/* $NetBSD: ppc_reloc.c,v 1.10 2001/09/10 06:09:41 mycroft Exp $ */
/*-
* SPDX-License-Identifier: BSD-2-Clause-NetBSD
*
* Copyright (C) 1998 Tsubai Masanari
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/mman.h>
#include <sys/sysctl.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <machine/cpu.h>
#include <machine/md_var.h>
#include "debug.h"
#include "rtld.h"
#if !defined(_CALL_ELF) || _CALL_ELF == 1
struct funcdesc {
Elf_Addr addr;
Elf_Addr toc;
Elf_Addr env;
};
#endif
/*
* Process the R_PPC_COPY relocations
*/
int
do_copy_relocations(Obj_Entry *dstobj)
{
const Elf_Rela *relalim;
const Elf_Rela *rela;
/*
* COPY relocs are invalid outside of the main program
*/
assert(dstobj->mainprog);
relalim = (const Elf_Rela *)((const char *) dstobj->rela +
dstobj->relasize);
for (rela = dstobj->rela; rela < relalim; rela++) {
void *dstaddr;
const Elf_Sym *dstsym;
const char *name;
size_t size;
const void *srcaddr;
const Elf_Sym *srcsym = NULL;
const Obj_Entry *srcobj, *defobj;
SymLook req;
int res;
if (ELF_R_TYPE(rela->r_info) != R_PPC_COPY) {
continue;
}
dstaddr = (void *)(dstobj->relocbase + rela->r_offset);
dstsym = dstobj->symtab + ELF_R_SYM(rela->r_info);
name = dstobj->strtab + dstsym->st_name;
size = dstsym->st_size;
symlook_init(&req, name);
req.ventry = fetch_ventry(dstobj, ELF_R_SYM(rela->r_info));
req.flags = SYMLOOK_EARLY;
for (srcobj = globallist_next(dstobj); srcobj != NULL;
srcobj = globallist_next(srcobj)) {
res = symlook_obj(&req, srcobj);
if (res == 0) {
srcsym = req.sym_out;
defobj = req.defobj_out;
break;
}
}
if (srcobj == NULL) {
_rtld_error("Undefined symbol \"%s\" "
" referenced from COPY"
" relocation in %s", name, dstobj->path);
return (-1);
}
srcaddr = (const void *)(defobj->relocbase+srcsym->st_value);
memcpy(dstaddr, srcaddr, size);
dbg("copy_reloc: src=%p,dst=%p,size=%zd\n",srcaddr,dstaddr,size);
}
return (0);
}
/*
* Perform early relocation of the run-time linker image
*/
void
reloc_non_plt_self(Elf_Dyn *dynp, Elf_Addr relocbase)
{
const Elf_Rela *rela = NULL, *relalim;
Elf_Addr relasz = 0;
Elf_Addr *where;
/*
* Extract the rela/relasz values from the dynamic section
*/
for (; dynp->d_tag != DT_NULL; dynp++) {
switch (dynp->d_tag) {
case DT_RELA:
rela = (const Elf_Rela *)(relocbase+dynp->d_un.d_ptr);
break;
case DT_RELASZ:
relasz = dynp->d_un.d_val;
break;
}
}
/*
* Relocate these values
*/
relalim = (const Elf_Rela *)((const char *)rela + relasz);
for (; rela < relalim; rela++) {
where = (Elf_Addr *)(relocbase + rela->r_offset);
*where = (Elf_Addr)(relocbase + rela->r_addend);
}
}
/*
* Relocate a non-PLT object with addend.
*/
static int
reloc_nonplt_object(Obj_Entry *obj_rtld __unused, Obj_Entry *obj,
const Elf_Rela *rela, SymCache *cache, int flags, RtldLockState *lockstate)
{
const Elf_Sym *def = NULL;
const Obj_Entry *defobj;
Elf_Addr *where, symval = 0;
/*
* First, resolve symbol for relocations which
* reference symbols.
*/
switch (ELF_R_TYPE(rela->r_info)) {
case R_PPC64_UADDR64: /* doubleword64 S + A */
case R_PPC64_ADDR64:
case R_PPC_GLOB_DAT:
case R_PPC64_DTPMOD64:
case R_PPC64_TPREL64:
case R_PPC64_DTPREL64:
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
flags, cache, lockstate);
if (def == NULL) {
return (-1);
}
/*
* If symbol is IFUNC, only perform relocation
* when caller allowed it by passing
* SYMLOOK_IFUNC flag. Skip the relocations
* otherwise.
