Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
/*-
 * Copyright (c) 1998 Michael Smith <msmith@freebsd.org>
 * Copyright (c) 2004, 2006 Marcel Moolenaar
 * Copyright (c) 2014 The FreeBSD Foundation
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <stand.h>
#include <string.h>
#include <sys/param.h>
#include <sys/linker.h>
#include <sys/reboot.h>
#include <sys/boot.h>
#include <machine/cpufunc.h>
#include <machine/elf.h>
#include <machine/metadata.h>
#include <machine/psl.h>

#include <efi.h>
#include <efilib.h>

#include "bootstrap.h"
#include "loader_efi.h"

#if defined(__amd64__)
#include <machine/specialreg.h>
#endif

#include "framebuffer.h"

#if defined(LOADER_FDT_SUPPORT)
#include <fdt_platform.h>
#endif

#ifdef LOADER_GELI_SUPPORT
#include "geliboot.h"
#endif

int bi_load(char *args, vm_offset_t *modulep, vm_offset_t *kernendp);

extern EFI_SYSTEM_TABLE	*ST;

static int
bi_getboothowto(char *kargs)
{
	const char *sw, *tmp;
	char *opts;
	char *console;
	int howto, speed, port;
	char buf[50];

	howto = boot_parse_cmdline(kargs);
	howto |= boot_env_to_howto();

	console = getenv("console");
	if (console != NULL) {
		if (strcmp(console, "comconsole") == 0)
			howto |= RB_SERIAL;
		if (strcmp(console, "nullconsole") == 0)
			howto |= RB_MUTE;
#if defined(__i386__) || defined(__amd64__)
		if (strcmp(console, "efi") == 0 &&
		    getenv("efi_8250_uid") != NULL &&
		    getenv("hw.uart.console") == NULL) {
			/*
			 * If we found a 8250 com port and com speed, we need to
			 * tell the kernel where the serial port is, and how
			 * fast. Ideally, we'd get the port from ACPI, but that
			 * isn't running in the loader. Do the next best thing
			 * by allowing it to be set by a loader.conf variable,
			 * either a EFI specific one, or the compatible
			 * comconsole_port if not. PCI support is needed, but
			 * for that we'd ideally refactor the
			 * libi386/comconsole.c code to have identical behavior.
			 * We only try to set the port for cases where we saw
			 * the Serial(x) node when parsing, otherwise
			 * specialized hardware that has Uart nodes will have a
			 * bogus address set.
			 * But if someone specifically setup hw.uart.console,
			 * don't override that.
			 */
			speed = -1;
			port = -1;
			tmp = getenv("efi_com_speed");
			if (tmp != NULL)
				speed = strtol(tmp, NULL, 0);
			tmp = getenv("efi_com_port");
			if (tmp == NULL)
				tmp = getenv("comconsole_port");
			if (tmp != NULL)
				port = strtol(tmp, NULL, 0);
			if (speed != -1 && port != -1) {
				snprintf(buf, sizeof(buf), "io:%d,br:%d", port,
				    speed);
				env_setenv("hw.uart.console", EV_VOLATILE, buf,
				    NULL, NULL);
			}
		}
#endif
	}

	return (howto);
}

/*
 * Copy the environment into the load area starting at (addr).
 * Each variable is formatted as <name>=<value>, with a single nul
 * separating each variable, and a double nul terminating the environment.
 */
static vm_offset_t
bi_copyenv(vm_offset_t start)
{
	struct env_var *ep;
	vm_offset_t addr, last;
	size_t len;

	addr = last = start;

	/* Traverse the environment. */
	for (ep = environ; ep != NULL; ep = ep->ev_next) {
		len = strlen(ep->ev_name);
		if ((size_t)archsw.arch_copyin(ep->ev_name, addr, len) != len)
			break;
		addr += len;
		if (archsw.arch_copyin("=", addr, 1) != 1)
			break;
		addr++;
		if (ep->ev_value != NULL) {
			len = strlen(ep->ev_value);
			if ((size_t)archsw.arch_copyin(ep->ev_value, addr, len) != len)
				break;
			addr += len;
		}
		if (archsw.arch_copyin("", addr, 1) != 1)
			break;
		last = ++addr;
	}

	if (archsw.arch_copyin("", last++, 1) != 1)
		last = start;
	return(last);
}

/*
 * Copy module-related data into the load area, where it can be
 * used as a directory for loaded modules.
 *
 * Module data is presented in a self-describing format.  Each datum
 * is preceded by a 32-bit identifier and a 32-bit size field.
 *
 * Currently, the following data are saved:
 *
 * MOD_NAME	(variable)		module name (string)
 * MOD_TYPE	(variable)		module type (string)
 * MOD_ARGS	(variable)		module parameters (string)
 * MOD_ADDR	sizeof(vm_offset_t)	module load address
 * MOD_SIZE	sizeof(size_t)		module size
 * MOD_METADATA	(variable)		type-specific metadata
 */
#define	COPY32(v, a, c) {					\
	uint32_t x = (v);					\
	if (c)							\
		archsw.arch_copyin(&x, a, sizeof(x));		\
	a += sizeof(x);						\
}

