//===- VPlanSLP.cpp - SLP Analysis based on VPlan -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// This file implements SLP analysis based on VPlan. The analysis is based on
/// the ideas described in
///
/// Look-ahead SLP: auto-vectorization in the presence of commutative
/// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha,
/// LuÃs F. W. Góes
///
//===----------------------------------------------------------------------===//
#include "VPlan.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <cassert>
#include <iterator>
#include <string>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "vplan-slp"
// Number of levels to look ahead when re-ordering multi node operands.
static unsigned LookaheadMaxDepth = 5;
VPInstruction *VPlanSlp::markFailed() {
// FIXME: Currently this is used to signal we hit instructions we cannot
// trivially SLP'ize.
CompletelySLP = false;
return nullptr;
}
void VPlanSlp::addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New) {
if (all_of(Operands, [](VPValue *V) {
return cast<VPInstruction>(V)->getUnderlyingInstr();
})) {
unsigned BundleSize = 0;
for (VPValue *V : Operands) {
Type *T = cast<VPInstruction>(V)->getUnderlyingInstr()->getType();
assert(!T->isVectorTy() && "Only scalar types supported for now");
BundleSize += T->getScalarSizeInBits();
}
WidestBundleBits = std::max(WidestBundleBits, BundleSize);
}
auto Res = BundleToCombined.try_emplace(to_vector<4>(Operands), New);
assert(Res.second &&
"Already created a combined instruction for the operand bundle");
(void)Res;
}
bool VPlanSlp::areVectorizable(ArrayRef<VPValue *> Operands) const {
// Currently we only support VPInstructions.
if (!all_of(Operands, [](VPValue *Op) {
return Op && isa<VPInstruction>(Op) &&
cast<VPInstruction>(Op)->getUnderlyingInstr();
})) {
LLVM_DEBUG(dbgs() << "VPSLP: not all operands are VPInstructions\n");
return false;
}
// Check if opcodes and type width agree for all instructions in the bundle.
// FIXME: Differing widths/opcodes can be handled by inserting additional
// instructions.
// FIXME: Deal with non-primitive types.
const Instruction *OriginalInstr =
cast<VPInstruction>(Operands[0])->getUnderlyingInstr();
unsigned Opcode = OriginalInstr->getOpcode();
unsigned Width = OriginalInstr->getType()->getPrimitiveSizeInBits();
if (!all_of(Operands, [Opcode, Width](VPValue *Op) {
const Instruction *I = cast<VPInstruction>(Op)->getUnderlyingInstr();
return I->getOpcode() == Opcode &&
I->getType()->getPrimitiveSizeInBits() == Width;
})) {
LLVM_DEBUG(dbgs() << "VPSLP: Opcodes do not agree \n");
return false;
}
// For now, all operands must be defined in the same BB.
if (any_of(Operands, [this](VPValue *Op) {
return cast<VPInstruction>(Op)->getParent() != &this->BB;
})) {
LLVM_DEBUG(dbgs() << "VPSLP: operands in different BBs\n");
return false;
}
if (any_of(Operands,
[](VPValue *Op) { return Op->hasMoreThanOneUniqueUser(); })) {
LLVM_DEBUG(dbgs() << "VPSLP: Some operands have multiple users.\n");
return false;
}
// For loads, check that there are no instructions writing to memory in
// between them.
