/*
* kmp_gsupport.cpp
*/
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "kmp.h"
#include "kmp_atomic.h"
#if OMPT_SUPPORT
#include "ompt-specific.h"
#endif
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
#define MKLOC(loc, routine) \
static ident_t loc = {0, KMP_IDENT_KMPC, 0, 0, ";unknown;unknown;0;0;;"};
#include "kmp_ftn_os.h"
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_BARRIER)(void) {
int gtid = __kmp_entry_gtid();
MKLOC(loc, "GOMP_barrier");
KA_TRACE(20, ("GOMP_barrier: T#%d\n", gtid));
#if OMPT_SUPPORT && OMPT_OPTIONAL
ompt_frame_t *ompt_frame;
if (ompt_enabled.enabled) {
__ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
OMPT_STORE_RETURN_ADDRESS(gtid);
}
#endif
__kmpc_barrier(&loc, gtid);
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled) {
ompt_frame->enter_frame = ompt_data_none;
}
#endif
}
// Mutual exclusion
// The symbol that icc/ifort generates for unnamed for unnamed critical sections
// - .gomp_critical_user_ - is defined using .comm in any objects reference it.
// We can't reference it directly here in C code, as the symbol contains a ".".
//
// The RTL contains an assembly language definition of .gomp_critical_user_
// with another symbol __kmp_unnamed_critical_addr initialized with it's
// address.
extern kmp_critical_name *__kmp_unnamed_critical_addr;
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_CRITICAL_START)(void) {
int gtid = __kmp_entry_gtid();
MKLOC(loc, "GOMP_critical_start");
KA_TRACE(20, ("GOMP_critical_start: T#%d\n", gtid));
#if OMPT_SUPPORT && OMPT_OPTIONAL
OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
__kmpc_critical(&loc, gtid, __kmp_unnamed_critical_addr);
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_CRITICAL_END)(void) {
int gtid = __kmp_get_gtid();
MKLOC(loc, "GOMP_critical_end");
KA_TRACE(20, ("GOMP_critical_end: T#%d\n", gtid));
#if OMPT_SUPPORT && OMPT_OPTIONAL
OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
__kmpc_end_critical(&loc, gtid, __kmp_unnamed_critical_addr);
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_CRITICAL_NAME_START)(void **pptr) {
int gtid = __kmp_entry_gtid();
MKLOC(loc, "GOMP_critical_name_start");
KA_TRACE(20, ("GOMP_critical_name_start: T#%d\n", gtid));
__kmpc_critical(&loc, gtid, (kmp_critical_name *)pptr);
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_CRITICAL_NAME_END)(void **pptr) {
int gtid = __kmp_get_gtid();
MKLOC(loc, "GOMP_critical_name_end");
KA_TRACE(20, ("GOMP_critical_name_end: T#%d\n", gtid));
__kmpc_end_critical(&loc, gtid, (kmp_critical_name *)pptr);
}
// The Gnu codegen tries to use locked operations to perform atomic updates
// inline. If it can't, then it calls GOMP_atomic_start() before performing
// the update and GOMP_atomic_end() afterward, regardless of the data type.
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_ATOMIC_START)(void) {
int gtid = __kmp_entry_gtid();
KA_TRACE(20, ("GOMP_atomic_start: T#%d\n", gtid));
#if OMPT_SUPPORT
__ompt_thread_assign_wait_id(0);
#endif
__kmp_acquire_atomic_lock(&__kmp_atomic_lock, gtid);
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_ATOMIC_END)(void) {
int gtid = __kmp_get_gtid();
KA_TRACE(20, ("GOMP_atomic_end: T#%d\n", gtid));
__kmp_release_atomic_lock(&__kmp_atomic_lock, gtid);
}
int KMP_EXPAND_NAME(KMP_API_NAME_GOMP_SINGLE_START)(void) {
int gtid = __kmp_entry_gtid();
MKLOC(loc, "GOMP_single_start");
KA_TRACE(20, ("GOMP_single_start: T#%d\n", gtid));
if (!TCR_4(__kmp_init_parallel))
__kmp_parallel_initialize();
__kmp_resume_if_soft_paused();
// 3rd parameter == FALSE prevents kmp_enter_single from pushing a
// workshare when USE_CHECKS is defined. We need to avoid the push,
// as there is no corresponding GOMP_single_end() call.
kmp_int32 rc = __kmp_enter_single(gtid, &loc, FALSE);
#if OMPT_SUPPORT && OMPT_OPTIONAL
kmp_info_t *this_thr = __kmp_threads[gtid];
kmp_team_t *team = this_thr->th.th_team;
int tid = __kmp_tid_from_gtid(gtid);
if (ompt_enabled.enabled) {
if (rc) {
if (ompt_enabled.ompt_callback_work) {
ompt_callbacks.ompt_callback(ompt_callback_work)(
ompt_work_single_executor, ompt_scope_begin,
&(team->t.ompt_team_info.parallel_data),
&(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data),
1, OMPT_GET_RETURN_ADDRESS(0));
}
} else {
if (ompt_enabled.ompt_callback_work) {
ompt_callbacks.ompt_callback(ompt_callback_work)(
ompt_work_single_other, ompt_scope_begin,
&(team->t.ompt_team_info.parallel_data),
&(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data),
1, OMPT_GET_RETURN_ADDRESS(0));
ompt_callbacks.ompt_callback(ompt_callback_work)(
ompt_work_single_other, ompt_scope_end,
&(team->t.ompt_team_info.parallel_data),
&(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data),
1, OMPT_GET_RETURN_ADDRESS(0));
}
}
}
#endif
return rc;
}
void *KMP_EXPAND_NAME(KMP_API_NAME_GOMP_SINGLE_COPY_START)(void) {
void *retval;
int gtid = __kmp_entry_gtid();
MKLOC(loc, "GOMP_single_copy_start");
KA_TRACE(20, ("GOMP_single_copy_start: T#%d\n", gtid));
if (!TCR_4(__kmp_init_parallel))
__kmp_parallel_initialize();
__kmp_resume_if_soft_paused();
// If this is the first thread to enter, return NULL. The generated code will
// then call GOMP_single_copy_end() for this thread only, with the
// copyprivate data pointer as an argument.
if (__kmp_enter_single(gtid, &loc, FALSE))
return NULL;
// Wait for the first thread to set the copyprivate data pointer,
// and for all other threads to reach this point.
#if OMPT_SUPPORT && OMPT_OPTIONAL
ompt_frame_t *ompt_frame;
if (ompt_enabled.enabled) {
__ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
OMPT_STORE_RETURN_ADDRESS(gtid);
}
#endif
__kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL);
// Retrieve the value of the copyprivate data point, and wait for all
// threads to do likewise, then return.
retval = __kmp_team_from_gtid(gtid)->t.t_copypriv_data;
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled) {
OMPT_STORE_RETURN_ADDRESS(gtid);
}
#endif
__kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL);
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled) {
ompt_frame->enter_frame = ompt_data_none;
}
#endif
return retval;
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_SINGLE_COPY_END)(void *data) {
int gtid = __kmp_get_gtid();
KA_TRACE(20, ("GOMP_single_copy_end: T#%d\n", gtid));
// Set the copyprivate data pointer fo the team, then hit the barrier so that
// the other threads will continue on and read it. Hit another barrier before
// continuing, so that the know that the copyprivate data pointer has been
// propagated to all threads before trying to reuse the t_copypriv_data field.
__kmp_team_from_gtid(gtid)->t.t_copypriv_data = data;
#if OMPT_SUPPORT && OMPT_OPTIONAL
ompt_frame_t *ompt_frame;
if (ompt_enabled.enabled) {
__ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
OMPT_STORE_RETURN_ADDRESS(gtid);
}
#endif
__kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL);
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled) {
OMPT_STORE_RETURN_ADDRESS(gtid);
}
#endif
__kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL);
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled) {
ompt_frame->enter_frame = ompt_data_none;
}
#endif
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_ORDERED_START)(void) {
int gtid = __kmp_entry_gtid();
MKLOC(loc, "GOMP_ordered_start");
KA_TRACE(20, ("GOMP_ordered_start: T#%d\n", gtid));
#if OMPT_SUPPORT && OMPT_OPTIONAL
OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
__kmpc_ordered(&loc, gtid);
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_ORDERED_END)(void) {
int gtid = __kmp_get_gtid();
MKLOC(loc, "GOMP_ordered_end");
KA_TRACE(20, ("GOMP_ordered_start: T#%d\n", gtid));
#if OMPT_SUPPORT && OMPT_OPTIONAL
OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
__kmpc_end_ordered(&loc, gtid);
}
// Dispatch macro defs
//
// They come in two flavors: 64-bit unsigned, and either 32-bit signed
// (IA-32 architecture) or 64-bit signed (Intel(R) 64).
