#if USE_ITT_BUILD
/*
* kmp_itt.inl -- Inline functions of ITT Notify.
*/
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Inline function definitions. This file should be included into kmp_itt.h file
// for production build (to let compiler inline functions) or into kmp_itt.c
// file for debug build (to reduce the number of files to recompile and save
// build time).
#include "kmp.h"
#include "kmp_str.h"
#if KMP_ITT_DEBUG
extern kmp_bootstrap_lock_t __kmp_itt_debug_lock;
#define KMP_ITT_DEBUG_LOCK() \
{ __kmp_acquire_bootstrap_lock(&__kmp_itt_debug_lock); }
#define KMP_ITT_DEBUG_PRINT(...) \
{ \
fprintf(stderr, "#%02d: ", __kmp_get_gtid()); \
fprintf(stderr, __VA_ARGS__); \
fflush(stderr); \
__kmp_release_bootstrap_lock(&__kmp_itt_debug_lock); \
}
#else
#define KMP_ITT_DEBUG_LOCK()
#define KMP_ITT_DEBUG_PRINT(...)
#endif // KMP_ITT_DEBUG
// Ensure that the functions are static if they're supposed to be being inlined.
// Otherwise they cannot be used in more than one file, since there will be
// multiple definitions.
#if KMP_DEBUG
#define LINKAGE
#else
#define LINKAGE static inline
#endif
// ZCA interface used by Intel(R) Inspector. Intel(R) Parallel Amplifier uses
// this API to support user-defined synchronization primitives, but does not use
// ZCA; it would be safe to turn this off until wider support becomes available.
#if USE_ITT_ZCA
#ifdef __INTEL_COMPILER
#if __INTEL_COMPILER >= 1200
#undef __itt_sync_acquired
#undef __itt_sync_releasing
#define __itt_sync_acquired(addr) \
__notify_zc_intrinsic((char *)"sync_acquired", addr)
#define __itt_sync_releasing(addr) \
__notify_intrinsic((char *)"sync_releasing", addr)
#endif
#endif
#endif
static kmp_bootstrap_lock_t metadata_lock =
KMP_BOOTSTRAP_LOCK_INITIALIZER(metadata_lock);
/* Parallel region reporting.
* __kmp_itt_region_forking should be called by master thread of a team.
Exact moment of call does not matter, but it should be completed before any
thread of this team calls __kmp_itt_region_starting.
* __kmp_itt_region_starting should be called by each thread of a team just
before entering parallel region body.
* __kmp_itt_region_finished should be called by each thread of a team right
after returning from parallel region body.
* __kmp_itt_region_joined should be called by master thread of a team, after
all threads called __kmp_itt_region_finished.
Note: Thread waiting at join barrier (after __kmp_itt_region_finished) can
execute some more user code -- such a thread can execute tasks.
Note: The overhead of logging region_starting and region_finished in each
thread is too large, so these calls are not used. */
LINKAGE void __kmp_itt_region_forking(int gtid, int team_size, int barriers) {
#if USE_ITT_NOTIFY
kmp_team_t *team = __kmp_team_from_gtid(gtid);
if (team->t.t_active_level > 1) {
// The frame notifications are only supported for the outermost teams.
return;
}
ident_t *loc = __kmp_thread_from_gtid(gtid)->th.th_ident;
if (loc) {
// Use the reserved_2 field to store the index to the region domain.
// Assume that reserved_2 contains zero initially. Since zero is special
// value here, store the index into domain array increased by 1.
if (loc->reserved_2 == 0) {
if (__kmp_region_domain_count < KMP_MAX_FRAME_DOMAINS) {
int frm =
KMP_TEST_THEN_INC32(&__kmp_region_domain_count); // get "old" value
if (frm >= KMP_MAX_FRAME_DOMAINS) {
KMP_TEST_THEN_DEC32(&__kmp_region_domain_count); // revert the count
return; // loc->reserved_2 is still 0
}
// if (!KMP_COMPARE_AND_STORE_ACQ32( &loc->reserved_2, 0, frm + 1 )) {
// frm = loc->reserved_2 - 1; // get value saved by other thread
// for same loc
//} // AC: this block is to replace next unsynchronized line
// We need to save indexes for both region and barrier frames. We'll use
// loc->reserved_2 field but put region index to the low two bytes and
// barrier indexes to the high two bytes. It is OK because
// KMP_MAX_FRAME_DOMAINS = 512.
loc->reserved_2 |= (frm + 1); // save "new" value
// Transform compiler-generated region location into the format
// that the tools more or less standardized on:
// "<func>$omp$parallel@[file:]<line>[:<col>]"
char *buff = NULL;
kmp_str_loc_t str_loc = __kmp_str_loc_init(loc->psource, 1);
buff = __kmp_str_format("%s$omp$parallel:%d@%s:%d:%d", str_loc.func,
team_size, str_loc.file, str_loc.line,
str_loc.col);
__itt_suppress_push(__itt_suppress_memory_errors);
__kmp_itt_region_domains[frm] = __itt_domain_create(buff);
__itt_suppress_pop();
__kmp_str_free(&buff);
if (barriers) {
if (__kmp_barrier_domain_count < KMP_MAX_FRAME_DOMAINS) {
int frm = KMP_TEST_THEN_INC32(
&__kmp_barrier_domain_count); // get "old" value
if (frm >= KMP_MAX_FRAME_DOMAINS) {
KMP_TEST_THEN_DEC32(
&__kmp_barrier_domain_count); // revert the count
return; // loc->reserved_2 is still 0
}
char *buff = NULL;
buff = __kmp_str_format("%s$omp$barrier@%s:%d", str_loc.func,
str_loc.file, str_loc.col);
__itt_suppress_push(__itt_suppress_memory_errors);
__kmp_itt_barrier_domains[frm] = __itt_domain_create(buff);
__itt_suppress_pop();
__kmp_str_free(&buff);
// Save the barrier frame index to the high two bytes.
