeroIdiomPredicate>,

  // SSE
  DepBreakingClass<[ 
    PCMPEQBrr, PCMPEQWrr, PCMPEQDrr, PCMPEQQrr
  ], ZeroIdiomPredicate>,

  // AVX
  DepBreakingClass<[
    VPCMPEQBrr, VPCMPEQWrr, VPCMPEQDrr, VPCMPEQQrr
  ], ZeroIdiomPredicate>
]>;

def : IsOptimizableRegisterMove<[
  InstructionEquivalenceClass<[
    // GPR variants.
    MOV32rr, MOV64rr,

    // MMX variants.
    MMX_MOVQ64rr,

    // SSE variants.
    MOVAPSrr, MOVUPSrr,
    MOVAPDrr, MOVUPDrr,
    MOVDQArr, MOVDQUrr,

    // AVX variants.
    VMOVAPSrr, VMOVUPSrr,
    VMOVAPDrr, VMOVUPDrr,
    VMOVDQArr, VMOVDQUrr
  ], TruePred >
]>;

} // SchedModel