#if KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_MIPS
#define KMP_DISPATCH_INIT __kmp_aux_dispatch_init_4
#define KMP_DISPATCH_FINI_CHUNK __kmp_aux_dispatch_fini_chunk_4
#define KMP_DISPATCH_NEXT __kmpc_dispatch_next_4
#else
#define KMP_DISPATCH_INIT __kmp_aux_dispatch_init_8
#define KMP_DISPATCH_FINI_CHUNK __kmp_aux_dispatch_fini_chunk_8
#define KMP_DISPATCH_NEXT __kmpc_dispatch_next_8
#endif /* KMP_ARCH_X86 */
#define KMP_DISPATCH_INIT_ULL __kmp_aux_dispatch_init_8u
#define KMP_DISPATCH_FINI_CHUNK_ULL __kmp_aux_dispatch_fini_chunk_8u
#define KMP_DISPATCH_NEXT_ULL __kmpc_dispatch_next_8u
// The parallel construct
#ifndef KMP_DEBUG
static
#endif /* KMP_DEBUG */
void
__kmp_GOMP_microtask_wrapper(int *gtid, int *npr, void (*task)(void *),
void *data) {
#if OMPT_SUPPORT
kmp_info_t *thr;
ompt_frame_t *ompt_frame;
ompt_state_t enclosing_state;
if (ompt_enabled.enabled) {
// get pointer to thread data structure
thr = __kmp_threads[*gtid];
// save enclosing task state; set current state for task
enclosing_state = thr->th.ompt_thread_info.state;
thr->th.ompt_thread_info.state = ompt_state_work_parallel;
// set task frame
__ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
ompt_frame->exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
}
#endif
task(data);
#if OMPT_SUPPORT
if (ompt_enabled.enabled) {
// clear task frame
ompt_frame->exit_frame = ompt_data_none;
// restore enclosing state
thr->th.ompt_thread_info.state = enclosing_state;
}
#endif
}
#ifndef KMP_DEBUG
static
#endif /* KMP_DEBUG */
void
__kmp_GOMP_parallel_microtask_wrapper(int *gtid, int *npr,
void (*task)(void *), void *data,
unsigned num_threads, ident_t *loc,
enum sched_type schedule, long start,
long end, long incr,
long chunk_size) {
// Initialize the loop worksharing construct.
KMP_DISPATCH_INIT(loc, *gtid, schedule, start, end, incr, chunk_size,
schedule != kmp_sch_static);
#if OMPT_SUPPORT
kmp_info_t *thr;
ompt_frame_t *ompt_frame;
ompt_state_t enclosing_state;
if (ompt_enabled.enabled) {
thr = __kmp_threads[*gtid];
// save enclosing task state; set current state for task
enclosing_state = thr->th.ompt_thread_info.state;
thr->th.ompt_thread_info.state = ompt_state_work_parallel;
// set task frame
__ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
ompt_frame->exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
}
#endif
// Now invoke the microtask.
task(data);
#if OMPT_SUPPORT
if (ompt_enabled.enabled) {
// clear task frame
ompt_frame->exit_frame = ompt_data_none;
// reset enclosing state
thr->th.ompt_thread_info.state = enclosing_state;
}
#endif
}
#ifndef KMP_DEBUG
static
#endif /* KMP_DEBUG */
void
__kmp_GOMP_fork_call(ident_t *loc, int gtid, void (*unwrapped_task)(void *),
microtask_t wrapper, int argc, ...) {
int rc;
kmp_info_t *thr = __kmp_threads[gtid];
kmp_team_t *team = thr->th.th_team;
int tid = __kmp_tid_from_gtid(gtid);
va_list ap;
va_start(ap, argc);
rc = __kmp_fork_call(loc, gtid, fork_context_gnu, argc, wrapper,
__kmp_invoke_task_func, kmp_va_addr_of(ap));
va_end(ap);
if (rc) {
__kmp_run_before_invoked_task(gtid, tid, thr, team);
}
#if OMPT_SUPPORT
int ompt_team_size;
if (ompt_enabled.enabled) {
ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);
ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
// implicit task callback
if (ompt_enabled.ompt_callback_implicit_task) {
ompt_team_size = __kmp_team_from_gtid(gtid)->t.t_nproc;
ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
ompt_scope_begin, &(team_info->parallel_data),
&(task_info->task_data), ompt_team_size, __kmp_tid_from_gtid(gtid), ompt_task_implicit); // TODO: Can this be ompt_task_initial?
task_info->thread_num = __kmp_tid_from_gtid(gtid);
}
thr->th.ompt_thread_info.state = ompt_state_work_parallel;
}
#endif
}
static void __kmp_GOMP_serialized_parallel(ident_t *loc, kmp_int32 gtid,
void (*task)(void *)) {
#if OMPT_SUPPORT
OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
__kmp_serialized_parallel(loc, gtid);
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_START)(void (*task)(void *),
void *data,
unsigned num_threads) {
int gtid = __kmp_entry_gtid();
#if OMPT_SUPPORT
ompt_frame_t *parent_frame, *frame;
if (ompt_enabled.enabled) {
__ompt_get_task_info_internal(0, NULL, NULL, &parent_frame, NULL, NULL);
parent_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
OMPT_STORE_RETURN_ADDRESS(gtid);
}
#endif
MKLOC(loc, "GOMP_parallel_start");
KA_TRACE(20, ("GOMP_parallel_start: T#%d\n", gtid));
if (__kmpc_ok_to_fork(&loc) && (num_threads != 1)) {
if (num_threads != 0) {
__kmp_push_num_threads(&loc, gtid, num_threads);
}
__kmp_GOMP_fork_call(&loc, gtid, task,
(microtask_t)__kmp_GOMP_microtask_wrapper, 2, task,
data);
} else {
__kmp_GOMP_serialized_parallel(&loc, gtid, task);
}
#if OMPT_SUPPORT
if (ompt_enabled.enabled) {
__ompt_get_task_info_internal(0, NULL, NULL, &frame, NULL, NULL);
frame->exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
}
#endif
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_END)(void) {
int gtid = __kmp_get_gtid();
kmp_info_t *thr;
thr = __kmp_threads[gtid];
MKLOC(loc, "GOMP_parallel_end");
KA_TRACE(20, ("GOMP_parallel_end: T#%d\n", gtid));
if (!thr->th.th_team->t.t_serialized) {
__kmp_run_after_invoked_task(gtid, __kmp_tid_from_gtid(gtid), thr,
thr->th.th_team);
#if OMPT_SUPPORT
if (ompt_enabled.enabled) {
// Implicit task is finished here, in the barrier we might schedule
// deferred tasks,
// these don't see the implicit task on the stack
OMPT_CUR_TASK_INFO(thr)->frame.exit_frame = ompt_data_none;
}
#endif
__kmp_join_call(&loc, gtid
#if OMPT_SUPPORT
,
fork_context_gnu
#endif
);
} else {
__kmpc_end_serialized_parallel(&loc, gtid);
}
}
// Loop worksharing constructs
// The Gnu codegen passes in an exclusive upper bound for the overall range,
// but the libguide dispatch code expects an inclusive upper bound, hence the
// "end - incr" 5th argument to KMP_DISPATCH_INIT (and the " ub - str" 11th
// argument to __kmp_GOMP_fork_call).
//
// Conversely, KMP_DISPATCH_NEXT returns and inclusive upper bound in *p_ub,
// but the Gnu codegen expects an exclusive upper bound, so the adjustment
// "*p_ub += stride" compensates for the discrepancy.
//
// Correction: the gnu codegen always adjusts the upper bound by +-1, not the
// stride value. We adjust the dispatch parameters accordingly (by +-1), but
// we still adjust p_ub by the actual stride value.
//
// The "runtime" versions do not take a chunk_sz parameter.
//
// The profile lib cannot support construct checking of unordered loops that
// are predetermined by the compiler to be statically scheduled, as the gcc
// codegen will not always emit calls to GOMP_loop_static_next() to get the
// next iteration. Instead, it emits inline code to call omp_get_thread_num()
// num and calculate the iteration space using the result. It doesn't do this
// with ordered static loop, so they can be checked.