loc->reserved_2 |= (frm + 1) << 16;
}
}
__kmp_str_loc_free(&str_loc);
__itt_frame_begin_v3(__kmp_itt_region_domains[frm], NULL);
}
} else { // Region domain exists for this location
// Check if team size was changed. Then create new region domain for this
// location
unsigned int frm = (loc->reserved_2 & 0x0000FFFF) - 1;
if ((frm < KMP_MAX_FRAME_DOMAINS) &&
(__kmp_itt_region_team_size[frm] != team_size)) {
char *buff = NULL;
kmp_str_loc_t str_loc = __kmp_str_loc_init(loc->psource, 1);
buff = __kmp_str_format("%s$omp$parallel:%d@%s:%d:%d", str_loc.func,
team_size, str_loc.file, str_loc.line,
str_loc.col);
__itt_suppress_push(__itt_suppress_memory_errors);
__kmp_itt_region_domains[frm] = __itt_domain_create(buff);
__itt_suppress_pop();
__kmp_str_free(&buff);
__kmp_str_loc_free(&str_loc);
__kmp_itt_region_team_size[frm] = team_size;
__itt_frame_begin_v3(__kmp_itt_region_domains[frm], NULL);
} else { // Team size was not changed. Use existing domain.
__itt_frame_begin_v3(__kmp_itt_region_domains[frm], NULL);
}
}
KMP_ITT_DEBUG_LOCK();
KMP_ITT_DEBUG_PRINT("[frm beg] gtid=%d, idx=%x, loc:%p\n", gtid,
loc->reserved_2, loc);
}
#endif
} // __kmp_itt_region_forking
// -----------------------------------------------------------------------------
LINKAGE void __kmp_itt_frame_submit(int gtid, __itt_timestamp begin,
__itt_timestamp end, int imbalance,
ident_t *loc, int team_size, int region) {
#if USE_ITT_NOTIFY
if (region) {
kmp_team_t *team = __kmp_team_from_gtid(gtid);
int serialized = (region == 2 ? 1 : 0);
if (team->t.t_active_level + serialized > 1) {
// The frame notifications are only supported for the outermost teams.
return;
}
// Check region domain has not been created before. It's index is saved in
// the low two bytes.
if ((loc->reserved_2 & 0x0000FFFF) == 0) {
if (__kmp_region_domain_count < KMP_MAX_FRAME_DOMAINS) {
int frm =
KMP_TEST_THEN_INC32(&__kmp_region_domain_count); // get "old" value
if (frm >= KMP_MAX_FRAME_DOMAINS) {
KMP_TEST_THEN_DEC32(&__kmp_region_domain_count); // revert the count
return; // loc->reserved_2 is still 0
}
// We need to save indexes for both region and barrier frames. We'll use
// loc->reserved_2 field but put region index to the low two bytes and
// barrier indexes to the high two bytes. It is OK because
// KMP_MAX_FRAME_DOMAINS = 512.
loc->reserved_2 |= (frm + 1); // save "new" value
// Transform compiler-generated region location into the format
// that the tools more or less standardized on:
// "<func>$omp$parallel:team_size@[file:]<line>[:<col>]"
char *buff = NULL;
kmp_str_loc_t str_loc = __kmp_str_loc_init(loc->psource, 1);
buff = __kmp_str_format("%s$omp$parallel:%d@%s:%d:%d", str_loc.func,
team_size, str_loc.file, str_loc.line,
str_loc.col);
__itt_suppress_push(__itt_suppress_memory_errors);
__kmp_itt_region_domains[frm] = __itt_domain_create(buff);
__itt_suppress_pop();
__kmp_str_free(&buff);
__kmp_str_loc_free(&str_loc);
__kmp_itt_region_team_size[frm] = team_size;
__itt_frame_submit_v3(__kmp_itt_region_domains[frm], NULL, begin, end);
}
} else { // Region domain exists for this location
// Check if team size was changed. Then create new region domain for this
// location
unsigned int frm = (loc->reserved_2 & 0x0000FFFF) - 1;
if ((frm < KMP_MAX_FRAME_DOMAINS) &&
(__kmp_itt_region_team_size[frm] != team_size)) {
char *buff = NULL;
kmp_str_loc_t str_loc = __kmp_str_loc_init(loc->psource, 1);
buff = __kmp_str_format("%s$omp$parallel:%d@%s:%d:%d", str_loc.func,
team_size, str_loc.file, str_loc.line,
str_loc.col);
__itt_suppress_push(__itt_suppress_memory_errors);
__kmp_itt_region_domains[frm] = __itt_domain_create(buff);
__itt_suppress_pop();
__kmp_str_free(&buff);
__kmp_str_loc_free(&str_loc);
__kmp_itt_region_team_size[frm] = team_size;
__itt_frame_submit_v3(__kmp_itt_region_domains[frm], NULL, begin, end);
} else { // Team size was not changed. Use existing domain.
