/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2012, 2013 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Oleksandr Rybalko under sponsorship
* from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/timeet.h>
#include <sys/timetc.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <machine/machdep.h> /* For arm_set_delay */
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <arm/freescale/imx/imx_ccmvar.h>
#include <arm/freescale/imx/imx_gptreg.h>
#define WRITE4(_sc, _r, _v) \
bus_space_write_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r), (_v))
#define READ4(_sc, _r) \
bus_space_read_4((_sc)->sc_iot, (_sc)->sc_ioh, (_r))
#define SET4(_sc, _r, _m) \
WRITE4((_sc), (_r), READ4((_sc), (_r)) | (_m))
#define CLEAR4(_sc, _r, _m) \
WRITE4((_sc), (_r), READ4((_sc), (_r)) & ~(_m))
static u_int imx_gpt_get_timecount(struct timecounter *);
static int imx_gpt_timer_start(struct eventtimer *, sbintime_t,
sbintime_t);
static int imx_gpt_timer_stop(struct eventtimer *);
static void imx_gpt_do_delay(int, void *);
static int imx_gpt_intr(void *);
static int imx_gpt_probe(device_t);
static int imx_gpt_attach(device_t);
static struct timecounter imx_gpt_timecounter = {
.tc_name = "iMXGPT",
.tc_get_timecount = imx_gpt_get_timecount,
.tc_counter_mask = ~0u,
.tc_frequency = 0,
.tc_quality = 1000,
};
struct imx_gpt_softc {
device_t sc_dev;
struct resource * res[2];
bus_space_tag_t sc_iot;
bus_space_handle_t sc_ioh;
void * sc_ih; /* interrupt handler */
uint32_t sc_period;
uint32_t sc_clksrc;
uint32_t clkfreq;
uint32_t ir_reg;
struct eventtimer et;
};
/* Try to divide down an available fast clock to this frequency. */
#define TARGET_FREQUENCY 1000000000
static struct resource_spec imx_gpt_spec[] = {
{ SYS_RES_MEMORY, 0, RF_ACTIVE },
{ SYS_RES_IRQ, 0, RF_ACTIVE },
{ -1, 0 }
};
static struct ofw_compat_data compat_data[] = {
{"fsl,imx6dl-gpt", 1},
{"fsl,imx6q-gpt", 1},
{"fsl,imx6ul-gpt", 1},
{"fsl,imx53-gpt", 1},
{"fsl,imx51-gpt", 1},
{"fsl,imx31-gpt", 1},
{"fsl,imx27-gpt", 1},
{"fsl,imx25-gpt", 1},
{NULL, 0}
};
static int
imx_gpt_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
/*
* We only support a single unit, because the only thing this driver
* does with the complex timer hardware is supply the system
* timecounter and eventtimer. There is nothing useful we can do with
* the additional device instances that exist in some chips.
*/
if (device_get_unit(dev) > 0)
return (ENXIO);
if (ofw_bus_search_compatible(dev, compat_data)->ocd_data != 0) {
device_set_desc(dev, "Freescale i.MX GPT timer");
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static int
imx_gpt_attach(device_t dev)
{
struct imx_gpt_softc *sc;
int ctlreg, err;
uint32_t basefreq, prescale, setup_ticks, t1, t2;
sc = device_get_softc(dev);
if (bus_alloc_resources(dev, imx_gpt_spec, sc->res)) {
device_printf(dev, "could not allocate resources\n");
return (ENXIO);
}
sc->sc_dev = dev;
sc->sc_iot = rman_get_bustag(sc->res[0]);
sc->sc_ioh = rman_get_bushandle(sc->res[0]);
/*
* For now, just automatically choose a good clock for the hardware
* we're running on. Eventually we could allow selection from the fdt;
* the code in this driver will cope with any clock frequency.
*/
sc->sc_clksrc = GPT_CR_CLKSRC_IPG;
ctlreg = 0;
switch (sc->sc_clksrc) {
case GPT_CR_CLKSRC_32K:
basefreq = 32768;
break;
case GPT_CR_CLKSRC_IPG:
basefreq = imx_ccm_ipg_hz();
break;
case GPT_CR_CLKSRC_IPG_HIGH:
basefreq = imx_ccm_ipg_hz() * 2;
break;
case GPT_CR_CLKSRC_24M:
ctlreg |= GPT_CR_24MEN;
basefreq = 24000000;
break;
case GPT_CR_CLKSRC_NONE:/* Can't run without a clock. */
case GPT_CR_CLKSRC_EXT: /* No way to get the freq of an ext clock. */
default:
device_printf(dev, "Unsupported clock source '%d'\n",
sc->sc_clksrc);
return (EINVAL);
}
/*
* The following setup sequence is from the I.MX6 reference manual,
* "Selecting the clock source". First, disable the clock and
* interrupts. This also clears input and output mode bits and in
* general completes several of the early steps in the procedure.