#define	MOD_STR(t, a, s, c) {					\
	COPY32(t, a, c);					\
	COPY32(strlen(s) + 1, a, c);				\
	if (c)							\
		archsw.arch_copyin(s, a, strlen(s) + 1);	\
	a += roundup(strlen(s) + 1, sizeof(u_long));		\
}

#define	MOD_NAME(a, s, c)	MOD_STR(MODINFO_NAME, a, s, c)
#define	MOD_TYPE(a, s, c)	MOD_STR(MODINFO_TYPE, a, s, c)
#define	MOD_ARGS(a, s, c)	MOD_STR(MODINFO_ARGS, a, s, c)

#define	MOD_VAR(t, a, s, c) {					\
	COPY32(t, a, c);					\
	COPY32(sizeof(s), a, c);				\
	if (c)							\
		archsw.arch_copyin(&s, a, sizeof(s));		\
	a += roundup(sizeof(s), sizeof(u_long));		\
}

#define	MOD_ADDR(a, s, c)	MOD_VAR(MODINFO_ADDR, a, s, c)
#define	MOD_SIZE(a, s, c)	MOD_VAR(MODINFO_SIZE, a, s, c)

#define	MOD_METADATA(a, mm, c) {				\
	COPY32(MODINFO_METADATA | mm->md_type, a, c);		\
	COPY32(mm->md_size, a, c);				\
	if (c)							\
		archsw.arch_copyin(mm->md_data, a, mm->md_size);	\
	a += roundup(mm->md_size, sizeof(u_long));		\
}

#define	MOD_END(a, c) {						\
	COPY32(MODINFO_END, a, c);				\
	COPY32(0, a, c);					\
}

static vm_offset_t
bi_copymodules(vm_offset_t addr)
{
	struct preloaded_file *fp;
	struct file_metadata *md;
	int c;
	uint64_t v;

	c = addr != 0;
	/* Start with the first module on the list, should be the kernel. */
	for (fp = file_findfile(NULL, NULL); fp != NULL; fp = fp->f_next) {
		MOD_NAME(addr, fp->f_name, c); /* This must come first. */
		MOD_TYPE(addr, fp->f_type, c);
		if (fp->f_args)
			MOD_ARGS(addr, fp->f_args, c);
		v = fp->f_addr;
#if defined(__arm__)
		v -= __elfN(relocation_offset);
#endif
		MOD_ADDR(addr, v, c);
		v = fp->f_size;
		MOD_SIZE(addr, v, c);
		for (md = fp->f_metadata; md != NULL; md = md->md_next)
			if (!(md->md_type & MODINFOMD_NOCOPY))
				MOD_METADATA(addr, md, c);
	}
	MOD_END(addr, c);
	return(addr);
}

static EFI_STATUS
efi_do_vmap(EFI_MEMORY_DESCRIPTOR *mm, UINTN sz, UINTN mmsz, UINT32 mmver)
{
	EFI_MEMORY_DESCRIPTOR *desc, *viter, *vmap;
	EFI_STATUS ret;
	int curr, ndesc, nset;

	nset = 0;
	desc = mm;
	ndesc = sz / mmsz;
	vmap = malloc(sz);
	if (vmap == NULL)
		/* This isn't really an EFI error case, but pretend it is */
		return (EFI_OUT_OF_RESOURCES);
	viter = vmap;
	for (curr = 0; curr < ndesc;
	    curr++, desc = NextMemoryDescriptor(desc, mmsz)) {
		if ((desc->Attribute & EFI_MEMORY_RUNTIME) != 0) {
			++nset;
			desc->VirtualStart = desc->PhysicalStart;
			*viter = *desc;
			viter = NextMemoryDescriptor(viter, mmsz);
		}
	}
	ret = RS->SetVirtualAddressMap(nset * mmsz, mmsz, mmver, vmap);
	free(vmap);
	return (ret);
}

static int
bi_load_efi_data(struct preloaded_file *kfp)
{
	EFI_MEMORY_DESCRIPTOR *mm;
	EFI_PHYSICAL_ADDRESS addr = 0;
	EFI_STATUS status;
	const char *efi_novmap;
	size_t efisz;
	UINTN efi_mapkey;
	UINTN dsz, pages, retry, sz;
	UINT32 mmver;
	struct efi_map_header *efihdr;
	bool do_vmap;