__itt_frame_submit_v3(__kmp_itt_region_domains[frm], NULL, begin, end);
}
}
KMP_ITT_DEBUG_LOCK();
KMP_ITT_DEBUG_PRINT(
"[reg sub] gtid=%d, idx=%x, region:%d, loc:%p, beg:%llu, end:%llu\n",
gtid, loc->reserved_2, region, loc, begin, end);
return;
} else { // called for barrier reporting
if (loc) {
if ((loc->reserved_2 & 0xFFFF0000) == 0) {
if (__kmp_barrier_domain_count < KMP_MAX_FRAME_DOMAINS) {
int frm = KMP_TEST_THEN_INC32(
&__kmp_barrier_domain_count); // get "old" value
if (frm >= KMP_MAX_FRAME_DOMAINS) {
KMP_TEST_THEN_DEC32(
&__kmp_barrier_domain_count); // revert the count
return; // loc->reserved_2 is still 0
}
// Save the barrier frame index to the high two bytes.
loc->reserved_2 |= (frm + 1) << 16; // save "new" value
// Transform compiler-generated region location into the format
// that the tools more or less standardized on:
// "<func>$omp$frame@[file:]<line>[:<col>]"
kmp_str_loc_t str_loc = __kmp_str_loc_init(loc->psource, 1);
if (imbalance) {
char *buff_imb = NULL;
buff_imb = __kmp_str_format("%s$omp$barrier-imbalance:%d@%s:%d",
str_loc.func, team_size, str_loc.file,
str_loc.col);
__itt_suppress_push(__itt_suppress_memory_errors);
__kmp_itt_imbalance_domains[frm] = __itt_domain_create(buff_imb);
__itt_suppress_pop();
__itt_frame_submit_v3(__kmp_itt_imbalance_domains[frm], NULL, begin,
end);
__kmp_str_free(&buff_imb);
} else {
char *buff = NULL;
buff = __kmp_str_format("%s$omp$barrier@%s:%d", str_loc.func,
str_loc.file, str_loc.col);
__itt_suppress_push(__itt_suppress_memory_errors);
__kmp_itt_barrier_domains[frm] = __itt_domain_create(buff);
__itt_suppress_pop();
__itt_frame_submit_v3(__kmp_itt_barrier_domains[frm], NULL, begin,
end);
__kmp_str_free(&buff);
}
__kmp_str_loc_free(&str_loc);
}
} else { // if it is not 0 then it should be <= KMP_MAX_FRAME_DOMAINS
if (imbalance) {
__itt_frame_submit_v3(
__kmp_itt_imbalance_domains[(loc->reserved_2 >> 16) - 1], NULL,
begin, end);
} else {
__itt_frame_submit_v3(
__kmp_itt_barrier_domains[(loc->reserved_2 >> 16) - 1], NULL,
begin, end);
}
}
KMP_ITT_DEBUG_LOCK();
KMP_ITT_DEBUG_PRINT(
"[frm sub] gtid=%d, idx=%x, loc:%p, beg:%llu, end:%llu\n", gtid,
loc->reserved_2, loc, begin, end);
}
}
#endif
} // __kmp_itt_frame_submit
// -----------------------------------------------------------------------------
LINKAGE void __kmp_itt_metadata_imbalance(int gtid, kmp_uint64 begin,
kmp_uint64 end, kmp_uint64 imbalance,
kmp_uint64 reduction) {
#if USE_ITT_NOTIFY
if (metadata_domain == NULL) {
__kmp_acquire_bootstrap_lock(&metadata_lock);
if (metadata_domain == NULL) {
__itt_suppress_push(__itt_suppress_memory_errors);
metadata_domain = __itt_domain_create("OMP Metadata");
string_handle_imbl = __itt_string_handle_create("omp_metadata_imbalance");
string_handle_loop = __itt_string_handle_create("omp_metadata_loop");
string_handle_sngl = __itt_string_handle_create("omp_metadata_single");
__itt_suppress_pop();
}
__kmp_release_bootstrap_lock(&metadata_lock);
}
kmp_uint64 imbalance_data[4];
imbalance_data[0] = begin;
imbalance_data[1] = end;
imbalance_data[2] = imbalance;
imbalance_data[3] = reduction;
__itt_metadata_add(metadata_domain, __itt_null, string_handle_imbl,
__itt_metadata_u64, 4, imbalance_data);
#endif
} // __kmp_itt_metadata_imbalance
// -----------------------------------------------------------------------------
LINKAGE void __kmp_itt_metadata_loop(ident_t *loc, kmp_uint64 sched_type,
kmp_uint64 iterations, kmp_uint64 chunk) {
#if USE_ITT_NOTIFY
if (metadata_domain == NULL) {
__kmp_acquire_bootstrap_lock(&metadata_lock);
if (metadata_domain == NULL) {
__itt_suppress_push(__itt_suppress_memory_errors);
metadata_domain = __itt_domain_create("OMP Metadata");
string_handle_imbl = __itt_string_handle_create("omp_metadata_imbalance");
string_handle_loop = __itt_string_handle_create("omp_metadata_loop");
string_handle_sngl = __itt_string_handle_create("omp_metadata_single");
__itt_suppress_pop();
}
__kmp_release_bootstrap_lock(&metadata_lock);
}
// Parse line and column from psource string: ";file;func;line;col;;"
char *s_line;
char *s_col;
KMP_DEBUG_ASSERT(loc->psource);
#ifdef __cplusplus
s_line = strchr(CCAST(char *, loc->psource), ';');
#else
s_line = strchr(loc->psource, ';');
#endif
KMP_DEBUG_ASSERT(s_line);
s_line = strchr(s_line + 1, ';'); // 2-nd semicolon
KMP_DEBUG_ASSERT(s_line);
s_line = strchr(s_line + 1, ';'); // 3-rd semicolon
KMP_DEBUG_ASSERT(s_line);
s_col = strchr(s_line + 1, ';'); // 4-th semicolon
KMP_DEBUG_ASSERT(s_col);
kmp_uint64 loop_data[5];
loop_data[0] = atoi(s_line + 1); // read line