*
* Also error out in case IFUNC relocations
* are specified for TLS, which cannot be
* usefully interpreted.
*/
if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) {
switch (ELF_R_TYPE(rela->r_info)) {
case R_PPC64_UADDR64:
case R_PPC64_ADDR64:
case R_PPC_GLOB_DAT:
if ((flags & SYMLOOK_IFUNC) == 0) {
dbg("Non-PLT reference to IFUNC found!");
obj->non_plt_gnu_ifunc = true;
return (0);
}
symval = (Elf_Addr)rtld_resolve_ifunc(
defobj, def);
break;
default:
_rtld_error("%s: IFUNC for TLS reloc",
obj->path);
return (-1);
}
} else {
if ((flags & SYMLOOK_IFUNC) != 0)
return (0);
symval = (Elf_Addr)defobj->relocbase +
def->st_value;
}
break;
default:
if ((flags & SYMLOOK_IFUNC) != 0)
return (0);
}
where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
switch (ELF_R_TYPE(rela->r_info)) {
case R_PPC_NONE:
break;
case R_PPC64_UADDR64:
case R_PPC64_ADDR64:
case R_PPC_GLOB_DAT:
/* Don't issue write if unnecessary; avoid COW page fault */
if (*where != symval + rela->r_addend) {
*where = symval + rela->r_addend;
}
break;
case R_PPC64_DTPMOD64:
*where = (Elf_Addr) defobj->tlsindex;
break;
case R_PPC64_TPREL64:
/*
* We lazily allocate offsets for static TLS as we
* see the first relocation that references the
* TLS block. This allows us to support (small
* amounts of) static TLS in dynamically loaded
* modules. If we run out of space, we generate an
* error.
*/
if (!defobj->tls_done) {
if (!allocate_tls_offset(
__DECONST(Obj_Entry *, defobj))) {
_rtld_error("%s: No space available for static "
"Thread Local Storage", obj->path);
return (-1);
}
}
*(Elf_Addr **)where = *where * sizeof(Elf_Addr)
+ (Elf_Addr *)(def->st_value + rela->r_addend
+ defobj->tlsoffset - TLS_TP_OFFSET - TLS_TCB_SIZE);
break;
case R_PPC64_DTPREL64:
*where += (Elf_Addr)(def->st_value + rela->r_addend
- TLS_DTV_OFFSET);
break;
case R_PPC_RELATIVE: /* doubleword64 B + A */
symval = (Elf_Addr)(obj->relocbase + rela->r_addend);
/* As above, don't issue write unnecessarily */
if (*where != symval) {
*where = symval;
}
break;
case R_PPC_COPY:
/*
* These are deferred until all other relocations
* have been done. All we do here is make sure
* that the COPY relocation is not in a shared
* library. They are allowed only in executable
* files.
*/
if (!obj->mainprog) {
_rtld_error("%s: Unexpected R_COPY "
" relocation in shared library",
obj->path);
return (-1);
}
break;
case R_PPC_IRELATIVE:
/*
* These will be handled by reloc_iresolve().
*/
obj->irelative = true;
break;
case R_PPC_JMP_SLOT:
/*
* These will be handled by the plt/jmpslot routines
*/
break;
default:
_rtld_error("%s: Unsupported relocation type %ld"
" in non-PLT relocations\n", obj->path,
ELF_R_TYPE(rela->r_info));
return (-1);
}
return (0);
}
/*
* Process non-PLT relocations
*/
int
reloc_non_plt(Obj_Entry *obj, Obj_Entry *obj_rtld, int flags,
RtldLockState *lockstate)
{
const Elf_Rela *relalim;
const Elf_Rela *rela;
const Elf_Phdr *phdr;
SymCache *cache;
int bytes = obj->dynsymcount * sizeof(SymCache);
int r = -1;
/*
* The dynamic loader may be called from a thread, we have
* limited amounts of stack available so we cannot use alloca().