#if defined(__amd64__) || defined(__aarch64__)
	struct efi_fb efifb;

	if (efi_find_framebuffer(&efifb) == 0) {
		printf("EFI framebuffer information:\n");
		printf("addr, size     0x%jx, 0x%jx\n", efifb.fb_addr,
		    efifb.fb_size);
		printf("dimensions     %d x %d\n", efifb.fb_width,
		    efifb.fb_height);
		printf("stride         %d\n", efifb.fb_stride);
		printf("masks          0x%08x, 0x%08x, 0x%08x, 0x%08x\n",
		    efifb.fb_mask_red, efifb.fb_mask_green, efifb.fb_mask_blue,
		    efifb.fb_mask_reserved);

		file_addmetadata(kfp, MODINFOMD_EFI_FB, sizeof(efifb), &efifb);
	}
#endif

	do_vmap = true;
	efi_novmap = getenv("efi_disable_vmap");
	if (efi_novmap != NULL)
		do_vmap = strcasecmp(efi_novmap, "YES") != 0;

	efisz = (sizeof(struct efi_map_header) + 0xf) & ~0xf;

	/*
	 * Assign size of EFI_MEMORY_DESCRIPTOR to keep compatible with
	 * u-boot which doesn't fill this value when buffer for memory
	 * descriptors is too small (eg. 0 to obtain memory map size)
	 */
	dsz = sizeof(EFI_MEMORY_DESCRIPTOR);

	/*
	 * Allocate enough pages to hold the bootinfo block and the
	 * memory map EFI will return to us. The memory map has an
	 * unknown size, so we have to determine that first. Note that
	 * the AllocatePages call can itself modify the memory map, so
	 * we have to take that into account as well. The changes to
	 * the memory map are caused by splitting a range of free
	 * memory into two, so that one is marked as being loader
	 * data.
	 */

	sz = 0;

	/*
	 * Matthew Garrett has observed at least one system changing the
	 * memory map when calling ExitBootServices, causing it to return an
	 * error, probably because callbacks are allocating memory.
	 * So we need to retry calling it at least once.
	 */
	for (retry = 2; retry > 0; retry--) {
		for (;;) {
			status = BS->GetMemoryMap(&sz, mm, &efi_mapkey, &dsz, &mmver);
			if (!EFI_ERROR(status))
				break;

			if (status != EFI_BUFFER_TOO_SMALL) {
				printf("%s: GetMemoryMap error %lu\n", __func__,
	                           EFI_ERROR_CODE(status));
				return (EINVAL);
			}

			if (addr != 0)
				BS->FreePages(addr, pages);

			/* Add 10 descriptors to the size to allow for
			 * fragmentation caused by calling AllocatePages */
			sz += (10 * dsz);
			pages = EFI_SIZE_TO_PAGES(sz + efisz);
			status = BS->AllocatePages(AllocateAnyPages, EfiLoaderData,
					pages, &addr);
			if (EFI_ERROR(status)) {
				printf("%s: AllocatePages error %lu\n", __func__,
				    EFI_ERROR_CODE(status));
				return (ENOMEM);
			}

			/*
			 * Read the memory map and stash it after bootinfo. Align the
			 * memory map on a 16-byte boundary (the bootinfo block is page
			 * aligned).
			 */
			efihdr = (struct efi_map_header *)(uintptr_t)addr;
			mm = (void *)((uint8_t *)efihdr + efisz);
			sz = (EFI_PAGE_SIZE * pages) - efisz;
		}

		status = BS->ExitBootServices(IH, efi_mapkey);
		if (!EFI_ERROR(status))
			break;
	}

	if (retry == 0) {
		BS->FreePages(addr, pages);
		printf("ExitBootServices error %lu\n", EFI_ERROR_CODE(status));
		return (EINVAL);
	}

	/*
	 * This may be disabled by setting efi_disable_vmap in
	 * loader.conf(5). By default we will setup the virtual
	 * map entries.
	 */

	if (do_vmap)
		efi_do_vmap(mm, sz, dsz, mmver);
	efihdr->memory_size = sz;
	efihdr->descriptor_size = dsz;
	efihdr->descriptor_version = mmver;
	file_addmetadata(kfp, MODINFOMD_EFI_MAP, efisz + sz,
	    efihdr);

