/*
* Copyright 2010-2015 Samy Al Bahra.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef CK_BYTELOCK_H
#define CK_BYTELOCK_H
/*
* The implementations here are derived from the work described in:
* Dice, D. and Shavit, N. 2010. TLRW: return of the read-write lock.
* In Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms
* and Architectures (Thira, Santorini, Greece, June 13 - 15, 2010).
* SPAA '10. ACM, New York, NY, 284-293.
*/
#include <ck_cc.h>
#include <ck_md.h>
#include <ck_pr.h>
#include <ck_stdbool.h>
#include <ck_stddef.h>
#include <ck_limits.h>
struct ck_bytelock {
unsigned int owner;
unsigned int n_readers;
uint8_t readers[CK_MD_CACHELINE - sizeof(unsigned int) * 2] CK_CC_ALIGN(8);
};
typedef struct ck_bytelock ck_bytelock_t;
#define CK_BYTELOCK_INITIALIZER { 0, 0, {0} }
#define CK_BYTELOCK_UNSLOTTED UINT_MAX
CK_CC_INLINE static void
ck_bytelock_init(struct ck_bytelock *bytelock)
{
unsigned int i;
bytelock->owner = 0;
bytelock->n_readers = 0;
for (i = 0; i < sizeof bytelock->readers; i++)
bytelock->readers[i] = false;
ck_pr_barrier();
return;
}
#ifdef CK_F_PR_LOAD_64
#define CK_BYTELOCK_LENGTH sizeof(uint64_t)
#define CK_BYTELOCK_LOAD ck_pr_load_64
#define CK_BYTELOCK_TYPE uint64_t
#elif defined(CK_F_PR_LOAD_32)
#define CK_BYTELOCK_LENGTH sizeof(uint32_t)
#define CK_BYTELOCK_LOAD ck_pr_load_32
#define CK_BYTELOCK_TYPE uint32_t
#else
#error Unsupported platform.
#endif
CK_CC_INLINE static void
ck_bytelock_write_lock(struct ck_bytelock *bytelock, unsigned int slot)
{
CK_BYTELOCK_TYPE *readers = (void *)bytelock->readers;
unsigned int i;
/* Announce upcoming writer acquisition. */
while (ck_pr_cas_uint(&bytelock->owner, 0, slot) == false)
ck_pr_stall();
/* If we are slotted, we might be upgrading from a read lock. */
if (slot <= sizeof bytelock->readers)
ck_pr_store_8(&bytelock->readers[slot - 1], false);
/*
* Wait for slotted readers to drain out. This also provides the
* lock acquire semantics.
*/
ck_pr_fence_atomic_load();
for (i = 0; i < sizeof(bytelock->readers) / CK_BYTELOCK_LENGTH; i++) {
while (CK_BYTELOCK_LOAD(&readers[i]) != false)
ck_pr_stall();
}
/* Wait for unslotted readers to drain out. */
while (ck_pr_load_uint(&bytelock->n_readers) != 0)
ck_pr_stall();
ck_pr_fence_lock();
return;
}
#undef CK_BYTELOCK_LENGTH
#undef CK_BYTELOCK_LOAD
#undef CK_BYTELOCK_TYPE
CK_CC_INLINE static void
ck_bytelock_write_unlock(struct ck_bytelock *bytelock)
{
ck_pr_fence_unlock();
ck_pr_store_uint(&bytelock->owner, 0);
return;
}
CK_CC_INLINE static void
ck_bytelock_read_lock(struct ck_bytelock *bytelock, unsigned int slot)
{
if (ck_pr_load_uint(&bytelock->owner) == slot) {
ck_pr_store_8(&bytelock->readers[slot - 1], true);
ck_pr_fence_strict_store();
ck_pr_store_uint(&bytelock->owner, 0);
return;
}
/* Unslotted threads will have to use the readers counter. */
if (slot > sizeof bytelock->readers) {
for (;;) {
ck_pr_inc_uint(&bytelock->n_readers);
ck_pr_fence_atomic_load();
if (ck_pr_load_uint(&bytelock->owner) == 0)
break;
ck_pr_dec_uint(&bytelock->n_readers);
while (ck_pr_load_uint(&bytelock->owner) != 0)
ck_pr_stall();
}
ck_pr_fence_lock();
return;
}
slot -= 1;
for (;;) {
#ifdef CK_F_PR_FAA_8
ck_pr_fas_8(&bytelock->readers[slot], true);
ck_pr_fence_atomic_load();
#else
ck_pr_store_8(&bytelock->readers[slot], true);
ck_pr_fence_store_load();
#endif
/*
* If there is no owner at this point, our slot has
* already been published and it is guaranteed no
* write acquisition will succeed until we drain out.
*/
if (ck_pr_load_uint(&bytelock->owner) == 0)
break;
ck_pr_store_8(&bytelock->readers[slot], false);
while (ck_pr_load_uint(&bytelock->owner) != 0)
ck_pr_stall();
}
ck_pr_fence_lock();
return;
}
CK_CC_INLINE static void
ck_bytelock_read_unlock(struct ck_bytelock *bytelock, unsigned int slot)
{
ck_pr_fence_unlock();
if (slot > sizeof bytelock->readers)
ck_pr_dec_uint(&bytelock->n_readers);
else
ck_pr_store_8(&bytelock->readers[slot - 1], false);
return;
}
#endif /* CK_BYTELOCK_H */