*/
if (obj != obj_rtld) {
cache = mmap(NULL, bytes, PROT_READ|PROT_WRITE, MAP_ANON,
-1, 0);
if (cache == MAP_FAILED)
cache = NULL;
} else
cache = NULL;
/*
* From the SVR4 PPC ABI:
* "The PowerPC family uses only the Elf32_Rela relocation
* entries with explicit addends."
*/
relalim = (const Elf_Rela *)((const char *)obj->rela + obj->relasize);
for (rela = obj->rela; rela < relalim; rela++) {
if (reloc_nonplt_object(obj_rtld, obj, rela, cache, flags,
lockstate) < 0)
goto done;
}
r = 0;
done:
if (cache)
munmap(cache, bytes);
/*
* Synchronize icache for executable segments in case we made
* any changes.
*/
for (phdr = obj->phdr;
(const char *)phdr < (const char *)obj->phdr + obj->phsize;
phdr++) {
if (phdr->p_type == PT_LOAD && (phdr->p_flags & PF_X) != 0) {
__syncicache(obj->relocbase + phdr->p_vaddr,
phdr->p_memsz);
}
}
return (r);
}
/*
* Initialise a PLT slot to the resolving trampoline
*/
static int
reloc_plt_object(Obj_Entry *obj, const Elf_Rela *rela)
{
Elf_Addr *where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
long reloff;
reloff = rela - obj->pltrela;
dbg(" reloc_plt_object: where=%p,reloff=%lx,glink=%#lx", (void *)where,
reloff, obj->glink);
#if !defined(_CALL_ELF) || _CALL_ELF == 1
/* Glink code is 3 instructions after the first 32k, 2 before */
*where = (Elf_Addr)obj->glink + 32 +
8*((reloff < 0x8000) ? reloff : 0x8000) +
12*((reloff < 0x8000) ? 0 : (reloff - 0x8000));
#else
/* 64-Bit ELF V2 ABI Specification, sec. 4.2.5.3. */
*where = (Elf_Addr)obj->glink + 4*reloff + 32;
#endif
return (0);
}
/*
* Process the PLT relocations.
*/
int
reloc_plt(Obj_Entry *obj, int flags __unused, RtldLockState *lockstate __unused)
{
const Elf_Rela *relalim;
const Elf_Rela *rela;
if (obj->pltrelasize != 0) {
relalim = (const Elf_Rela *)((const char *)obj->pltrela +
obj->pltrelasize);
for (rela = obj->pltrela; rela < relalim; rela++) {
#if defined(_CALL_ELF) && _CALL_ELF == 2
if (ELF_R_TYPE(rela->r_info) == R_PPC_IRELATIVE) {
dbg("ABI violation - found IRELATIVE in the PLT.");
obj->irelative = true;
continue;
}
#endif
/*
* PowerPC(64) .rela.plt is composed of an array of
* R_PPC_JMP_SLOT relocations. Unlike other platforms,
* this is the ONLY relocation type that is valid here.
*/
assert(ELF_R_TYPE(rela->r_info) == R_PPC_JMP_SLOT);
if (reloc_plt_object(obj, rela) < 0) {
return (-1);
}
}
}
return (0);
}
/*
* LD_BIND_NOW was set - force relocation for all jump slots
*/
int
reloc_jmpslots(Obj_Entry *obj, int flags, RtldLockState *lockstate)
{
const Obj_Entry *defobj;
const Elf_Rela *relalim;
const Elf_Rela *rela;
const Elf_Sym *def;
Elf_Addr *where;
Elf_Addr target;
relalim = (const Elf_Rela *)((const char *)obj->pltrela +
obj->pltrelasize);
for (rela = obj->pltrela; rela < relalim; rela++) {
/* This isn't actually a jump slot, ignore it. */
if (ELF_R_TYPE(rela->r_info) == R_PPC_IRELATIVE)
continue;
assert(ELF_R_TYPE(rela->r_info) == R_PPC_JMP_SLOT);
where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
SYMLOOK_IN_PLT | flags, NULL, lockstate);
if (def == NULL) {
dbg("reloc_jmpslots: sym not found");
return (-1);
}
target = (Elf_Addr)(defobj->relocbase + def->st_value);
if (def == &sym_zero) {
/* Zero undefined weak symbols */
#if !defined(_CALL_ELF) || _CALL_ELF == 1
bzero(where, sizeof(struct funcdesc));
#else
*where = 0;
#endif
} else {
if (ELF_ST_TYPE(def->st_info) == STT_GNU_IFUNC) {
/* LD_BIND_NOW, ifunc in shared lib.*/
obj->gnu_ifunc = true;
continue;
}
reloc_jmpslot(where, target, defobj, obj,
(const Elf_Rel *) rela);
}
}
obj->jmpslots_done = true;
return (0);
}
/*
* Update the value of a PLT jump slot.