	return (0);
}

/*
 * Load the information expected by an amd64 kernel.
 *
 * - The 'boothowto' argument is constructed.
 * - The 'bootdev' argument is constructed.
 * - The 'bootinfo' struct is constructed, and copied into the kernel space.
 * - The kernel environment is copied into kernel space.
 * - Module metadata are formatted and placed in kernel space.
 */
int
bi_load(char *args, vm_offset_t *modulep, vm_offset_t *kernendp)
{
	struct preloaded_file *xp, *kfp;
	struct devdesc *rootdev;
	struct file_metadata *md;
	vm_offset_t addr;
	uint64_t kernend;
	uint64_t envp;
	vm_offset_t size;
	char *rootdevname;
	int howto;
#if defined(LOADER_FDT_SUPPORT)
	vm_offset_t dtbp;
	int dtb_size;
#endif
#if defined(__arm__)
	vm_offset_t vaddr;
	size_t i;
	/*
	 * These metadata addreses must be converted for kernel after
	 * relocation.
	 */
	uint32_t		mdt[] = {
	    MODINFOMD_SSYM, MODINFOMD_ESYM, MODINFOMD_KERNEND,
	    MODINFOMD_ENVP,
#if defined(LOADER_FDT_SUPPORT)
	    MODINFOMD_DTBP
#endif
	};
#endif

	howto = bi_getboothowto(args);

	/*
	 * Allow the environment variable 'rootdev' to override the supplied
	 * device. This should perhaps go to MI code and/or have $rootdev
	 * tested/set by MI code before launching the kernel.
	 */
	rootdevname = getenv("rootdev");
	archsw.arch_getdev((void**)(&rootdev), rootdevname, NULL);
	if (rootdev == NULL) {
		printf("Can't determine root device.\n");
		return(EINVAL);
	}

	/* Try reading the /etc/fstab file to select the root device */
	getrootmount(efi_fmtdev((void *)rootdev));

	addr = 0;
	for (xp = file_findfile(NULL, NULL); xp != NULL; xp = xp->f_next) {
		if (addr < (xp->f_addr + xp->f_size))
			addr = xp->f_addr + xp->f_size;
	}

	/* Pad to a page boundary. */
	addr = roundup(addr, PAGE_SIZE);

	/* Copy our environment. */
	envp = addr;
	addr = bi_copyenv(addr);

	/* Pad to a page boundary. */
	addr = roundup(addr, PAGE_SIZE);

#if defined(LOADER_FDT_SUPPORT)
	/* Handle device tree blob */
	dtbp = addr;
	dtb_size = fdt_copy(addr);
		
	/* Pad to a page boundary */
	if (dtb_size)
		addr += roundup(dtb_size, PAGE_SIZE);
#endif

	kfp = file_findfile(NULL, "elf kernel");
	if (kfp == NULL)
		kfp = file_findfile(NULL, "elf64 kernel");
	if (kfp == NULL)
		panic("can't find kernel file");
	kernend = 0;	/* fill it in later */
	file_addmetadata(kfp, MODINFOMD_HOWTO, sizeof howto, &howto);
	file_addmetadata(kfp, MODINFOMD_ENVP, sizeof envp, &envp);
#if defined(LOADER_FDT_SUPPORT)
	if (dtb_size)
		file_addmetadata(kfp, MODINFOMD_DTBP, sizeof dtbp, &dtbp);
	else
		printf("WARNING! Trying to fire up the kernel, but no "
		    "device tree blob found!\n");
#endif
	file_addmetadata(kfp, MODINFOMD_KERNEND, sizeof kernend, &kernend);
	file_addmetadata(kfp, MODINFOMD_FW_HANDLE, sizeof ST, &ST);
#ifdef LOADER_GELI_SUPPORT
	geli_export_key_metadata(kfp);
#endif
	bi_load_efi_data(kfp);

	/* Figure out the size and location of the metadata. */
	*modulep = addr;
	size = bi_copymodules(0);
	kernend = roundup(addr + size, PAGE_SIZE);
	*kernendp = kernend;

	/* patch MODINFOMD_KERNEND */
	md = file_findmetadata(kfp, MODINFOMD_KERNEND);
	bcopy(&kernend, md->md_data, sizeof kernend);

#if defined(__arm__)
	*modulep -= __elfN(relocation_offset);

	/* Do relocation fixup on metadata of each module. */
	for (xp = file_findfile(NULL, NULL); xp != NULL; xp = xp->f_next) {
		for (i = 0; i < nitems(mdt); i++) {
			md = file_findmetadata(xp, mdt[i]);
			if (md) {
				bcopy(md->md_data, &vaddr, sizeof vaddr);
				vaddr -= __elfN(relocation_offset);
				bcopy(&vaddr, md->md_data, sizeof vaddr);
			}
		}
	}
#endif

	/* Copy module list and metadata. */
	(void)bi_copymodules(addr);

	return (0);
}