// TODO: we only have to forbid instructions writing to memory that could
// interfere with any of the loads in the bundle
if (Opcode == Instruction::Load) {
unsigned LoadsSeen = 0;
VPBasicBlock *Parent = cast<VPInstruction>(Operands[0])->getParent();
for (auto &I : *Parent) {
auto *VPI = cast<VPInstruction>(&I);
if (VPI->getOpcode() == Instruction::Load &&
std::find(Operands.begin(), Operands.end(), VPI) != Operands.end())
LoadsSeen++;
if (LoadsSeen == Operands.size())
break;
if (LoadsSeen > 0 && VPI->mayWriteToMemory()) {
LLVM_DEBUG(
dbgs() << "VPSLP: instruction modifying memory between loads\n");
return false;
}
}
if (!all_of(Operands, [](VPValue *Op) {
return cast<LoadInst>(cast<VPInstruction>(Op)->getUnderlyingInstr())
->isSimple();
})) {
LLVM_DEBUG(dbgs() << "VPSLP: only simple loads are supported.\n");
return false;
}
}
if (Opcode == Instruction::Store)
if (!all_of(Operands, [](VPValue *Op) {
return cast<StoreInst>(cast<VPInstruction>(Op)->getUnderlyingInstr())
->isSimple();
})) {
LLVM_DEBUG(dbgs() << "VPSLP: only simple stores are supported.\n");
return false;
}
return true;
}
static SmallVector<VPValue *, 4> getOperands(ArrayRef<VPValue *> Values,
unsigned OperandIndex) {
SmallVector<VPValue *, 4> Operands;
for (VPValue *V : Values) {
auto *U = cast<VPUser>(V);
Operands.push_back(U->getOperand(OperandIndex));
}
return Operands;
}
static bool areCommutative(ArrayRef<VPValue *> Values) {
return Instruction::isCommutative(
cast<VPInstruction>(Values[0])->getOpcode());
}
static SmallVector<SmallVector<VPValue *, 4>, 4>
getOperands(ArrayRef<VPValue *> Values) {
SmallVector<SmallVector<VPValue *, 4>, 4> Result;
auto *VPI = cast<VPInstruction>(Values[0]);
switch (VPI->getOpcode()) {
case Instruction::Load:
llvm_unreachable("Loads terminate a tree, no need to get operands");
case Instruction::Store:
Result.push_back(getOperands(Values, 0));
break;
default:
for (unsigned I = 0, NumOps = VPI->getNumOperands(); I < NumOps; ++I)
Result.push_back(getOperands(Values, I));
break;
}
return Result;
}
/// Returns the opcode of Values or ~0 if they do not all agree.
static Optional<unsigned> getOpcode(ArrayRef<VPValue *> Values) {
unsigned Opcode = cast<VPInstruction>(Values[0])->getOpcode();
if (any_of(Values, [Opcode](VPValue *V) {
return cast<VPInstruction>(V)->getOpcode() != Opcode;
}))
return None;
return {Opcode};
}
/// Returns true if A and B access sequential memory if they are loads or
/// stores or if they have identical opcodes otherwise.
static bool areConsecutiveOrMatch(VPInstruction *A, VPInstruction *B,
VPInterleavedAccessInfo &IAI) {
if (A->getOpcode() != B->getOpcode())
return false;
if (A->getOpcode() != Instruction::Load &&
A->getOpcode() != Instruction::Store)
return true;
auto *GA = IAI.getInterleaveGroup(A);
auto *GB = IAI.getInterleaveGroup(B);
return GA && GB && GA == GB && GA->getIndex(A) + 1 == GB->getIndex(B);
}
/// Implements getLAScore from Listing 7 in the paper.
/// Traverses and compares operands of V1 and V2 to MaxLevel.