loop_data[1] = atoi(s_col + 1); // read column
loop_data[2] = sched_type;
loop_data[3] = iterations;
loop_data[4] = chunk;
__itt_metadata_add(metadata_domain, __itt_null, string_handle_loop,
__itt_metadata_u64, 5, loop_data);
#endif
} // __kmp_itt_metadata_loop
// -----------------------------------------------------------------------------
LINKAGE void __kmp_itt_metadata_single(ident_t *loc) {
#if USE_ITT_NOTIFY
if (metadata_domain == NULL) {
__kmp_acquire_bootstrap_lock(&metadata_lock);
if (metadata_domain == NULL) {
__itt_suppress_push(__itt_suppress_memory_errors);
metadata_domain = __itt_domain_create("OMP Metadata");
string_handle_imbl = __itt_string_handle_create("omp_metadata_imbalance");
string_handle_loop = __itt_string_handle_create("omp_metadata_loop");
string_handle_sngl = __itt_string_handle_create("omp_metadata_single");
__itt_suppress_pop();
}
__kmp_release_bootstrap_lock(&metadata_lock);
}
kmp_str_loc_t str_loc = __kmp_str_loc_init(loc->psource, 1);
kmp_uint64 single_data[2];
single_data[0] = str_loc.line;
single_data[1] = str_loc.col;
__kmp_str_loc_free(&str_loc);
__itt_metadata_add(metadata_domain, __itt_null, string_handle_sngl,
__itt_metadata_u64, 2, single_data);
#endif
} // __kmp_itt_metadata_single
// -----------------------------------------------------------------------------
LINKAGE void __kmp_itt_region_starting(int gtid) {
#if USE_ITT_NOTIFY
#endif
} // __kmp_itt_region_starting
// -----------------------------------------------------------------------------
LINKAGE void __kmp_itt_region_finished(int gtid) {
#if USE_ITT_NOTIFY
#endif
} // __kmp_itt_region_finished
// ----------------------------------------------------------------------------
LINKAGE void __kmp_itt_region_joined(int gtid) {
#if USE_ITT_NOTIFY
kmp_team_t *team = __kmp_team_from_gtid(gtid);
if (team->t.t_active_level > 1) {
// The frame notifications are only supported for the outermost teams.
return;
}
ident_t *loc = __kmp_thread_from_gtid(gtid)->th.th_ident;
if (loc && loc->reserved_2) {
unsigned int frm = (loc->reserved_2 & 0x0000FFFF) - 1;
if (frm < KMP_MAX_FRAME_DOMAINS) {
KMP_ITT_DEBUG_LOCK();
__itt_frame_end_v3(__kmp_itt_region_domains[frm], NULL);
KMP_ITT_DEBUG_PRINT("[frm end] gtid=%d, idx=%x, loc:%p\n", gtid,
loc->reserved_2, loc);
}
}
#endif
} // __kmp_itt_region_joined
/* Barriers reporting.
A barrier consists of two phases:
1. Gather -- master waits for arriving of all the worker threads; each
worker thread registers arrival and goes further.
2. Release -- each worker threads waits until master lets it go; master lets
worker threads go.
Function should be called by each thread:
* __kmp_itt_barrier_starting() -- before arriving to the gather phase.
* __kmp_itt_barrier_middle() -- between gather and release phases.
* __kmp_itt_barrier_finished() -- after release phase.
Note: Call __kmp_itt_barrier_object() before call to
__kmp_itt_barrier_starting() and save result in local variable.
__kmp_itt_barrier_object(), being called too late (e. g. after gather phase)
would return itt sync object for the next barrier!
ITT need an address (void *) to be specified as a sync object. OpenMP RTL
does not have barrier object or barrier data structure. Barrier is just a
counter in team and thread structures. We could use an address of team
structure as a barrier sync object, but ITT wants different objects for
different barriers (even whithin the same team). So let us use team address
as barrier sync object for the first barrier, then increase it by one for the
next barrier, and so on (but wrap it not to use addresses outside of team
structure). */
void *__kmp_itt_barrier_object(int gtid, int bt, int set_name,
int delta // 0 (current barrier) is default
// value; specify -1 to get previous
// barrier.
) {
void *object = NULL;
#if USE_ITT_NOTIFY
kmp_info_t *thr = __kmp_thread_from_gtid(gtid);
kmp_team_t *team = thr->th.th_team;
// NOTE: If the function is called from __kmp_fork_barrier, team pointer can
// be NULL. This "if" helps to avoid crash. However, this is not complete
// solution, and reporting fork/join barriers to ITT should be revisited.
if (team != NULL) {
// Master thread increases b_arrived by KMP_BARRIER_STATE_BUMP each time.
// Divide b_arrived by KMP_BARRIER_STATE_BUMP to get plain barrier counter.
kmp_uint64 counter =
team->t.t_bar[bt].b_arrived / KMP_BARRIER_STATE_BUMP + delta;
// Now form the barrier id. Encode barrier type (bt) in barrier id too, so
// barriers of different types do not have the same ids.