#if OMPT_SUPPORT
#define IF_OMPT_SUPPORT(code) code
#else
#define IF_OMPT_SUPPORT(code)
#endif
#define LOOP_START(func, schedule) \
int func(long lb, long ub, long str, long chunk_sz, long *p_lb, \
long *p_ub) { \
int status; \
long stride; \
int gtid = __kmp_entry_gtid(); \
MKLOC(loc, KMP_STR(func)); \
KA_TRACE( \
20, \
(KMP_STR( \
func) ": T#%d, lb 0x%lx, ub 0x%lx, str 0x%lx, chunk_sz 0x%lx\n", \
gtid, lb, ub, str, chunk_sz)); \
\
if ((str > 0) ? (lb < ub) : (lb > ub)) { \
IF_OMPT_SUPPORT(OMPT_STORE_RETURN_ADDRESS(gtid);) \
KMP_DISPATCH_INIT(&loc, gtid, (schedule), lb, \
(str > 0) ? (ub - 1) : (ub + 1), str, chunk_sz, \
(schedule) != kmp_sch_static); \
IF_OMPT_SUPPORT(OMPT_STORE_RETURN_ADDRESS(gtid);) \
status = KMP_DISPATCH_NEXT(&loc, gtid, NULL, (kmp_int *)p_lb, \
(kmp_int *)p_ub, (kmp_int *)&stride); \
if (status) { \
KMP_DEBUG_ASSERT(stride == str); \
*p_ub += (str > 0) ? 1 : -1; \
} \
} else { \
status = 0; \
} \
\
KA_TRACE( \
20, \
(KMP_STR( \
func) " exit: T#%d, *p_lb 0x%lx, *p_ub 0x%lx, returning %d\n", \
gtid, *p_lb, *p_ub, status)); \
return status; \
}
#define LOOP_RUNTIME_START(func, schedule) \
int func(long lb, long ub, long str, long *p_lb, long *p_ub) { \
int status; \
long stride; \
long chunk_sz = 0; \
int gtid = __kmp_entry_gtid(); \
MKLOC(loc, KMP_STR(func)); \
KA_TRACE( \
20, \
(KMP_STR(func) ": T#%d, lb 0x%lx, ub 0x%lx, str 0x%lx, chunk_sz %d\n", \
gtid, lb, ub, str, chunk_sz)); \
\
if ((str > 0) ? (lb < ub) : (lb > ub)) { \
IF_OMPT_SUPPORT(OMPT_STORE_RETURN_ADDRESS(gtid);) \
KMP_DISPATCH_INIT(&loc, gtid, (schedule), lb, \
(str > 0) ? (ub - 1) : (ub + 1), str, chunk_sz, TRUE); \
IF_OMPT_SUPPORT(OMPT_STORE_RETURN_ADDRESS(gtid);) \
status = KMP_DISPATCH_NEXT(&loc, gtid, NULL, (kmp_int *)p_lb, \
(kmp_int *)p_ub, (kmp_int *)&stride); \
if (status) { \
KMP_DEBUG_ASSERT(stride == str); \
*p_ub += (str > 0) ? 1 : -1; \
} \
} else { \
status = 0; \
} \
\
KA_TRACE( \
20, \
(KMP_STR( \
func) " exit: T#%d, *p_lb 0x%lx, *p_ub 0x%lx, returning %d\n", \
gtid, *p_lb, *p_ub, status)); \
return status; \
}
#define KMP_DOACROSS_FINI(status, gtid) \
if (!status && __kmp_threads[gtid]->th.th_dispatch->th_doacross_flags) { \
__kmpc_doacross_fini(NULL, gtid); \
}
#define LOOP_NEXT(func, fini_code) \
int func(long *p_lb, long *p_ub) { \
int status; \
long stride; \
int gtid = __kmp_get_gtid(); \
MKLOC(loc, KMP_STR(func)); \
KA_TRACE(20, (KMP_STR(func) ": T#%d\n", gtid)); \
\
IF_OMPT_SUPPORT(OMPT_STORE_RETURN_ADDRESS(gtid);) \
fini_code status = KMP_DISPATCH_NEXT(&loc, gtid, NULL, (kmp_int *)p_lb, \
(kmp_int *)p_ub, (kmp_int *)&stride); \
if (status) { \
*p_ub += (stride > 0) ? 1 : -1; \
} \
KMP_DOACROSS_FINI(status, gtid) \
\
KA_TRACE( \
20, \
(KMP_STR(func) " exit: T#%d, *p_lb 0x%lx, *p_ub 0x%lx, stride 0x%lx, " \
"returning %d\n", \
gtid, *p_lb, *p_ub, stride, status)); \
return status; \
}
LOOP_START(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_STATIC_START), kmp_sch_static)
LOOP_NEXT(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_STATIC_NEXT), {})
LOOP_START(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_DYNAMIC_START),
kmp_sch_dynamic_chunked)
LOOP_START(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_DYNAMIC_START),
kmp_sch_dynamic_chunked)
LOOP_NEXT(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_DYNAMIC_NEXT), {})
LOOP_NEXT(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_DYNAMIC_NEXT), {})
LOOP_START(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_GUIDED_START),
kmp_sch_guided_chunked)
LOOP_START(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_GUIDED_START),
kmp_sch_guided_chunked)
LOOP_NEXT(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_GUIDED_NEXT), {})
LOOP_NEXT(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_GUIDED_NEXT), {})
LOOP_RUNTIME_START(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_RUNTIME_START),
kmp_sch_runtime)
LOOP_NEXT(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_RUNTIME_NEXT), {})
LOOP_RUNTIME_START(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_MAYBE_NONMONOTONIC_RUNTIME_START),
kmp_sch_runtime)
LOOP_RUNTIME_START(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_RUNTIME_START),
kmp_sch_runtime)
LOOP_NEXT(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_MAYBE_NONMONOTONIC_RUNTIME_NEXT), {})
LOOP_NEXT(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_RUNTIME_NEXT), {})
LOOP_START(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ORDERED_STATIC_START),
kmp_ord_static)
LOOP_NEXT(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ORDERED_STATIC_NEXT),
{ KMP_DISPATCH_FINI_CHUNK(&loc, gtid); })
LOOP_START(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ORDERED_DYNAMIC_START),
kmp_ord_dynamic_chunked)
LOOP_NEXT(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ORDERED_DYNAMIC_NEXT),
{ KMP_DISPATCH_FINI_CHUNK(&loc, gtid); })
LOOP_START(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ORDERED_GUIDED_START),
kmp_ord_guided_chunked)
LOOP_NEXT(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ORDERED_GUIDED_NEXT),
{ KMP_DISPATCH_FINI_CHUNK(&loc, gtid); })
LOOP_RUNTIME_START(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ORDERED_RUNTIME_START),
kmp_ord_runtime)
LOOP_NEXT(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ORDERED_RUNTIME_NEXT),
{ KMP_DISPATCH_FINI_CHUNK(&loc, gtid); })
#define LOOP_DOACROSS_START(func, schedule) \
bool func(unsigned ncounts, long *counts, long chunk_sz, long *p_lb, \
long *p_ub) { \
int status; \
long stride, lb, ub, str; \
int gtid = __kmp_entry_gtid(); \
struct kmp_dim *dims = \
(struct kmp_dim *)__kmp_allocate(sizeof(struct kmp_dim) * ncounts); \
MKLOC(loc, KMP_STR(func)); \
for (unsigned i = 0; i < ncounts; ++i) { \
dims[i].lo = 0; \
dims[i].up = counts[i] - 1; \
dims[i].st = 1; \
} \
__kmpc_doacross_init(&loc, gtid, (int)ncounts, dims); \
lb = 0; \
ub = counts[0]; \
str = 1; \
KA_TRACE(20, (KMP_STR(func) ": T#%d, ncounts %u, lb 0x%lx, ub 0x%lx, str " \
"0x%lx, chunk_sz " \
"0x%lx\n", \
gtid, ncounts, lb, ub, str, chunk_sz)); \
\
if ((str > 0) ? (lb < ub) : (lb > ub)) { \
KMP_DISPATCH_INIT(&loc, gtid, (schedule), lb, \
(str > 0) ? (ub - 1) : (ub + 1), str, chunk_sz, \
(schedule) != kmp_sch_static); \
status = KMP_DISPATCH_NEXT(&loc, gtid, NULL, (kmp_int *)p_lb, \
(kmp_int *)p_ub, (kmp_int *)&stride); \
if (status) { \
KMP_DEBUG_ASSERT(stride == str); \
*p_ub += (str > 0) ? 1 : -1; \
} \
} else { \
status = 0; \
} \
KMP_DOACROSS_FINI(status, gtid); \
\
KA_TRACE( \
20, \
(KMP_STR( \
func) " exit: T#%d, *p_lb 0x%lx, *p_ub 0x%lx, returning %d\n", \
gtid, *p_lb, *p_ub, status)); \
__kmp_free(dims); \
return status; \
}
#define LOOP_DOACROSS_RUNTIME_START(func, schedule) \
int func(unsigned ncounts, long *counts, long *p_lb, long *p_ub) { \
int status; \
long stride, lb, ub, str; \
long chunk_sz = 0; \
int gtid = __kmp_entry_gtid(); \
struct kmp_dim *dims = \
(struct kmp_dim *)__kmp_allocate(sizeof(struct kmp_dim) * ncounts); \
MKLOC(loc, KMP_STR(func)); \
for (unsigned i = 0; i < ncounts; ++i) { \
dims[i].lo = 0; \
dims[i].up = counts[i] - 1; \
dims[i].st = 1; \
} \
__kmpc_doacross_init(&loc, gtid, (int)ncounts, dims); \
lb = 0; \
ub = counts[0]; \
str = 1; \
KA_TRACE( \
20, \
(KMP_STR(func) ": T#%d, lb 0x%lx, ub 0x%lx, str 0x%lx, chunk_sz %d\n", \
gtid, lb, ub, str, chunk_sz)); \
\
if ((str > 0) ? (lb < ub) : (lb > ub)) { \
KMP_DISPATCH_INIT(&loc, gtid, (schedule), lb, \
(str > 0) ? (ub - 1) : (ub + 1), str, chunk_sz, TRUE); \
status = KMP_DISPATCH_NEXT(&loc, gtid, NULL, (kmp_int *)p_lb, \
(kmp_int *)p_ub, (kmp_int *)&stride); \
if (status) { \
KMP_DEBUG_ASSERT(stride == str); \
*p_ub += (str > 0) ? 1 : -1; \
} \
} else { \
status = 0; \
} \
KMP_DOACROSS_FINI(status, gtid); \
\
KA_TRACE( \
20, \
(KMP_STR( \
func) " exit: T#%d, *p_lb 0x%lx, *p_ub 0x%lx, returning %d\n", \
gtid, *p_lb, *p_ub, status)); \
__kmp_free(dims); \
return status; \
}
LOOP_DOACROSS_START(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_DOACROSS_STATIC_START),
kmp_sch_static)
LOOP_DOACROSS_START(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_DOACROSS_DYNAMIC_START),
kmp_sch_dynamic_chunked)
LOOP_DOACROSS_START(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_DOACROSS_GUIDED_START),
kmp_sch_guided_chunked)
LOOP_DOACROSS_RUNTIME_START(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_DOACROSS_RUNTIME_START),
kmp_sch_runtime)
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_END)(void) {
int gtid = __kmp_get_gtid();
KA_TRACE(20, ("GOMP_loop_end: T#%d\n", gtid))
#if OMPT_SUPPORT && OMPT_OPTIONAL
ompt_frame_t *ompt_frame;
if (ompt_enabled.enabled) {
__ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
OMPT_STORE_RETURN_ADDRESS(gtid);
}
#endif
__kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL);
#if OMPT_SUPPORT && OMPT_OPTIONAL
if (ompt_enabled.enabled) {
ompt_frame->enter_frame = ompt_data_none;
}
#endif