*/
WRITE4(sc, IMX_GPT_CR, 0);
WRITE4(sc, IMX_GPT_IR, 0);
/* Choose the clock and the power-saving behaviors. */
ctlreg |=
sc->sc_clksrc | /* Use selected clock */
GPT_CR_FRR | /* Just count (FreeRunner mode) */
GPT_CR_STOPEN | /* Run in STOP mode */
GPT_CR_DOZEEN | /* Run in DOZE mode */
GPT_CR_WAITEN | /* Run in WAIT mode */
GPT_CR_DBGEN; /* Run in DEBUG mode */
WRITE4(sc, IMX_GPT_CR, ctlreg);
/*
* The datasheet says to do the software reset after choosing the clock
* source. It says nothing about needing to wait for the reset to
* complete, but the register description does document the fact that
* the reset isn't complete until the SWR bit reads 0, so let's be safe.
* The reset also clears all registers except for a few of the bits in
* CR, but we'll rewrite all the CR bits when we start the counter.
*/
WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_SWR);
while (READ4(sc, IMX_GPT_CR) & GPT_CR_SWR)
continue;
/* Set a prescaler value that gets us near the target frequency. */
if (basefreq < TARGET_FREQUENCY) {
prescale = 0;
sc->clkfreq = basefreq;
} else {
prescale = basefreq / TARGET_FREQUENCY;
sc->clkfreq = basefreq / prescale;
prescale -= 1; /* 1..n range is 0..n-1 in hardware. */
}
WRITE4(sc, IMX_GPT_PR, prescale);
/* Clear the status register. */
WRITE4(sc, IMX_GPT_SR, GPT_IR_ALL);
/* Start the counter. */
WRITE4(sc, IMX_GPT_CR, ctlreg | GPT_CR_EN);
if (bootverbose)
device_printf(dev, "Running on %dKHz clock, base freq %uHz CR=0x%08x, PR=0x%08x\n",
sc->clkfreq / 1000, basefreq, READ4(sc, IMX_GPT_CR), READ4(sc, IMX_GPT_PR));
/* Setup the timer interrupt. */
err = bus_setup_intr(dev, sc->res[1], INTR_TYPE_CLK, imx_gpt_intr,
NULL, sc, &sc->sc_ih);
if (err != 0) {
bus_release_resources(dev, imx_gpt_spec, sc->res);
device_printf(dev, "Unable to setup the clock irq handler, "
"err = %d\n", err);
return (ENXIO);
}
/*
* Measure how many clock ticks it takes to setup a one-shot event (it's
* longer than you might think, due to wait states in accessing gpt
* registers). Scale up the result by a factor of 1.5 to be safe,
* and use that to set the minimum eventtimer period we can schedule. In
* the real world, the value works out to about 750ns on imx5 hardware.