KMP_BUILD_ASSERT(sizeof(kmp_team_t) >= bs_last_barrier);
// This condition is a must (we would have zero divide otherwise).
KMP_BUILD_ASSERT(sizeof(kmp_team_t) >= 2 * bs_last_barrier);
// More strong condition: make sure we have room at least for for two
// different ids (for each barrier type).
object = reinterpret_cast<void *>(
kmp_uintptr_t(team) +
counter % (sizeof(kmp_team_t) / bs_last_barrier) * bs_last_barrier +
bt);
KMP_ITT_DEBUG_LOCK();
KMP_ITT_DEBUG_PRINT("[bar obj] type=%d, counter=%lld, object=%p\n", bt,
counter, object);
if (set_name) {
ident_t const *loc = NULL;
char const *src = NULL;
char const *type = "OMP Barrier";
switch (bt) {
case bs_plain_barrier: {
// For plain barrier compiler calls __kmpc_barrier() function, which
// saves location in thr->th.th_ident.
loc = thr->th.th_ident;
// Get the barrier type from flags provided by compiler.
kmp_int32 expl = 0;
kmp_uint32 impl = 0;
if (loc != NULL) {
src = loc->psource;
expl = (loc->flags & KMP_IDENT_BARRIER_EXPL) != 0;
impl = (loc->flags & KMP_IDENT_BARRIER_IMPL) != 0;
}
if (impl) {
switch (loc->flags & KMP_IDENT_BARRIER_IMPL_MASK) {
case KMP_IDENT_BARRIER_IMPL_FOR: {
type = "OMP For Barrier";
} break;
case KMP_IDENT_BARRIER_IMPL_SECTIONS: {
type = "OMP Sections Barrier";
} break;
case KMP_IDENT_BARRIER_IMPL_SINGLE: {
type = "OMP Single Barrier";
} break;
case KMP_IDENT_BARRIER_IMPL_WORKSHARE: {
type = "OMP Workshare Barrier";
} break;
default: {
type = "OMP Implicit Barrier";
KMP_DEBUG_ASSERT(0);
}
}
} else if (expl) {
type = "OMP Explicit Barrier";
}
} break;
case bs_forkjoin_barrier: {
// In case of fork/join barrier we can read thr->th.th_ident, because it
// contains location of last passed construct (while join barrier is not
// such one). Use th_ident of master thread instead -- __kmp_join_call()
// called by the master thread saves location.
//
// AC: cannot read from master because __kmp_join_call may be not called
// yet, so we read the location from team. This is the same location.
// And team is valid at the enter to join barrier where this happens.
loc = team->t.t_ident;
if (loc != NULL) {
src = loc->psource;
}
type = "OMP Join Barrier";
} break;
}
KMP_ITT_DEBUG_LOCK();
__itt_sync_create(object, type, src, __itt_attr_barrier);
KMP_ITT_DEBUG_PRINT(
"[bar sta] scre( %p, \"%s\", \"%s\", __itt_attr_barrier )\n", object,
type, src);
}
}
#endif
return object;
} // __kmp_itt_barrier_object
// -----------------------------------------------------------------------------
void __kmp_itt_barrier_starting(int gtid, void *object) {
#if USE_ITT_NOTIFY
if (!KMP_MASTER_GTID(gtid)) {
KMP_ITT_DEBUG_LOCK();
__itt_sync_releasing(object);
KMP_ITT_DEBUG_PRINT("[bar sta] srel( %p )\n", object);
}
KMP_ITT_DEBUG_LOCK();
__itt_sync_prepare(object);
KMP_ITT_DEBUG_PRINT("[bar sta] spre( %p )\n", object);
#endif
} // __kmp_itt_barrier_starting
// -----------------------------------------------------------------------------
void __kmp_itt_barrier_middle(int gtid, void *object) {
#if USE_ITT_NOTIFY
if (KMP_MASTER_GTID(gtid)) {
KMP_ITT_DEBUG_LOCK();
__itt_sync_acquired(object);
KMP_ITT_DEBUG_PRINT("[bar mid] sacq( %p )\n", object);
KMP_ITT_DEBUG_LOCK();
__itt_sync_releasing(object);
KMP_ITT_DEBUG_PRINT("[bar mid] srel( %p )\n", object);
} else {
}
#endif
} // __kmp_itt_barrier_middle
// -----------------------------------------------------------------------------
void __kmp_itt_barrier_finished(int gtid, void *object) {
#if USE_ITT_NOTIFY
if (KMP_MASTER_GTID(gtid)) {
} else {
KMP_ITT_DEBUG_LOCK();
__itt_sync_acquired(object);
KMP_ITT_DEBUG_PRINT("[bar end] sacq( %p )\n", object);
}
#endif
} // __kmp_itt_barrier_finished
/* Taskwait reporting.