KA_TRACE(20, ("GOMP_loop_end exit: T#%d\n", gtid))
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_END_NOWAIT)(void) {
KA_TRACE(20, ("GOMP_loop_end_nowait: T#%d\n", __kmp_get_gtid()))
}
// Unsigned long long loop worksharing constructs
//
// These are new with gcc 4.4
#define LOOP_START_ULL(func, schedule) \
int func(int up, unsigned long long lb, unsigned long long ub, \
unsigned long long str, unsigned long long chunk_sz, \
unsigned long long *p_lb, unsigned long long *p_ub) { \
int status; \
long long str2 = up ? ((long long)str) : -((long long)str); \
long long stride; \
int gtid = __kmp_entry_gtid(); \
MKLOC(loc, KMP_STR(func)); \
\
KA_TRACE(20, (KMP_STR(func) ": T#%d, up %d, lb 0x%llx, ub 0x%llx, str " \
"0x%llx, chunk_sz 0x%llx\n", \
gtid, up, lb, ub, str, chunk_sz)); \
\
if ((str > 0) ? (lb < ub) : (lb > ub)) { \
KMP_DISPATCH_INIT_ULL(&loc, gtid, (schedule), lb, \
(str2 > 0) ? (ub - 1) : (ub + 1), str2, chunk_sz, \
(schedule) != kmp_sch_static); \
status = \
KMP_DISPATCH_NEXT_ULL(&loc, gtid, NULL, (kmp_uint64 *)p_lb, \
(kmp_uint64 *)p_ub, (kmp_int64 *)&stride); \
if (status) { \
KMP_DEBUG_ASSERT(stride == str2); \
*p_ub += (str > 0) ? 1 : -1; \
} \
} else { \
status = 0; \
} \
\
KA_TRACE( \
20, \
(KMP_STR( \
func) " exit: T#%d, *p_lb 0x%llx, *p_ub 0x%llx, returning %d\n", \
gtid, *p_lb, *p_ub, status)); \
return status; \
}
#define LOOP_RUNTIME_START_ULL(func, schedule) \
int func(int up, unsigned long long lb, unsigned long long ub, \
unsigned long long str, unsigned long long *p_lb, \
unsigned long long *p_ub) { \
int status; \
long long str2 = up ? ((long long)str) : -((long long)str); \
unsigned long long stride; \
unsigned long long chunk_sz = 0; \
int gtid = __kmp_entry_gtid(); \
MKLOC(loc, KMP_STR(func)); \
\
KA_TRACE(20, (KMP_STR(func) ": T#%d, up %d, lb 0x%llx, ub 0x%llx, str " \
"0x%llx, chunk_sz 0x%llx\n", \
gtid, up, lb, ub, str, chunk_sz)); \
\
if ((str > 0) ? (lb < ub) : (lb > ub)) { \
KMP_DISPATCH_INIT_ULL(&loc, gtid, (schedule), lb, \
(str2 > 0) ? (ub - 1) : (ub + 1), str2, chunk_sz, \
TRUE); \
status = \
KMP_DISPATCH_NEXT_ULL(&loc, gtid, NULL, (kmp_uint64 *)p_lb, \
(kmp_uint64 *)p_ub, (kmp_int64 *)&stride); \
if (status) { \
KMP_DEBUG_ASSERT((long long)stride == str2); \
*p_ub += (str > 0) ? 1 : -1; \
} \
} else { \
status = 0; \
} \
\
KA_TRACE( \
20, \
(KMP_STR( \
func) " exit: T#%d, *p_lb 0x%llx, *p_ub 0x%llx, returning %d\n", \
gtid, *p_lb, *p_ub, status)); \
return status; \
}
#define LOOP_NEXT_ULL(func, fini_code) \
int func(unsigned long long *p_lb, unsigned long long *p_ub) { \
int status; \
long long stride; \
int gtid = __kmp_get_gtid(); \
MKLOC(loc, KMP_STR(func)); \
KA_TRACE(20, (KMP_STR(func) ": T#%d\n", gtid)); \
\
fini_code status = \
KMP_DISPATCH_NEXT_ULL(&loc, gtid, NULL, (kmp_uint64 *)p_lb, \
(kmp_uint64 *)p_ub, (kmp_int64 *)&stride); \
if (status) { \
*p_ub += (stride > 0) ? 1 : -1; \
} \
\
KA_TRACE( \
20, \
(KMP_STR( \
func) " exit: T#%d, *p_lb 0x%llx, *p_ub 0x%llx, stride 0x%llx, " \
"returning %d\n", \
gtid, *p_lb, *p_ub, stride, status)); \
return status; \
}
LOOP_START_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_STATIC_START),
kmp_sch_static)
LOOP_NEXT_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_STATIC_NEXT), {})
LOOP_START_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_DYNAMIC_START),
kmp_sch_dynamic_chunked)
LOOP_NEXT_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_DYNAMIC_NEXT), {})
LOOP_START_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_GUIDED_START),
kmp_sch_guided_chunked)
LOOP_NEXT_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_GUIDED_NEXT), {})
LOOP_START_ULL(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_DYNAMIC_START),
kmp_sch_dynamic_chunked)
LOOP_NEXT_ULL(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_DYNAMIC_NEXT), {})
LOOP_START_ULL(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_GUIDED_START),
kmp_sch_guided_chunked)
LOOP_NEXT_ULL(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_GUIDED_NEXT), {})
LOOP_RUNTIME_START_ULL(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_RUNTIME_START), kmp_sch_runtime)
LOOP_NEXT_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_RUNTIME_NEXT), {})
LOOP_RUNTIME_START_ULL(
KMP_EXPAND_NAME(
KMP_API_NAME_GOMP_LOOP_ULL_MAYBE_NONMONOTONIC_RUNTIME_START),
kmp_sch_runtime)
LOOP_RUNTIME_START_ULL(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_RUNTIME_START),
kmp_sch_runtime)
LOOP_NEXT_ULL(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_MAYBE_NONMONOTONIC_RUNTIME_NEXT),
{})
LOOP_NEXT_ULL(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_RUNTIME_NEXT), {})
LOOP_START_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_STATIC_START),
kmp_ord_static)
LOOP_NEXT_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_STATIC_NEXT),
{ KMP_DISPATCH_FINI_CHUNK_ULL(&loc, gtid); })
LOOP_START_ULL(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_DYNAMIC_START),
kmp_ord_dynamic_chunked)
LOOP_NEXT_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_DYNAMIC_NEXT),
{ KMP_DISPATCH_FINI_CHUNK_ULL(&loc, gtid); })
LOOP_START_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_GUIDED_START),
kmp_ord_guided_chunked)
LOOP_NEXT_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_GUIDED_NEXT),
{ KMP_DISPATCH_FINI_CHUNK_ULL(&loc, gtid); })
LOOP_RUNTIME_START_ULL(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_RUNTIME_START),
kmp_ord_runtime)
LOOP_NEXT_ULL(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_RUNTIME_NEXT),
{ KMP_DISPATCH_FINI_CHUNK_ULL(&loc, gtid); })
#define LOOP_DOACROSS_START_ULL(func, schedule) \
int func(unsigned ncounts, unsigned long long *counts, \
unsigned long long chunk_sz, unsigned long long *p_lb, \
unsigned long long *p_ub) { \
int status; \
long long stride, str, lb, ub; \
int gtid = __kmp_entry_gtid(); \
struct kmp_dim *dims = \
(struct kmp_dim *)__kmp_allocate(sizeof(struct kmp_dim) * ncounts); \
MKLOC(loc, KMP_STR(func)); \
for (unsigned i = 0; i < ncounts; ++i) { \
dims[i].lo = 0; \
dims[i].up = counts[i] - 1; \
dims[i].st = 1; \
} \
__kmpc_doacross_init(&loc, gtid, (int)ncounts, dims); \
lb = 0; \
ub = counts[0]; \
str = 1; \
\
KA_TRACE(20, (KMP_STR(func) ": T#%d, lb 0x%llx, ub 0x%llx, str " \
"0x%llx, chunk_sz 0x%llx\n", \
gtid, lb, ub, str, chunk_sz)); \
\
if ((str > 0) ? (lb < ub) : (lb > ub)) { \
KMP_DISPATCH_INIT_ULL(&loc, gtid, (schedule), lb, \
(str > 0) ? (ub - 1) : (ub + 1), str, chunk_sz, \
(schedule) != kmp_sch_static); \
status = \
KMP_DISPATCH_NEXT_ULL(&loc, gtid, NULL, (kmp_uint64 *)p_lb, \
(kmp_uint64 *)p_ub, (kmp_int64 *)&stride); \
if (status) { \
KMP_DEBUG_ASSERT(stride == str); \
*p_ub += (str > 0) ? 1 : -1; \
} \
} else { \
status = 0; \
} \
KMP_DOACROSS_FINI(status, gtid); \
\
KA_TRACE( \
20, \
(KMP_STR( \
func) " exit: T#%d, *p_lb 0x%llx, *p_ub 0x%llx, returning %d\n", \
gtid, *p_lb, *p_ub, status)); \
__kmp_free(dims); \
return status; \
}
#define LOOP_DOACROSS_RUNTIME_START_ULL(func, schedule) \
int func(unsigned ncounts, unsigned long long *counts, \
unsigned long long *p_lb, unsigned long long *p_ub) { \
int status; \
unsigned long long stride, str, lb, ub; \
unsigned long long chunk_sz = 0; \
int gtid = __kmp_entry_gtid(); \
struct kmp_dim *dims = \
(struct kmp_dim *)__kmp_allocate(sizeof(struct kmp_dim) * ncounts); \
MKLOC(loc, KMP_STR(func)); \
for (unsigned i = 0; i < ncounts; ++i) { \
dims[i].lo = 0; \
dims[i].up = counts[i] - 1; \
dims[i].st = 1; \
} \
__kmpc_doacross_init(&loc, gtid, (int)ncounts, dims); \
lb = 0; \
ub = counts[0]; \
str = 1; \
KA_TRACE(20, (KMP_STR(func) ": T#%d, lb 0x%llx, ub 0x%llx, str " \
"0x%llx, chunk_sz 0x%llx\n", \
gtid, lb, ub, str, chunk_sz)); \
\
if ((str > 0) ? (lb < ub) : (lb > ub)) { \
KMP_DISPATCH_INIT_ULL(&loc, gtid, (schedule), lb, \
(str > 0) ? (ub - 1) : (ub + 1), str, chunk_sz, \
TRUE); \
status = \
KMP_DISPATCH_NEXT_ULL(&loc, gtid, NULL, (kmp_uint64 *)p_lb, \
(kmp_uint64 *)p_ub, (kmp_int64 *)&stride); \
if (status) { \
KMP_DEBUG_ASSERT(stride == str); \
*p_ub += (str > 0) ? 1 : -1; \
} \
} else { \
status = 0; \
} \
KMP_DOACROSS_FINI(status, gtid); \
\
KA_TRACE( \
20, \
(KMP_STR( \
func) " exit: T#%d, *p_lb 0x%llx, *p_ub 0x%llx, returning %d\n", \
gtid, *p_lb, *p_ub, status)); \
__kmp_free(dims); \
return status; \
}
LOOP_DOACROSS_START_ULL(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_DOACROSS_STATIC_START),
kmp_sch_static)
LOOP_DOACROSS_START_ULL(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_DOACROSS_DYNAMIC_START),
kmp_sch_dynamic_chunked)
LOOP_DOACROSS_START_ULL(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_DOACROSS_GUIDED_START),
kmp_sch_guided_chunked)
LOOP_DOACROSS_RUNTIME_START_ULL(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_ULL_DOACROSS_RUNTIME_START),
kmp_sch_runtime)
// Combined parallel / loop worksharing constructs
//
// There are no ull versions (yet).