*/
Elf_Addr
reloc_jmpslot(Elf_Addr *wherep, Elf_Addr target, const Obj_Entry *defobj __unused,
const Obj_Entry *obj __unused, const Elf_Rel *rel __unused)
{
/*
* At the PLT entry pointed at by `wherep', construct
* a direct transfer to the now fully resolved function
* address.
*/
#if !defined(_CALL_ELF) || _CALL_ELF == 1
dbg(" reloc_jmpslot: where=%p, target=%p (%#lx + %#lx)",
(void *)wherep, (void *)target, *(Elf_Addr *)target,
(Elf_Addr)defobj->relocbase);
if (ld_bind_not)
goto out;
/*
* For the trampoline, the second two elements of the function
* descriptor are unused, so we are fine replacing those at any time
* with the real ones with no thread safety implications. However, we
* need to make sure the main entry point pointer ([0]) is seen to be
* modified *after* the second two elements. This can't be done in
* general, since there are no barriers in the reading code, but put in
* some isyncs to at least make it a little better.
*/
memcpy(wherep, (void *)target, sizeof(struct funcdesc));
wherep[2] = ((Elf_Addr *)target)[2];
wherep[1] = ((Elf_Addr *)target)[1];
__asm __volatile ("isync" : : : "memory");
wherep[0] = ((Elf_Addr *)target)[0];
__asm __volatile ("isync" : : : "memory");
if (((struct funcdesc *)(wherep))->addr < (Elf_Addr)defobj->relocbase) {
/*
* It is possible (LD_BIND_NOW) that the function
* descriptor we are copying has not yet been relocated.
* If this happens, fix it. Don't worry about threading in
* this case since LD_BIND_NOW makes it irrelevant.
*/
((struct funcdesc *)(wherep))->addr +=
(Elf_Addr)defobj->relocbase;
((struct funcdesc *)(wherep))->toc +=
(Elf_Addr)defobj->relocbase;
}
#else
dbg(" reloc_jmpslot: where=%p, target=%p", (void *)wherep,
(void *)target);
assert(target >= (Elf_Addr)defobj->relocbase);
if (ld_bind_not)
goto out;
if (*wherep != target)
*wherep = target;
#endif
out:
return (target);
}
int
reloc_iresolve(Obj_Entry *obj,
struct Struct_RtldLockState *lockstate)
{
/*
* Since PLT slots on PowerPC64 are always R_PPC_JMP_SLOT,
* R_PPC_IRELATIVE is in RELA.
*/
#if !defined(_CALL_ELF) || _CALL_ELF == 1
(void)(obj);
(void)(lockstate);
/* XXX not implemented */
return (0);
#else
const Elf_Rela *relalim;
const Elf_Rela *rela;
Elf_Addr *where, target, *ptr;
if (!obj->irelative)
return (0);
relalim = (const Elf_Rela *)((const char *)obj->rela + obj->relasize);
for (rela = obj->rela; rela < relalim; rela++) {
if (ELF_R_TYPE(rela->r_info) == R_PPC_IRELATIVE) {
ptr = (Elf_Addr *)(obj->relocbase + rela->r_addend);
where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
lock_release(rtld_bind_lock, lockstate);
target = call_ifunc_resolver(ptr);
wlock_acquire(rtld_bind_lock, lockstate);
*where = target;
}
}
/*
* XXX Remove me when lld is fixed!
* LLD currently makes illegal relocations in the PLT.