ITT need an address (void *) to be specified as a sync object. OpenMP RTL
does not have taskwait structure, so we need to construct something. */
void *__kmp_itt_taskwait_object(int gtid) {
void *object = NULL;
#if USE_ITT_NOTIFY
if (__itt_sync_create_ptr) {
kmp_info_t *thread = __kmp_thread_from_gtid(gtid);
kmp_taskdata_t *taskdata = thread->th.th_current_task;
object = reinterpret_cast<void *>(kmp_uintptr_t(taskdata) +
taskdata->td_taskwait_counter %
sizeof(kmp_taskdata_t));
}
#endif
return object;
} // __kmp_itt_taskwait_object
void __kmp_itt_taskwait_starting(int gtid, void *object) {
#if USE_ITT_NOTIFY
kmp_info_t *thread = __kmp_thread_from_gtid(gtid);
kmp_taskdata_t *taskdata = thread->th.th_current_task;
ident_t const *loc = taskdata->td_taskwait_ident;
char const *src = (loc == NULL ? NULL : loc->psource);
KMP_ITT_DEBUG_LOCK();
__itt_sync_create(object, "OMP Taskwait", src, 0);
KMP_ITT_DEBUG_PRINT("[twa sta] scre( %p, \"OMP Taskwait\", \"%s\", 0 )\n",
object, src);
KMP_ITT_DEBUG_LOCK();
__itt_sync_prepare(object);
KMP_ITT_DEBUG_PRINT("[twa sta] spre( %p )\n", object);
#endif
} // __kmp_itt_taskwait_starting
void __kmp_itt_taskwait_finished(int gtid, void *object) {
#if USE_ITT_NOTIFY
KMP_ITT_DEBUG_LOCK();
__itt_sync_acquired(object);
KMP_ITT_DEBUG_PRINT("[twa end] sacq( %p )\n", object);
KMP_ITT_DEBUG_LOCK();
__itt_sync_destroy(object);
KMP_ITT_DEBUG_PRINT("[twa end] sdes( %p )\n", object);
#endif
} // __kmp_itt_taskwait_finished
/* Task reporting.
Only those tasks are reported which are executed by a thread spinning at
barrier (or taskwait). Synch object passed to the function must be barrier of
taskwait the threads waiting at. */
void __kmp_itt_task_starting(
void *object // ITT sync object: barrier or taskwait.
) {
#if USE_ITT_NOTIFY
if (object != NULL) {
KMP_ITT_DEBUG_LOCK();
__itt_sync_cancel(object);
KMP_ITT_DEBUG_PRINT("[tsk sta] scan( %p )\n", object);
}
#endif
} // __kmp_itt_task_starting
// -----------------------------------------------------------------------------
void __kmp_itt_task_finished(
void *object // ITT sync object: barrier or taskwait.
) {
#if USE_ITT_NOTIFY
KMP_ITT_DEBUG_LOCK();
__itt_sync_prepare(object);
KMP_ITT_DEBUG_PRINT("[tsk end] spre( %p )\n", object);
#endif
} // __kmp_itt_task_finished
/* Lock reporting.
* __kmp_itt_lock_creating( lock ) should be called *before* the first lock
operation (set/unset). It is not a real event shown to the user but just
setting a name for synchronization object. `lock' is an address of sync
object, the same address should be used in all subsequent calls.
* __kmp_itt_lock_acquiring() should be called before setting the lock.
* __kmp_itt_lock_acquired() should be called after setting the lock.
* __kmp_itt_lock_realeasing() should be called before unsetting the lock.
* __kmp_itt_lock_cancelled() should be called after thread cancelled waiting
for the lock.
* __kmp_itt_lock_destroyed( lock ) should be called after the last lock
operation. After __kmp_itt_lock_destroyed() all the references to the same
address will be considered as another sync object, not related with the
original one. */
#if KMP_USE_DYNAMIC_LOCK
// Takes location information directly
__kmp_inline void ___kmp_itt_lock_init(kmp_user_lock_p lock, char const *type,
const ident_t *loc) {
#if USE_ITT_NOTIFY
if (__itt_sync_create_ptr) {
char const *src = (loc == NULL ? NULL : loc->psource);
KMP_ITT_DEBUG_LOCK();
__itt_sync_create(lock, type, src, 0);
KMP_ITT_DEBUG_PRINT("[lck ini] scre( %p, \"%s\", \"%s\", 0 )\n", lock, type,
src);
}
#endif
}
#else // KMP_USE_DYNAMIC_LOCK
// Internal guts -- common code for locks and critical sections, do not call
// directly.
__kmp_inline void ___kmp_itt_lock_init(kmp_user_lock_p lock, char const *type) {
#if USE_ITT_NOTIFY
if (__itt_sync_create_ptr) {
ident_t const *loc = NULL;
if (__kmp_get_user_lock_location_ != NULL)
loc = __kmp_get_user_lock_location_((lock));
char const *src = (loc == NULL ? NULL : loc->psource);
KMP_ITT_DEBUG_LOCK();
__itt_sync_create(lock, type, src, 0);
KMP_ITT_DEBUG_PRINT("[lck ini] scre( %p, \"%s\", \"%s\", 0 )\n", lock, type,
src);
}
#endif
} // ___kmp_itt_lock_init
#endif // KMP_USE_DYNAMIC_LOCK
// Internal guts -- common code for locks and critical sections, do not call
// directly.