#define PARALLEL_LOOP_START(func, schedule, ompt_pre, ompt_post) \
void func(void (*task)(void *), void *data, unsigned num_threads, long lb, \
long ub, long str, long chunk_sz) { \
int gtid = __kmp_entry_gtid(); \
MKLOC(loc, KMP_STR(func)); \
KA_TRACE( \
20, \
(KMP_STR( \
func) ": T#%d, lb 0x%lx, ub 0x%lx, str 0x%lx, chunk_sz 0x%lx\n", \
gtid, lb, ub, str, chunk_sz)); \
\
ompt_pre(); \
\
if (__kmpc_ok_to_fork(&loc) && (num_threads != 1)) { \
if (num_threads != 0) { \
__kmp_push_num_threads(&loc, gtid, num_threads); \
} \
__kmp_GOMP_fork_call(&loc, gtid, task, \
(microtask_t)__kmp_GOMP_parallel_microtask_wrapper, \
9, task, data, num_threads, &loc, (schedule), lb, \
(str > 0) ? (ub - 1) : (ub + 1), str, chunk_sz); \
IF_OMPT_SUPPORT(OMPT_STORE_RETURN_ADDRESS(gtid)); \
} else { \
__kmp_GOMP_serialized_parallel(&loc, gtid, task); \
IF_OMPT_SUPPORT(OMPT_STORE_RETURN_ADDRESS(gtid)); \
} \
\
KMP_DISPATCH_INIT(&loc, gtid, (schedule), lb, \
(str > 0) ? (ub - 1) : (ub + 1), str, chunk_sz, \
(schedule) != kmp_sch_static); \
\
ompt_post(); \
\
KA_TRACE(20, (KMP_STR(func) " exit: T#%d\n", gtid)); \
}
#if OMPT_SUPPORT && OMPT_OPTIONAL
#define OMPT_LOOP_PRE() \
ompt_frame_t *parent_frame; \
if (ompt_enabled.enabled) { \
__ompt_get_task_info_internal(0, NULL, NULL, &parent_frame, NULL, NULL); \
parent_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); \
OMPT_STORE_RETURN_ADDRESS(gtid); \
}
#define OMPT_LOOP_POST() \
if (ompt_enabled.enabled) { \
parent_frame->enter_frame = ompt_data_none; \
}
#else
#define OMPT_LOOP_PRE()
#define OMPT_LOOP_POST()
#endif
PARALLEL_LOOP_START(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_STATIC_START),
kmp_sch_static, OMPT_LOOP_PRE, OMPT_LOOP_POST)
PARALLEL_LOOP_START(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_DYNAMIC_START),
kmp_sch_dynamic_chunked, OMPT_LOOP_PRE, OMPT_LOOP_POST)
PARALLEL_LOOP_START(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_GUIDED_START),
kmp_sch_guided_chunked, OMPT_LOOP_PRE, OMPT_LOOP_POST)
PARALLEL_LOOP_START(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_RUNTIME_START),
kmp_sch_runtime, OMPT_LOOP_PRE, OMPT_LOOP_POST)
// Tasking constructs
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TASK)(void (*func)(void *), void *data,
void (*copy_func)(void *, void *),
long arg_size, long arg_align,
bool if_cond, unsigned gomp_flags,
void **depend) {
MKLOC(loc, "GOMP_task");
int gtid = __kmp_entry_gtid();
kmp_int32 flags = 0;
kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags;
KA_TRACE(20, ("GOMP_task: T#%d\n", gtid));
// The low-order bit is the "untied" flag
if (!(gomp_flags & 1)) {
input_flags->tiedness = 1;
}
// The second low-order bit is the "final" flag
if (gomp_flags & 2) {
input_flags->final = 1;
}
input_flags->native = 1;
// __kmp_task_alloc() sets up all other flags
if (!if_cond) {
arg_size = 0;
}
kmp_task_t *task = __kmp_task_alloc(
&loc, gtid, input_flags, sizeof(kmp_task_t),
arg_size ? arg_size + arg_align - 1 : 0, (kmp_routine_entry_t)func);
if (arg_size > 0) {
if (arg_align > 0) {
task->shareds = (void *)((((size_t)task->shareds) + arg_align - 1) /
arg_align * arg_align);
}
// else error??
if (copy_func) {
(*copy_func)(task->shareds, data);
} else {
KMP_MEMCPY(task->shareds, data, arg_size);
}
}
#if OMPT_SUPPORT
kmp_taskdata_t *current_task;
if (ompt_enabled.enabled) {
OMPT_STORE_RETURN_ADDRESS(gtid);
current_task = __kmp_threads[gtid]->th.th_current_task;
current_task->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
}
#endif
if (if_cond) {
if (gomp_flags & 8) {
KMP_ASSERT(depend);
const size_t ndeps = (kmp_intptr_t)depend[0];
const size_t nout = (kmp_intptr_t)depend[1];
kmp_depend_info_t dep_list[ndeps];
for (size_t i = 0U; i < ndeps; i++) {
dep_list[i].base_addr = (kmp_intptr_t)depend[2U + i];
dep_list[i].len = 0U;
dep_list[i].flags.in = 1;
dep_list[i].flags.out = (i < nout);
}
__kmpc_omp_task_with_deps(&loc, gtid, task, ndeps, dep_list, 0, NULL);
} else {
__kmpc_omp_task(&loc, gtid, task);
}
} else {
#if OMPT_SUPPORT
ompt_thread_info_t oldInfo;
kmp_info_t *thread;
kmp_taskdata_t *taskdata;
if (ompt_enabled.enabled) {
// Store the threads states and restore them after the task
thread = __kmp_threads[gtid];
taskdata = KMP_TASK_TO_TASKDATA(task);
oldInfo = thread->th.ompt_thread_info;
thread->th.ompt_thread_info.wait_id = 0;
thread->th.ompt_thread_info.state = ompt_state_work_parallel;
taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
OMPT_STORE_RETURN_ADDRESS(gtid);
}
#endif
__kmpc_omp_task_begin_if0(&loc, gtid, task);
func(data);
__kmpc_omp_task_complete_if0(&loc, gtid, task);
#if OMPT_SUPPORT
if (ompt_enabled.enabled) {
thread->th.ompt_thread_info = oldInfo;
taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
}
#endif
}
#if OMPT_SUPPORT
if (ompt_enabled.enabled) {
current_task->ompt_task_info.frame.enter_frame = ompt_data_none;
}
#endif
KA_TRACE(20, ("GOMP_task exit: T#%d\n", gtid));
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TASKWAIT)(void) {
MKLOC(loc, "GOMP_taskwait");
int gtid = __kmp_entry_gtid();
#if OMPT_SUPPORT
if (ompt_enabled.enabled)
OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
KA_TRACE(20, ("GOMP_taskwait: T#%d\n", gtid));
__kmpc_omp_taskwait(&loc, gtid);
KA_TRACE(20, ("GOMP_taskwait exit: T#%d\n", gtid));
}
// Sections worksharing constructs
//
// For the sections construct, we initialize a dynamically scheduled loop
// worksharing construct with lb 1 and stride 1, and use the iteration #'s
// that its returns as sections ids.