*/
t1 = READ4(sc, IMX_GPT_CNT);
WRITE4(sc, IMX_GPT_OCR3, 0);
t2 = READ4(sc, IMX_GPT_CNT);
setup_ticks = ((t2 - t1 + 1) * 3) / 2;
/* Register as an eventtimer. */
sc->et.et_name = "iMXGPT";
sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERIODIC;
sc->et.et_quality = 800;
sc->et.et_frequency = sc->clkfreq;
sc->et.et_min_period = ((uint64_t)setup_ticks << 32) / sc->clkfreq;
sc->et.et_max_period = ((uint64_t)0xfffffffe << 32) / sc->clkfreq;
sc->et.et_start = imx_gpt_timer_start;
sc->et.et_stop = imx_gpt_timer_stop;
sc->et.et_priv = sc;
et_register(&sc->et);
/* Register as a timecounter. */
imx_gpt_timecounter.tc_frequency = sc->clkfreq;
imx_gpt_timecounter.tc_priv = sc;
tc_init(&imx_gpt_timecounter);
/* If this is the first unit, store the softc for use in DELAY. */
if (device_get_unit(dev) == 0) {
arm_set_delay(imx_gpt_do_delay, sc);
}
return (0);
}
static int
imx_gpt_timer_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
{
struct imx_gpt_softc *sc;
uint32_t ticks;
sc = (struct imx_gpt_softc *)et->et_priv;
if (period != 0) {
sc->sc_period = ((uint32_t)et->et_frequency * period) >> 32;
/* Set expected value */
WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) + sc->sc_period);
/* Enable compare register 2 Interrupt */
sc->ir_reg |= GPT_IR_OF2;
WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
return (0);
} else if (first != 0) {
/* Enable compare register 3 interrupt if not already on. */
if ((sc->ir_reg & GPT_IR_OF3) == 0) {
sc->ir_reg |= GPT_IR_OF3;
WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
}
ticks = ((uint32_t)et->et_frequency * first) >> 32;
/* Do not disturb, otherwise event will be lost */
spinlock_enter();
/* Set expected value */
WRITE4(sc, IMX_GPT_OCR3, READ4(sc, IMX_GPT_CNT) + ticks);
/* Now everybody can relax */
spinlock_exit();
return (0);
}
return (EINVAL);
}
static int
imx_gpt_timer_stop(struct eventtimer *et)
{
struct imx_gpt_softc *sc;
sc = (struct imx_gpt_softc *)et->et_priv;
/* Disable interrupts and clear any pending status. */
sc->ir_reg &= ~(GPT_IR_OF2 | GPT_IR_OF3);
WRITE4(sc, IMX_GPT_IR, sc->ir_reg);
WRITE4(sc, IMX_GPT_SR, GPT_IR_OF2 | GPT_IR_OF3);
sc->sc_period = 0;
return (0);
}
static int
imx_gpt_intr(void *arg)
{
struct imx_gpt_softc *sc;
uint32_t status;
sc = (struct imx_gpt_softc *)arg;
status = READ4(sc, IMX_GPT_SR);
/*
* Clear interrupt status before invoking event callbacks. The callback
* often sets up a new one-shot timer event and if the interval is short
* enough it can fire before we get out of this function. If we cleared
* at the bottom we'd miss the interrupt and hang until the clock wraps.
*/
WRITE4(sc, IMX_GPT_SR, status);
/* Handle one-shot timer events. */
if (status & GPT_IR_OF3) {
if (sc->et.et_active) {
sc->et.et_event_cb(&sc->et, sc->et.et_arg);
}
}
/* Handle periodic timer events. */
if (status & GPT_IR_OF2) {
if (sc->et.et_active)
sc->et.et_event_cb(&sc->et, sc->et.et_arg);
if (sc->sc_period != 0)
WRITE4(sc, IMX_GPT_OCR2, READ4(sc, IMX_GPT_CNT) +
sc->sc_period);
}
return (FILTER_HANDLED);
}
static u_int
imx_gpt_get_timecount(struct timecounter *tc)
{
struct imx_gpt_softc *sc;
sc = tc->tc_priv;
return (READ4(sc, IMX_GPT_CNT));
}
static device_method_t imx_gpt_methods[] = {
DEVMETHOD(device_probe, imx_gpt_probe),
DEVMETHOD(device_attach, imx_gpt_attach),
DEVMETHOD_END
};
static driver_t imx_gpt_driver = {
"imx_gpt",
imx_gpt_methods,
sizeof(struct imx_gpt_softc),
};
static devclass_t imx_gpt_devclass;
EARLY_DRIVER_MODULE(imx_gpt, simplebus, imx_gpt_driver, imx_gpt_devclass, 0,
0, BUS_PASS_TIMER);
static void
imx_gpt_do_delay(int usec, void *arg)
{
struct imx_gpt_softc *sc = arg;
uint64_t curcnt, endcnt, startcnt, ticks;
/*
* Calculate the tick count with 64-bit values so that it works for any
* clock frequency. Loop until the hardware count reaches start+ticks.
* If the 32-bit hardware count rolls over while we're looping, just
* manually do a carry into the high bits after each read; don't worry
* that doing this on each loop iteration is inefficient -- we're trying
* to waste time here.
*/
ticks = 1 + ((uint64_t)usec * sc->clkfreq) / 1000000;
curcnt = startcnt = READ4(sc, IMX_GPT_CNT);
endcnt = startcnt + ticks;
while (curcnt < endcnt) {
curcnt = READ4(sc, IMX_GPT_CNT);
if (curcnt < startcnt)
curcnt += 1ULL << 32;
}
}