__kmp_inline void ___kmp_itt_lock_fini(kmp_user_lock_p lock, char const *type) {
#if USE_ITT_NOTIFY
KMP_ITT_DEBUG_LOCK();
__itt_sync_destroy(lock);
KMP_ITT_DEBUG_PRINT("[lck dst] sdes( %p )\n", lock);
#endif
} // ___kmp_itt_lock_fini
// -----------------------------------------------------------------------------
#if KMP_USE_DYNAMIC_LOCK
void __kmp_itt_lock_creating(kmp_user_lock_p lock, const ident_t *loc) {
___kmp_itt_lock_init(lock, "OMP Lock", loc);
}
#else
void __kmp_itt_lock_creating(kmp_user_lock_p lock) {
___kmp_itt_lock_init(lock, "OMP Lock");
} // __kmp_itt_lock_creating
#endif
void __kmp_itt_lock_acquiring(kmp_user_lock_p lock) {
#if KMP_USE_DYNAMIC_LOCK && USE_ITT_NOTIFY
// postpone lock object access
if (__itt_sync_prepare_ptr) {
if (KMP_EXTRACT_D_TAG(lock) == 0) {
kmp_indirect_lock_t *ilk = KMP_LOOKUP_I_LOCK(lock);
__itt_sync_prepare(ilk->lock);
} else {
__itt_sync_prepare(lock);
}
}
#else
__itt_sync_prepare(lock);
#endif
} // __kmp_itt_lock_acquiring
void __kmp_itt_lock_acquired(kmp_user_lock_p lock) {
#if KMP_USE_DYNAMIC_LOCK && USE_ITT_NOTIFY
// postpone lock object access
if (__itt_sync_acquired_ptr) {
if (KMP_EXTRACT_D_TAG(lock) == 0) {
kmp_indirect_lock_t *ilk = KMP_LOOKUP_I_LOCK(lock);
__itt_sync_acquired(ilk->lock);
} else {
__itt_sync_acquired(lock);
}
}
#else
__itt_sync_acquired(lock);
#endif
} // __kmp_itt_lock_acquired
void __kmp_itt_lock_releasing(kmp_user_lock_p lock) {
#if KMP_USE_DYNAMIC_LOCK && USE_ITT_NOTIFY
if (__itt_sync_releasing_ptr) {
if (KMP_EXTRACT_D_TAG(lock) == 0) {
kmp_indirect_lock_t *ilk = KMP_LOOKUP_I_LOCK(lock);
__itt_sync_releasing(ilk->lock);
} else {
__itt_sync_releasing(lock);
}
}
#else
__itt_sync_releasing(lock);
#endif
} // __kmp_itt_lock_releasing
void __kmp_itt_lock_cancelled(kmp_user_lock_p lock) {
#if KMP_USE_DYNAMIC_LOCK && USE_ITT_NOTIFY
if (__itt_sync_cancel_ptr) {
if (KMP_EXTRACT_D_TAG(lock) == 0) {
kmp_indirect_lock_t *ilk = KMP_LOOKUP_I_LOCK(lock);
__itt_sync_cancel(ilk->lock);
} else {
__itt_sync_cancel(lock);
}
}
#else
__itt_sync_cancel(lock);
#endif
} // __kmp_itt_lock_cancelled
void __kmp_itt_lock_destroyed(kmp_user_lock_p lock) {
___kmp_itt_lock_fini(lock, "OMP Lock");
} // __kmp_itt_lock_destroyed
/* Critical reporting.
Critical sections are treated exactly as locks (but have different object
type). */
#if KMP_USE_DYNAMIC_LOCK
void __kmp_itt_critical_creating(kmp_user_lock_p lock, const ident_t *loc) {
___kmp_itt_lock_init(lock, "OMP Critical", loc);
}
#else
void __kmp_itt_critical_creating(kmp_user_lock_p lock) {
___kmp_itt_lock_init(lock, "OMP Critical");
} // __kmp_itt_critical_creating
#endif
void __kmp_itt_critical_acquiring(kmp_user_lock_p lock) {
__itt_sync_prepare(lock);
} // __kmp_itt_critical_acquiring
void __kmp_itt_critical_acquired(kmp_user_lock_p lock) {
__itt_sync_acquired(lock);
} // __kmp_itt_critical_acquired
void __kmp_itt_critical_releasing(kmp_user_lock_p lock) {
__itt_sync_releasing(lock);
} // __kmp_itt_critical_releasing
void __kmp_itt_critical_destroyed(kmp_user_lock_p lock) {
___kmp_itt_lock_fini(lock, "OMP Critical");
} // __kmp_itt_critical_destroyed
/* Single reporting. */
void __kmp_itt_single_start(int gtid) {
#if USE_ITT_NOTIFY
if (__itt_mark_create_ptr || KMP_ITT_DEBUG) {
kmp_info_t *thr = __kmp_thread_from_gtid((gtid));
ident_t *loc = thr->th.th_ident;
char const *src = (loc == NULL ? NULL : loc->psource);
kmp_str_buf_t name;
__kmp_str_buf_init(&name);
__kmp_str_buf_print(&name, "OMP Single-%s", src);
KMP_ITT_DEBUG_LOCK();
thr->th.th_itt_mark_single = __itt_mark_create(name.str);
KMP_ITT_DEBUG_PRINT("[sin sta] mcre( \"%s\") -> %d\n", name.str,
thr->th.th_itt_mark_single);
__kmp_str_buf_free(&name);
KMP_ITT_DEBUG_LOCK();
__itt_mark(thr->th.th_itt_mark_single, NULL);
KMP_ITT_DEBUG_PRINT("[sin sta] mark( %d, NULL )\n",
thr->th.th_itt_mark_single);
}
#endif
} // __kmp_itt_single_start
void __kmp_itt_single_end(int gtid) {
#if USE_ITT_NOTIFY
__itt_mark_type mark = __kmp_thread_from_gtid(gtid)->th.th_itt_mark_single;
KMP_ITT_DEBUG_LOCK();
__itt_mark_off(mark);
KMP_ITT_DEBUG_PRINT("[sin end] moff( %d )\n", mark);
#endif
} // __kmp_itt_single_end
/* Ordered reporting.
* __kmp_itt_ordered_init is called by each thread *before* first using sync
object. ITT team would like it to be called once, but it requires extra
synchronization.