//
// There are no special entry points for ordered sections, so we always use
// the dynamically scheduled workshare, even if the sections aren't ordered.
unsigned KMP_EXPAND_NAME(KMP_API_NAME_GOMP_SECTIONS_START)(unsigned count) {
int status;
kmp_int lb, ub, stride;
int gtid = __kmp_entry_gtid();
MKLOC(loc, "GOMP_sections_start");
KA_TRACE(20, ("GOMP_sections_start: T#%d\n", gtid));
KMP_DISPATCH_INIT(&loc, gtid, kmp_nm_dynamic_chunked, 1, count, 1, 1, TRUE);
status = KMP_DISPATCH_NEXT(&loc, gtid, NULL, &lb, &ub, &stride);
if (status) {
KMP_DEBUG_ASSERT(stride == 1);
KMP_DEBUG_ASSERT(lb > 0);
KMP_ASSERT(lb == ub);
} else {
lb = 0;
}
KA_TRACE(20, ("GOMP_sections_start exit: T#%d returning %u\n", gtid,
(unsigned)lb));
return (unsigned)lb;
}
unsigned KMP_EXPAND_NAME(KMP_API_NAME_GOMP_SECTIONS_NEXT)(void) {
int status;
kmp_int lb, ub, stride;
int gtid = __kmp_get_gtid();
MKLOC(loc, "GOMP_sections_next");
KA_TRACE(20, ("GOMP_sections_next: T#%d\n", gtid));
#if OMPT_SUPPORT
OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
status = KMP_DISPATCH_NEXT(&loc, gtid, NULL, &lb, &ub, &stride);
if (status) {
KMP_DEBUG_ASSERT(stride == 1);
KMP_DEBUG_ASSERT(lb > 0);
KMP_ASSERT(lb == ub);
} else {
lb = 0;
}
KA_TRACE(
20, ("GOMP_sections_next exit: T#%d returning %u\n", gtid, (unsigned)lb));
return (unsigned)lb;
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_SECTIONS_START)(
void (*task)(void *), void *data, unsigned num_threads, unsigned count) {
int gtid = __kmp_entry_gtid();
#if OMPT_SUPPORT
ompt_frame_t *parent_frame;
if (ompt_enabled.enabled) {
__ompt_get_task_info_internal(0, NULL, NULL, &parent_frame, NULL, NULL);
parent_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
OMPT_STORE_RETURN_ADDRESS(gtid);
}
#endif
MKLOC(loc, "GOMP_parallel_sections_start");
KA_TRACE(20, ("GOMP_parallel_sections_start: T#%d\n", gtid));
if (__kmpc_ok_to_fork(&loc) && (num_threads != 1)) {
if (num_threads != 0) {
__kmp_push_num_threads(&loc, gtid, num_threads);
}
__kmp_GOMP_fork_call(&loc, gtid, task,
(microtask_t)__kmp_GOMP_parallel_microtask_wrapper, 9,
task, data, num_threads, &loc, kmp_nm_dynamic_chunked,
(kmp_int)1, (kmp_int)count, (kmp_int)1, (kmp_int)1);
} else {
__kmp_GOMP_serialized_parallel(&loc, gtid, task);
}
#if OMPT_SUPPORT
if (ompt_enabled.enabled) {
parent_frame->enter_frame = ompt_data_none;
}
#endif
KMP_DISPATCH_INIT(&loc, gtid, kmp_nm_dynamic_chunked, 1, count, 1, 1, TRUE);
KA_TRACE(20, ("GOMP_parallel_sections_start exit: T#%d\n", gtid));
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_SECTIONS_END)(void) {
int gtid = __kmp_get_gtid();
KA_TRACE(20, ("GOMP_sections_end: T#%d\n", gtid))
#if OMPT_SUPPORT
ompt_frame_t *ompt_frame;
if (ompt_enabled.enabled) {
__ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
ompt_frame->enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
OMPT_STORE_RETURN_ADDRESS(gtid);
}
#endif
__kmp_barrier(bs_plain_barrier, gtid, FALSE, 0, NULL, NULL);
#if OMPT_SUPPORT
if (ompt_enabled.enabled) {
ompt_frame->enter_frame = ompt_data_none;
}
#endif
KA_TRACE(20, ("GOMP_sections_end exit: T#%d\n", gtid))
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_SECTIONS_END_NOWAIT)(void) {
KA_TRACE(20, ("GOMP_sections_end_nowait: T#%d\n", __kmp_get_gtid()))
}
// libgomp has an empty function for GOMP_taskyield as of 2013-10-10
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TASKYIELD)(void) {
KA_TRACE(20, ("GOMP_taskyield: T#%d\n", __kmp_get_gtid()))
return;
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL)(void (*task)(void *),
void *data,
unsigned num_threads,
unsigned int flags) {
int gtid = __kmp_entry_gtid();
MKLOC(loc, "GOMP_parallel");
KA_TRACE(20, ("GOMP_parallel: T#%d\n", gtid));
#if OMPT_SUPPORT
ompt_task_info_t *parent_task_info, *task_info;
if (ompt_enabled.enabled) {
parent_task_info = __ompt_get_task_info_object(0);
parent_task_info->frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
OMPT_STORE_RETURN_ADDRESS(gtid);
}
#endif
if (__kmpc_ok_to_fork(&loc) && (num_threads != 1)) {
if (num_threads != 0) {
__kmp_push_num_threads(&loc, gtid, num_threads);
}
if (flags != 0) {
__kmp_push_proc_bind(&loc, gtid, (kmp_proc_bind_t)flags);
}
__kmp_GOMP_fork_call(&loc, gtid, task,
(microtask_t)__kmp_GOMP_microtask_wrapper, 2, task,
data);
} else {
__kmp_GOMP_serialized_parallel(&loc, gtid, task);
}
#if OMPT_SUPPORT
if (ompt_enabled.enabled) {
task_info = __ompt_get_task_info_object(0);
task_info->frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
}
#endif
task(data);
#if OMPT_SUPPORT
if (ompt_enabled.enabled) {
OMPT_STORE_RETURN_ADDRESS(gtid);
}
#endif
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_END)();
#if OMPT_SUPPORT
if (ompt_enabled.enabled) {
task_info->frame.exit_frame = ompt_data_none;
parent_task_info->frame.enter_frame = ompt_data_none;
}
#endif
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_SECTIONS)(void (*task)(void *),
void *data,
unsigned num_threads,
unsigned count,
unsigned flags) {
int gtid = __kmp_entry_gtid();
MKLOC(loc, "GOMP_parallel_sections");
KA_TRACE(20, ("GOMP_parallel_sections: T#%d\n", gtid));
#if OMPT_SUPPORT
OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
if (__kmpc_ok_to_fork(&loc) && (num_threads != 1)) {
if (num_threads != 0) {
__kmp_push_num_threads(&loc, gtid, num_threads);
}
if (flags != 0) {
__kmp_push_proc_bind(&loc, gtid, (kmp_proc_bind_t)flags);
}
__kmp_GOMP_fork_call(&loc, gtid, task,
(microtask_t)__kmp_GOMP_parallel_microtask_wrapper, 9,
task, data, num_threads, &loc, kmp_nm_dynamic_chunked,
(kmp_int)1, (kmp_int)count, (kmp_int)1, (kmp_int)1);
} else {
__kmp_GOMP_serialized_parallel(&loc, gtid, task);
}
#if OMPT_SUPPORT
OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
KMP_DISPATCH_INIT(&loc, gtid, kmp_nm_dynamic_chunked, 1, count, 1, 1, TRUE);
task(data);
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_END)();
KA_TRACE(20, ("GOMP_parallel_sections exit: T#%d\n", gtid));
}
#define PARALLEL_LOOP(func, schedule, ompt_pre, ompt_post) \
void func(void (*task)(void *), void *data, unsigned num_threads, long lb, \
long ub, long str, long chunk_sz, unsigned flags) { \
int gtid = __kmp_entry_gtid(); \
MKLOC(loc, KMP_STR(func)); \
KA_TRACE( \
20, \
(KMP_STR( \
func) ": T#%d, lb 0x%lx, ub 0x%lx, str 0x%lx, chunk_sz 0x%lx\n", \
gtid, lb, ub, str, chunk_sz)); \
\
ompt_pre(); \
if (__kmpc_ok_to_fork(&loc) && (num_threads != 1)) { \
if (num_threads != 0) { \
__kmp_push_num_threads(&loc, gtid, num_threads); \
} \
if (flags != 0) { \
__kmp_push_proc_bind(&loc, gtid, (kmp_proc_bind_t)flags); \
} \
__kmp_GOMP_fork_call(&loc, gtid, task, \
(microtask_t)__kmp_GOMP_parallel_microtask_wrapper, \
9, task, data, num_threads, &loc, (schedule), lb, \
(str > 0) ? (ub - 1) : (ub + 1), str, chunk_sz); \
} else { \
__kmp_GOMP_serialized_parallel(&loc, gtid, task); \
} \