*/
relalim = (const Elf_Rela *)((const char *)obj->pltrela + obj->pltrelasize);
for (rela = obj->pltrela; rela < relalim; rela++) {
if (ELF_R_TYPE(rela->r_info) == R_PPC_IRELATIVE) {
ptr = (Elf_Addr *)(obj->relocbase + rela->r_addend);
where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
lock_release(rtld_bind_lock, lockstate);
target = call_ifunc_resolver(ptr);
wlock_acquire(rtld_bind_lock, lockstate);
*where = target;
}
}
obj->irelative = false;
return (0);
#endif
}
int
reloc_gnu_ifunc(Obj_Entry *obj __unused, int flags __unused,
struct Struct_RtldLockState *lockstate __unused)
{
#if !defined(_CALL_ELF) || _CALL_ELF == 1
_rtld_error("reloc_gnu_ifunc(): Not implemented!");
/* XXX not implemented */
return (-1);
#else
const Elf_Rela *relalim;
const Elf_Rela *rela;
Elf_Addr *where, target;
const Elf_Sym *def;
const Obj_Entry *defobj;
if (!obj->gnu_ifunc)
return (0);
relalim = (const Elf_Rela *)((const char *)obj->pltrela + obj->pltrelasize);
for (rela = obj->pltrela; rela < relalim; rela++) {
if (ELF_R_TYPE(rela->r_info) == R_PPC_JMP_SLOT) {
where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
SYMLOOK_IN_PLT | flags, NULL, lockstate);
if (def == NULL)
return (-1);
if (ELF_ST_TYPE(def->st_info) != STT_GNU_IFUNC)
continue;
lock_release(rtld_bind_lock, lockstate);
target = (Elf_Addr)rtld_resolve_ifunc(defobj, def);
wlock_acquire(rtld_bind_lock, lockstate);
reloc_jmpslot(where, target, defobj, obj,
(const Elf_Rel *)rela);
}
}
obj->gnu_ifunc = false;
return (0);
#endif
}
int
reloc_iresolve_nonplt(Obj_Entry *obj __unused,
struct Struct_RtldLockState *lockstate __unused)
{
return (0);
}
void
init_pltgot(Obj_Entry *obj)
{
Elf_Addr *pltcall;
pltcall = obj->pltgot;
if (pltcall == NULL) {
return;
}
#if defined(_CALL_ELF) && _CALL_ELF == 2
pltcall[0] = (Elf_Addr)&_rtld_bind_start;
pltcall[1] = (Elf_Addr)obj;
#else
memcpy(pltcall, _rtld_bind_start, sizeof(struct funcdesc));
pltcall[2] = (Elf_Addr)obj;
#endif
}
/*
* Actual values are 32 bit.
*/
u_long cpu_features;
u_long cpu_features2;
void
powerpc64_abi_variant_hook(Elf_Auxinfo** aux_info)
{
/*
* Since aux_info[] is easier to work with than aux, go ahead and
* initialize cpu_features / cpu_features2.
*/
cpu_features = -1UL;
cpu_features2 = -1UL;
if (aux_info[AT_HWCAP] != NULL)
cpu_features = (uint32_t)aux_info[AT_HWCAP]->a_un.a_val;
if (aux_info[AT_HWCAP2] != NULL)
cpu_features2 = (uint32_t)aux_info[AT_HWCAP2]->a_un.a_val;
}
void
ifunc_init(Elf_Auxinfo aux_info[__min_size(AT_COUNT)] __unused)
{
}
void
pre_init(void)
{
}
void
allocate_initial_tls(Obj_Entry *list)
{
Elf_Addr **tp;
/*
* Fix the size of the static TLS block by using the maximum
* offset allocated so far and adding a bit for dynamic modules to
* use.
*/
tls_static_space = tls_last_offset + tls_last_size + RTLD_STATIC_TLS_EXTRA;
tp = (Elf_Addr **)((char *)allocate_tls(list, NULL, TLS_TCB_SIZE, 16)
+ TLS_TP_OFFSET + TLS_TCB_SIZE);
__asm __volatile("mr 13,%0" :: "r"(tp));
}
void*
__tls_get_addr(tls_index* ti)
{
Elf_Addr **tp;
char *p;
__asm __volatile("mr %0,13" : "=r"(tp));
p = tls_get_addr_common((Elf_Addr**)((Elf_Addr)tp - TLS_TP_OFFSET
- TLS_TCB_SIZE), ti->ti_module, ti->ti_offset);
return (p + TLS_DTV_OFFSET);
}