* __kmp_itt_ordered_prep is called when thread is going to enter ordered
section (before synchronization).
* __kmp_itt_ordered_start is called just before entering user code (after
synchronization).
* __kmp_itt_ordered_end is called after returning from user code.
Sync object is th->th.th_dispatch->th_dispatch_sh_current.
Events are not generated in case of serialized team. */
void __kmp_itt_ordered_init(int gtid) {
#if USE_ITT_NOTIFY
if (__itt_sync_create_ptr) {
kmp_info_t *thr = __kmp_thread_from_gtid(gtid);
ident_t const *loc = thr->th.th_ident;
char const *src = (loc == NULL ? NULL : loc->psource);
__itt_sync_create(thr->th.th_dispatch->th_dispatch_sh_current,
"OMP Ordered", src, 0);
}
#endif
} // __kmp_itt_ordered_init
void __kmp_itt_ordered_prep(int gtid) {
#if USE_ITT_NOTIFY
if (__itt_sync_create_ptr) {
kmp_team_t *t = __kmp_team_from_gtid(gtid);
if (!t->t.t_serialized) {
kmp_info_t *th = __kmp_thread_from_gtid(gtid);
__itt_sync_prepare(th->th.th_dispatch->th_dispatch_sh_current);
}
}
#endif
} // __kmp_itt_ordered_prep
void __kmp_itt_ordered_start(int gtid) {
#if USE_ITT_NOTIFY
if (__itt_sync_create_ptr) {
kmp_team_t *t = __kmp_team_from_gtid(gtid);
if (!t->t.t_serialized) {
kmp_info_t *th = __kmp_thread_from_gtid(gtid);
__itt_sync_acquired(th->th.th_dispatch->th_dispatch_sh_current);
}
}
#endif
} // __kmp_itt_ordered_start
void __kmp_itt_ordered_end(int gtid) {
#if USE_ITT_NOTIFY
if (__itt_sync_create_ptr) {
kmp_team_t *t = __kmp_team_from_gtid(gtid);
if (!t->t.t_serialized) {
kmp_info_t *th = __kmp_thread_from_gtid(gtid);
__itt_sync_releasing(th->th.th_dispatch->th_dispatch_sh_current);
}
}
#endif
} // __kmp_itt_ordered_end
/* Threads reporting. */
void __kmp_itt_thread_ignore() {
__itt_thr_ignore();
} // __kmp_itt_thread_ignore
void __kmp_itt_thread_name(int gtid) {
#if USE_ITT_NOTIFY
if (__itt_thr_name_set_ptr) {
kmp_str_buf_t name;
__kmp_str_buf_init(&name);
if (KMP_MASTER_GTID(gtid)) {
__kmp_str_buf_print(&name, "OMP Master Thread #%d", gtid);
} else {
__kmp_str_buf_print(&name, "OMP Worker Thread #%d", gtid);
}
KMP_ITT_DEBUG_LOCK();
__itt_thr_name_set(name.str, name.used);
KMP_ITT_DEBUG_PRINT("[thr nam] name( \"%s\")\n", name.str);
__kmp_str_buf_free(&name);
}
#endif
} // __kmp_itt_thread_name
/* System object reporting.
ITT catches operations with system sync objects (like Windows* OS on IA-32
architecture API critical sections and events). We only need to specify
name ("OMP Scheduler") for the object to let ITT know it is an object used
by OpenMP RTL for internal purposes. */
void __kmp_itt_system_object_created(void *object, char const *name) {
#if USE_ITT_NOTIFY
KMP_ITT_DEBUG_LOCK();
__itt_sync_create(object, "OMP Scheduler", name, 0);
KMP_ITT_DEBUG_PRINT("[sys obj] scre( %p, \"OMP Scheduler\", \"%s\", 0 )\n",
object, name);
#endif
} // __kmp_itt_system_object_created
/* Stack stitching api.
Master calls "create" and put the stitching id into team structure.
Workers read the stitching id and call "enter" / "leave" api.
Master calls "destroy" at the end of the parallel region. */
__itt_caller __kmp_itt_stack_caller_create() {
#if USE_ITT_NOTIFY
if (!__itt_stack_caller_create_ptr)
return NULL;
KMP_ITT_DEBUG_LOCK();
__itt_caller id = __itt_stack_caller_create();
KMP_ITT_DEBUG_PRINT("[stk cre] %p\n", id);
return id;
#endif
return NULL;
}
void __kmp_itt_stack_caller_destroy(__itt_caller id) {
#if USE_ITT_NOTIFY
if (__itt_stack_caller_destroy_ptr) {
KMP_ITT_DEBUG_LOCK();
__itt_stack_caller_destroy(id);
KMP_ITT_DEBUG_PRINT("[stk des] %p\n", id);
}
#endif
}
void __kmp_itt_stack_callee_enter(__itt_caller id) {
#if USE_ITT_NOTIFY
if (__itt_stack_callee_enter_ptr) {
KMP_ITT_DEBUG_LOCK();
__itt_stack_callee_enter(id);
KMP_ITT_DEBUG_PRINT("[stk ent] %p\n", id);
}
#endif
}
void __kmp_itt_stack_callee_leave(__itt_caller id) {
#if USE_ITT_NOTIFY
if (__itt_stack_callee_leave_ptr) {
KMP_ITT_DEBUG_LOCK();
__itt_stack_callee_leave(id);
KMP_ITT_DEBUG_PRINT("[stk lea] %p\n", id);
}
#endif
}
#endif /* USE_ITT_BUILD */