\
IF_OMPT_SUPPORT(OMPT_STORE_RETURN_ADDRESS(gtid);) \
KMP_DISPATCH_INIT(&loc, gtid, (schedule), lb, \
(str > 0) ? (ub - 1) : (ub + 1), str, chunk_sz, \
(schedule) != kmp_sch_static); \
task(data); \
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_END)(); \
ompt_post(); \
\
KA_TRACE(20, (KMP_STR(func) " exit: T#%d\n", gtid)); \
}
PARALLEL_LOOP(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_STATIC),
kmp_sch_static, OMPT_LOOP_PRE, OMPT_LOOP_POST)
PARALLEL_LOOP(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_DYNAMIC),
kmp_sch_dynamic_chunked, OMPT_LOOP_PRE, OMPT_LOOP_POST)
PARALLEL_LOOP(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_NONMONOTONIC_GUIDED),
kmp_sch_guided_chunked, OMPT_LOOP_PRE, OMPT_LOOP_POST)
PARALLEL_LOOP(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_NONMONOTONIC_DYNAMIC),
kmp_sch_dynamic_chunked, OMPT_LOOP_PRE, OMPT_LOOP_POST)
PARALLEL_LOOP(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_GUIDED),
kmp_sch_guided_chunked, OMPT_LOOP_PRE, OMPT_LOOP_POST)
PARALLEL_LOOP(KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_RUNTIME),
kmp_sch_runtime, OMPT_LOOP_PRE, OMPT_LOOP_POST)
PARALLEL_LOOP(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_MAYBE_NONMONOTONIC_RUNTIME),
kmp_sch_runtime, OMPT_LOOP_PRE, OMPT_LOOP_POST)
PARALLEL_LOOP(
KMP_EXPAND_NAME(KMP_API_NAME_GOMP_PARALLEL_LOOP_NONMONOTONIC_RUNTIME),
kmp_sch_runtime, OMPT_LOOP_PRE, OMPT_LOOP_POST)
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TASKGROUP_START)(void) {
int gtid = __kmp_entry_gtid();
MKLOC(loc, "GOMP_taskgroup_start");
KA_TRACE(20, ("GOMP_taskgroup_start: T#%d\n", gtid));
#if OMPT_SUPPORT
if (ompt_enabled.enabled)
OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
__kmpc_taskgroup(&loc, gtid);
return;
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TASKGROUP_END)(void) {
int gtid = __kmp_get_gtid();
MKLOC(loc, "GOMP_taskgroup_end");
KA_TRACE(20, ("GOMP_taskgroup_end: T#%d\n", gtid));
#if OMPT_SUPPORT
if (ompt_enabled.enabled)
OMPT_STORE_RETURN_ADDRESS(gtid);
#endif
__kmpc_end_taskgroup(&loc, gtid);
return;
}
static kmp_int32 __kmp_gomp_to_omp_cancellation_kind(int gomp_kind) {
kmp_int32 cncl_kind = 0;
switch (gomp_kind) {
case 1:
cncl_kind = cancel_parallel;
break;
case 2:
cncl_kind = cancel_loop;
break;
case 4:
cncl_kind = cancel_sections;
break;
case 8:
cncl_kind = cancel_taskgroup;
break;
}
return cncl_kind;
}
// Return true if cancellation should take place, false otherwise
bool KMP_EXPAND_NAME(KMP_API_NAME_GOMP_CANCELLATION_POINT)(int which) {
int gtid = __kmp_get_gtid();
MKLOC(loc, "GOMP_cancellation_point");
KA_TRACE(20, ("GOMP_cancellation_point: T#%d which:%d\n", gtid, which));
kmp_int32 cncl_kind = __kmp_gomp_to_omp_cancellation_kind(which);
return __kmpc_cancellationpoint(&loc, gtid, cncl_kind);
}
// Return true if cancellation should take place, false otherwise
bool KMP_EXPAND_NAME(KMP_API_NAME_GOMP_CANCEL)(int which, bool do_cancel) {
int gtid = __kmp_get_gtid();
MKLOC(loc, "GOMP_cancel");
KA_TRACE(20, ("GOMP_cancel: T#%d which:%d do_cancel:%d\n", gtid, which,
(int)do_cancel));
kmp_int32 cncl_kind = __kmp_gomp_to_omp_cancellation_kind(which);
if (do_cancel == FALSE) {
return __kmpc_cancellationpoint(&loc, gtid, cncl_kind);
} else {
return __kmpc_cancel(&loc, gtid, cncl_kind);
}
}
// Return true if cancellation should take place, false otherwise
bool KMP_EXPAND_NAME(KMP_API_NAME_GOMP_BARRIER_CANCEL)(void) {
int gtid = __kmp_get_gtid();
KA_TRACE(20, ("GOMP_barrier_cancel: T#%d\n", gtid));
return __kmp_barrier_gomp_cancel(gtid);
}
// Return true if cancellation should take place, false otherwise
bool KMP_EXPAND_NAME(KMP_API_NAME_GOMP_SECTIONS_END_CANCEL)(void) {
int gtid = __kmp_get_gtid();
KA_TRACE(20, ("GOMP_sections_end_cancel: T#%d\n", gtid));
return __kmp_barrier_gomp_cancel(gtid);
}
// Return true if cancellation should take place, false otherwise
bool KMP_EXPAND_NAME(KMP_API_NAME_GOMP_LOOP_END_CANCEL)(void) {
int gtid = __kmp_get_gtid();
KA_TRACE(20, ("GOMP_loop_end_cancel: T#%d\n", gtid));
return __kmp_barrier_gomp_cancel(gtid);
}
// All target functions are empty as of 2014-05-29
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TARGET)(int device, void (*fn)(void *),
const void *openmp_target,
size_t mapnum, void **hostaddrs,
size_t *sizes,
unsigned char *kinds) {
return;
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TARGET_DATA)(
int device, const void *openmp_target, size_t mapnum, void **hostaddrs,
size_t *sizes, unsigned char *kinds) {
return;
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TARGET_END_DATA)(void) { return; }
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TARGET_UPDATE)(
int device, const void *openmp_target, size_t mapnum, void **hostaddrs,
size_t *sizes, unsigned char *kinds) {
return;
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TEAMS)(unsigned int num_teams,
unsigned int thread_limit) {
return;
}
// Task duplication function which copies src to dest (both are
// preallocated task structures)
static void __kmp_gomp_task_dup(kmp_task_t *dest, kmp_task_t *src,
kmp_int32 last_private) {
kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(src);
if (taskdata->td_copy_func) {
(taskdata->td_copy_func)(dest->shareds, src->shareds);
}
}
#ifdef __cplusplus
} // extern "C"
#endif
template <typename T>
void __GOMP_taskloop(void (*func)(void *), void *data,
void (*copy_func)(void *, void *), long arg_size,
long arg_align, unsigned gomp_flags,
unsigned long num_tasks, int priority, T start, T end,
T step) {
typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32);
MKLOC(loc, "GOMP_taskloop");
int sched;
T *loop_bounds;
int gtid = __kmp_entry_gtid();
kmp_int32 flags = 0;
int if_val = gomp_flags & (1u << 10);
int nogroup = gomp_flags & (1u << 11);
int up = gomp_flags & (1u << 8);
p_task_dup_t task_dup = NULL;
kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags;
#ifdef KMP_DEBUG
{
char *buff;
buff = __kmp_str_format(
"GOMP_taskloop: T#%%d: func:%%p data:%%p copy_func:%%p "
"arg_size:%%ld arg_align:%%ld gomp_flags:0x%%x num_tasks:%%lu "
"priority:%%d start:%%%s end:%%%s step:%%%s\n",
traits_t<T>::spec, traits_t<T>::spec, traits_t<T>::spec);
KA_TRACE(20, (buff, gtid, func, data, copy_func, arg_size, arg_align,
gomp_flags, num_tasks, priority, start, end, step));
__kmp_str_free(&buff);
}
#endif
KMP_ASSERT((size_t)arg_size >= 2 * sizeof(T));
KMP_ASSERT(arg_align > 0);
// The low-order bit is the "untied" flag
if (!(gomp_flags & 1)) {
input_flags->tiedness = 1;
}
// The second low-order bit is the "final" flag
if (gomp_flags & 2) {
input_flags->final = 1;
}
// Negative step flag
if (!up) {
// If step is flagged as negative, but isn't properly sign extended
// Then manually sign extend it. Could be a short, int, char embedded
// in a long. So cannot assume any cast.