static unsigned getLAScore(VPValue *V1, VPValue *V2, unsigned MaxLevel,
VPInterleavedAccessInfo &IAI) {
if (!isa<VPInstruction>(V1) || !isa<VPInstruction>(V2))
return 0;
if (MaxLevel == 0)
return (unsigned)areConsecutiveOrMatch(cast<VPInstruction>(V1),
cast<VPInstruction>(V2), IAI);
unsigned Score = 0;
for (unsigned I = 0, EV1 = cast<VPUser>(V1)->getNumOperands(); I < EV1; ++I)
for (unsigned J = 0, EV2 = cast<VPUser>(V2)->getNumOperands(); J < EV2; ++J)
Score += getLAScore(cast<VPUser>(V1)->getOperand(I),
cast<VPUser>(V2)->getOperand(J), MaxLevel - 1, IAI);
return Score;
}
std::pair<VPlanSlp::OpMode, VPValue *>
VPlanSlp::getBest(OpMode Mode, VPValue *Last,
SmallPtrSetImpl<VPValue *> &Candidates,
VPInterleavedAccessInfo &IAI) {
assert((Mode == OpMode::Load || Mode == OpMode::Opcode) &&
"Currently we only handle load and commutative opcodes");
LLVM_DEBUG(dbgs() << " getBest\n");
SmallVector<VPValue *, 4> BestCandidates;
LLVM_DEBUG(dbgs() << " Candidates for "
<< *cast<VPInstruction>(Last)->getUnderlyingInstr() << " ");
for (auto *Candidate : Candidates) {
auto *LastI = cast<VPInstruction>(Last);
auto *CandidateI = cast<VPInstruction>(Candidate);
if (areConsecutiveOrMatch(LastI, CandidateI, IAI)) {
LLVM_DEBUG(dbgs() << *cast<VPInstruction>(Candidate)->getUnderlyingInstr()
<< " ");
BestCandidates.push_back(Candidate);
}
}
LLVM_DEBUG(dbgs() << "\n");
if (BestCandidates.empty())
return {OpMode::Failed, nullptr};
if (BestCandidates.size() == 1)
return {Mode, BestCandidates[0]};
VPValue *Best = nullptr;
unsigned BestScore = 0;
for (unsigned Depth = 1; Depth < LookaheadMaxDepth; Depth++) {
unsigned PrevScore = ~0u;
bool AllSame = true;
// FIXME: Avoid visiting the same operands multiple times.
for (auto *Candidate : BestCandidates) {
unsigned Score = getLAScore(Last, Candidate, Depth, IAI);
if (PrevScore == ~0u)
PrevScore = Score;
if (PrevScore != Score)
AllSame = false;
PrevScore = Score;
if (Score > BestScore) {
BestScore = Score;
Best = Candidate;
}
}
if (!AllSame)
break;
}
LLVM_DEBUG(dbgs() << "Found best "
<< *cast<VPInstruction>(Best)->getUnderlyingInstr()
<< "\n");
Candidates.erase(Best);
return {Mode, Best};
}
SmallVector<VPlanSlp::MultiNodeOpTy, 4> VPlanSlp::reorderMultiNodeOps() {
SmallVector<MultiNodeOpTy, 4> FinalOrder;
SmallVector<OpMode, 4> Mode;
FinalOrder.reserve(MultiNodeOps.size());
Mode.reserve(MultiNodeOps.size());
LLVM_DEBUG(dbgs() << "Reordering multinode\n");
for (auto &Operands : MultiNodeOps) {
FinalOrder.push_back({Operands.first, {Operands.second[0]}});
if (cast<VPInstruction>(Operands.second[0])->getOpcode() ==
Instruction::Load)
Mode.push_back(OpMode::Load);
else
Mode.push_back(OpMode::Opcode);
}
for (unsigned Lane = 1, E = MultiNodeOps[0].second.size(); Lane < E; ++Lane) {
LLVM_DEBUG(dbgs() << " Finding best value for lane " << Lane << "\n");
SmallPtrSet<VPValue *, 4> Candidates;
LLVM_DEBUG(dbgs() << " Candidates ");
for (auto Ops : MultiNodeOps) {
LLVM_DEBUG(
dbgs() << *cast<VPInstruction>(Ops.second[Lane])->getUnderlyingInstr()
<< " ");
Candidates.insert(Ops.second[Lane]);
}
LLVM_DEBUG(dbgs() << "\n");
for (unsigned Op = 0, E = MultiNodeOps.size(); Op < E; ++Op) {
LLVM_DEBUG(dbgs() << " Checking " << Op << "\n");
if (Mode[Op] == OpMode::Failed)
continue;
VPValue *Last = FinalOrder[Op].second[Lane - 1];
std::pair<OpMode, VPValue *> Res =
getBest(Mode[Op], Last, Candidates, IAI);
if (Res.second)
FinalOrder[Op].second.push_back(Res.second);
else
// TODO: handle this case
FinalOrder[Op].second.push_back(markFailed());
}
}
return FinalOrder;
}
void VPlanSlp::dumpBundle(ArrayRef<VPValue *> Values) {
dbgs() << " Ops: ";
for (auto Op : Values) {
if (auto *VPInstr = cast_or_null<VPInstruction>(Op))
if (auto *Instr = VPInstr->getUnderlyingInstr()) {
dbgs() << *Instr << " | ";
continue;
}
dbgs() << " nullptr | ";
}
dbgs() << "\n";
}
VPInstruction *VPlanSlp::buildGraph(ArrayRef<VPValue *> Values) {
assert(!Values.empty() && "Need some operands!");
// If we already visited this instruction bundle, re-use the existing node
auto I = BundleToCombined.find(to_vector<4>(Values));
if (I != BundleToCombined.end()) {
#ifndef NDEBUG
// Check that the resulting graph is a tree. If we re-use a node, this means
// its values have multiple users. We only allow this, if all users of each
// value are the same instruction.