if (step > 0) {
for (int i = sizeof(T) * CHAR_BIT - 1; i >= 0L; --i) {
// break at the first 1 bit
if (step & ((T)1 << i))
break;
step |= ((T)1 << i);
}
}
}
input_flags->native = 1;
// Figure out if none/grainsize/num_tasks clause specified
if (num_tasks > 0) {
if (gomp_flags & (1u << 9))
sched = 1; // grainsize specified
else
sched = 2; // num_tasks specified
// neither grainsize nor num_tasks specified
} else {
sched = 0;
}
// __kmp_task_alloc() sets up all other flags
kmp_task_t *task =
__kmp_task_alloc(&loc, gtid, input_flags, sizeof(kmp_task_t),
arg_size + arg_align - 1, (kmp_routine_entry_t)func);
kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
taskdata->td_copy_func = copy_func;
taskdata->td_size_loop_bounds = sizeof(T);
// re-align shareds if needed and setup firstprivate copy constructors
// through the task_dup mechanism
task->shareds = (void *)((((size_t)task->shareds) + arg_align - 1) /
arg_align * arg_align);
if (copy_func) {
task_dup = __kmp_gomp_task_dup;
}
KMP_MEMCPY(task->shareds, data, arg_size);
loop_bounds = (T *)task->shareds;
loop_bounds[0] = start;
loop_bounds[1] = end + (up ? -1 : 1);
__kmpc_taskloop(&loc, gtid, task, if_val, (kmp_uint64 *)&(loop_bounds[0]),
(kmp_uint64 *)&(loop_bounds[1]), (kmp_int64)step, nogroup,
sched, (kmp_uint64)num_tasks, (void *)task_dup);
}
// 4 byte version of GOMP_doacross_post
// This verison needs to create a temporary array which converts 4 byte
// integers into 8 byte integers
template <typename T, bool need_conversion = (sizeof(long) == 4)>
void __kmp_GOMP_doacross_post(T *count);
template <> void __kmp_GOMP_doacross_post<long, true>(long *count) {
int gtid = __kmp_entry_gtid();
kmp_info_t *th = __kmp_threads[gtid];
MKLOC(loc, "GOMP_doacross_post");
kmp_int64 num_dims = th->th.th_dispatch->th_doacross_info[0];
kmp_int64 *vec =
(kmp_int64 *)__kmp_thread_malloc(th, sizeof(kmp_int64) * num_dims);
for (kmp_int64 i = 0; i < num_dims; ++i) {
vec[i] = (kmp_int64)count[i];
}
__kmpc_doacross_post(&loc, gtid, vec);
__kmp_thread_free(th, vec);
}
// 8 byte versions of GOMP_doacross_post
// This version can just pass in the count array directly instead of creating
// a temporary array
template <> void __kmp_GOMP_doacross_post<long, false>(long *count) {
int gtid = __kmp_entry_gtid();
MKLOC(loc, "GOMP_doacross_post");
__kmpc_doacross_post(&loc, gtid, RCAST(kmp_int64 *, count));
}
template <typename T> void __kmp_GOMP_doacross_wait(T first, va_list args) {
int gtid = __kmp_entry_gtid();
kmp_info_t *th = __kmp_threads[gtid];
MKLOC(loc, "GOMP_doacross_wait");
kmp_int64 num_dims = th->th.th_dispatch->th_doacross_info[0];
kmp_int64 *vec =
(kmp_int64 *)__kmp_thread_malloc(th, sizeof(kmp_int64) * num_dims);
vec[0] = (kmp_int64)first;
for (kmp_int64 i = 1; i < num_dims; ++i) {
T item = va_arg(args, T);
vec[i] = (kmp_int64)item;
}
__kmpc_doacross_wait(&loc, gtid, vec);
__kmp_thread_free(th, vec);
return;
}
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TASKLOOP)(
void (*func)(void *), void *data, void (*copy_func)(void *, void *),
long arg_size, long arg_align, unsigned gomp_flags, unsigned long num_tasks,
int priority, long start, long end, long step) {
__GOMP_taskloop<long>(func, data, copy_func, arg_size, arg_align, gomp_flags,
num_tasks, priority, start, end, step);
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_TASKLOOP_ULL)(
void (*func)(void *), void *data, void (*copy_func)(void *, void *),
long arg_size, long arg_align, unsigned gomp_flags, unsigned long num_tasks,
int priority, unsigned long long start, unsigned long long end,
unsigned long long step) {
__GOMP_taskloop<unsigned long long>(func, data, copy_func, arg_size,
arg_align, gomp_flags, num_tasks,
priority, start, end, step);
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_DOACROSS_POST)(long *count) {
__kmp_GOMP_doacross_post(count);
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_DOACROSS_WAIT)(long first, ...) {
va_list args;
va_start(args, first);
__kmp_GOMP_doacross_wait<long>(first, args);
va_end(args);
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_DOACROSS_ULL_POST)(
unsigned long long *count) {
int gtid = __kmp_entry_gtid();
MKLOC(loc, "GOMP_doacross_ull_post");
__kmpc_doacross_post(&loc, gtid, RCAST(kmp_int64 *, count));
}
void KMP_EXPAND_NAME(KMP_API_NAME_GOMP_DOACROSS_ULL_WAIT)(
unsigned long long first, ...) {
va_list args;
va_start(args, first);
__kmp_GOMP_doacross_wait<unsigned long long>(first, args);
va_end(args);
}
/* The following sections of code create aliases for the GOMP_* functions, then
create versioned symbols using the assembler directive .symver. This is only
pertinent for ELF .so library. The KMP_VERSION_SYMBOL macro is defined in
kmp_os.h */
#ifdef KMP_USE_VERSION_SYMBOLS
// GOMP_1.0 versioned symbols
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_ATOMIC_END, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_ATOMIC_START, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_BARRIER, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_CRITICAL_END, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_CRITICAL_NAME_END, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_CRITICAL_NAME_START, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_CRITICAL_START, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_DYNAMIC_NEXT, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_DYNAMIC_START, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_END, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_END_NOWAIT, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_GUIDED_NEXT, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_GUIDED_START, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ORDERED_DYNAMIC_NEXT, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ORDERED_DYNAMIC_START, 10,
"GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ORDERED_GUIDED_NEXT, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ORDERED_GUIDED_START, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ORDERED_RUNTIME_NEXT, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ORDERED_RUNTIME_START, 10,
"GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ORDERED_STATIC_NEXT, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ORDERED_STATIC_START, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_RUNTIME_NEXT, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_RUNTIME_START, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_STATIC_NEXT, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_STATIC_START, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_ORDERED_END, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_ORDERED_START, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_END, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_DYNAMIC_START, 10,
"GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_GUIDED_START, 10,
"GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_RUNTIME_START, 10,
"GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_STATIC_START, 10,
"GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_SECTIONS_START, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_START, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_SECTIONS_END, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_SECTIONS_END_NOWAIT, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_SECTIONS_NEXT, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_SECTIONS_START, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_SINGLE_COPY_END, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_SINGLE_COPY_START, 10, "GOMP_1.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_SINGLE_START, 10, "GOMP_1.0");
// GOMP_2.0 versioned symbols
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TASK, 20, "GOMP_2.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TASKWAIT, 20, "GOMP_2.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_DYNAMIC_NEXT, 20, "GOMP_2.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_DYNAMIC_START, 20, "GOMP_2.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_GUIDED_NEXT, 20, "GOMP_2.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_GUIDED_START, 20, "GOMP_2.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_DYNAMIC_NEXT, 20,
"GOMP_2.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_DYNAMIC_START, 20,
"GOMP_2.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_GUIDED_NEXT, 20,
"GOMP_2.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_GUIDED_START, 20,
"GOMP_2.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_RUNTIME_NEXT, 20,
"GOMP_2.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_RUNTIME_START, 20,
"GOMP_2.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_STATIC_NEXT, 20,
"GOMP_2.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_ORDERED_STATIC_START, 20,
"GOMP_2.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_RUNTIME_NEXT, 20, "GOMP_2.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_RUNTIME_START, 20, "GOMP_2.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_STATIC_NEXT, 20, "GOMP_2.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_STATIC_START, 20, "GOMP_2.0");
// GOMP_3.0 versioned symbols
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TASKYIELD, 30, "GOMP_3.0");
// GOMP_4.0 versioned symbols
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL, 40, "GOMP_4.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_SECTIONS, 40, "GOMP_4.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_DYNAMIC, 40, "GOMP_4.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_GUIDED, 40, "GOMP_4.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_RUNTIME, 40, "GOMP_4.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_STATIC, 40, "GOMP_4.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TASKGROUP_START, 40, "GOMP_4.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TASKGROUP_END, 40, "GOMP_4.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_BARRIER_CANCEL, 40, "GOMP_4.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_CANCEL, 40, "GOMP_4.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_CANCELLATION_POINT, 40, "GOMP_4.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_END_CANCEL, 40, "GOMP_4.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_SECTIONS_END_CANCEL, 40, "GOMP_4.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TARGET, 40, "GOMP_4.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TARGET_DATA, 40, "GOMP_4.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TARGET_END_DATA, 40, "GOMP_4.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TARGET_UPDATE, 40, "GOMP_4.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TEAMS, 40, "GOMP_4.0");
// GOMP_4.5 versioned symbols
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TASKLOOP, 45, "GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_TASKLOOP_ULL, 45, "GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_DOACROSS_POST, 45, "GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_DOACROSS_WAIT, 45, "GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_DOACROSS_STATIC_START, 45,
"GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_DOACROSS_DYNAMIC_START, 45,
"GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_DOACROSS_GUIDED_START, 45,
"GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_DOACROSS_RUNTIME_START, 45,
"GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_DOACROSS_ULL_POST, 45, "GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_DOACROSS_ULL_WAIT, 45, "GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_DOACROSS_STATIC_START, 45,
"GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_DOACROSS_DYNAMIC_START, 45,
"GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_DOACROSS_GUIDED_START, 45,
"GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_DOACROSS_RUNTIME_START, 45,
"GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_DYNAMIC_START, 45,
"GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_DYNAMIC_NEXT, 45,
"GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_GUIDED_START, 45,
"GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_GUIDED_NEXT, 45,
"GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_DYNAMIC_START, 45,
"GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_DYNAMIC_NEXT, 45,
"GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_GUIDED_START, 45,
"GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_GUIDED_NEXT, 45,
"GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_NONMONOTONIC_DYNAMIC, 45,
"GOMP_4.5");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_NONMONOTONIC_GUIDED, 45,
"GOMP_4.5");
// GOMP_5.0 versioned symbols
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_MAYBE_NONMONOTONIC_RUNTIME_NEXT, 50,
"GOMP_5.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_MAYBE_NONMONOTONIC_RUNTIME_START, 50,
"GOMP_5.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_RUNTIME_NEXT, 50,
"GOMP_5.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_NONMONOTONIC_RUNTIME_START, 50,
"GOMP_5.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_MAYBE_NONMONOTONIC_RUNTIME_NEXT,
50, "GOMP_5.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_MAYBE_NONMONOTONIC_RUNTIME_START,
50, "GOMP_5.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_RUNTIME_NEXT, 50,
"GOMP_5.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_LOOP_ULL_NONMONOTONIC_RUNTIME_START, 50,
"GOMP_5.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_NONMONOTONIC_RUNTIME, 50,
"GOMP_5.0");
KMP_VERSION_SYMBOL(KMP_API_NAME_GOMP_PARALLEL_LOOP_MAYBE_NONMONOTONIC_RUNTIME,
50, "GOMP_5.0");
#endif // KMP_USE_VERSION_SYMBOLS
#ifdef __cplusplus
} // extern "C"
#endif // __cplusplus