for (auto *V : Values) {
auto UI = V->user_begin();
auto *FirstUser = *UI++;
while (UI != V->user_end()) {
assert(*UI == FirstUser && "Currently we only support SLP trees.");
UI++;
}
}
#endif
return I->second;
}
// Dump inputs
LLVM_DEBUG({
dbgs() << "buildGraph: ";
dumpBundle(Values);
});
if (!areVectorizable(Values))
return markFailed();
assert(getOpcode(Values) && "Opcodes for all values must match");
unsigned ValuesOpcode = getOpcode(Values).getValue();
SmallVector<VPValue *, 4> CombinedOperands;
if (areCommutative(Values)) {
bool MultiNodeRoot = !MultiNodeActive;
MultiNodeActive = true;
for (auto &Operands : getOperands(Values)) {
LLVM_DEBUG({
dbgs() << " Visiting Commutative";
dumpBundle(Operands);
});
auto OperandsOpcode = getOpcode(Operands);
if (OperandsOpcode && OperandsOpcode == getOpcode(Values)) {
LLVM_DEBUG(dbgs() << " Same opcode, continue building\n");
CombinedOperands.push_back(buildGraph(Operands));
} else {
LLVM_DEBUG(dbgs() << " Adding multinode Ops\n");
// Create dummy VPInstruction, which will we replace later by the
// re-ordered operand.
VPInstruction *Op = new VPInstruction(0, {});
CombinedOperands.push_back(Op);
MultiNodeOps.emplace_back(Op, Operands);
}
}
if (MultiNodeRoot) {
LLVM_DEBUG(dbgs() << "Reorder \n");
MultiNodeActive = false;
auto FinalOrder = reorderMultiNodeOps();
MultiNodeOps.clear();
for (auto &Ops : FinalOrder) {
VPInstruction *NewOp = buildGraph(Ops.second);
Ops.first->replaceAllUsesWith(NewOp);
for (unsigned i = 0; i < CombinedOperands.size(); i++)
if (CombinedOperands[i] == Ops.first)
CombinedOperands[i] = NewOp;
delete Ops.first;
Ops.first = NewOp;
}
LLVM_DEBUG(dbgs() << "Found final order\n");
}
} else {
LLVM_DEBUG(dbgs() << " NonCommuntative\n");
if (ValuesOpcode == Instruction::Load)
for (VPValue *V : Values)
CombinedOperands.push_back(cast<VPInstruction>(V)->getOperand(0));
else
for (auto &Operands : getOperands(Values))
CombinedOperands.push_back(buildGraph(Operands));
}
unsigned Opcode;
switch (ValuesOpcode) {
case Instruction::Load:
Opcode = VPInstruction::SLPLoad;
break;
case Instruction::Store:
Opcode = VPInstruction::SLPStore;
break;
default:
Opcode = ValuesOpcode;
break;
}
if (!CompletelySLP)
return markFailed();
assert(CombinedOperands.size() > 0 && "Need more some operands");
auto *VPI = new VPInstruction(Opcode, CombinedOperands);
VPI->setUnderlyingInstr(cast<VPInstruction>(Values[0])->getUnderlyingInstr());
LLVM_DEBUG(dbgs() << "Create VPInstruction "; VPI->print(dbgs());
cast<VPInstruction>(Values[0])->print(dbgs()); dbgs() << "\n");
addCombined(Values, VPI);
return VPI;
}