Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
/***********************license start***************
 * Copyright (c) 2003-2012  Cavium Inc. (support@cavium.com). All rights
 * reserved.
 *
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.

 *   * Neither the name of Cavium Inc. nor the names of
 *     its contributors may be used to endorse or promote products
 *     derived from this software without specific prior written
 *     permission.

 * This Software, including technical data, may be subject to U.S. export  control
 * laws, including the U.S. Export Administration Act and its  associated
 * regulations, and may be subject to export or import  regulations in other
 * countries.

 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
 * AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
 * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE  RISK ARISING OUT OF USE OR
 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
 ***********************license end**************************************/


/**
 * cvmx-led-defs.h
 *
 * Configuration and status register (CSR) type definitions for
 * Octeon led.
 *
 * This file is auto generated. Do not edit.
 *
 * <hr>$Revision$<hr>
 *
 */
#ifndef __CVMX_LED_DEFS_H__
#define __CVMX_LED_DEFS_H__

#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_LED_BLINK CVMX_LED_BLINK_FUNC()
static inline uint64_t CVMX_LED_BLINK_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_LED_BLINK not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180000001A48ull);
}
#else
#define CVMX_LED_BLINK (CVMX_ADD_IO_SEG(0x0001180000001A48ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_LED_CLK_PHASE CVMX_LED_CLK_PHASE_FUNC()
static inline uint64_t CVMX_LED_CLK_PHASE_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_LED_CLK_PHASE not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180000001A08ull);
}
#else
#define CVMX_LED_CLK_PHASE (CVMX_ADD_IO_SEG(0x0001180000001A08ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_LED_CYLON CVMX_LED_CYLON_FUNC()
static inline uint64_t CVMX_LED_CYLON_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_LED_CYLON not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180000001AF8ull);
}
#else
#define CVMX_LED_CYLON (CVMX_ADD_IO_SEG(0x0001180000001AF8ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_LED_DBG CVMX_LED_DBG_FUNC()
static inline uint64_t CVMX_LED_DBG_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_LED_DBG not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180000001A18ull);
}
#else
#define CVMX_LED_DBG (CVMX_ADD_IO_SEG(0x0001180000001A18ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_LED_EN CVMX_LED_EN_FUNC()
static inline uint64_t CVMX_LED_EN_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_LED_EN not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180000001A00ull);
}
#else
#define CVMX_LED_EN (CVMX_ADD_IO_SEG(0x0001180000001A00ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_LED_POLARITY CVMX_LED_POLARITY_FUNC()
static inline uint64_t CVMX_LED_POLARITY_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_LED_POLARITY not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180000001A50ull);
}
#else
#define CVMX_LED_POLARITY (CVMX_ADD_IO_SEG(0x0001180000001A50ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_LED_PRT CVMX_LED_PRT_FUNC()
static inline uint64_t CVMX_LED_PRT_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_LED_PRT not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180000001A10ull);
}
#else
#define CVMX_LED_PRT (CVMX_ADD_IO_SEG(0x0001180000001A10ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_LED_PRT_FMT CVMX_LED_PRT_FMT_FUNC()
static inline uint64_t CVMX_LED_PRT_FMT_FUNC(void)
{
	if (!(OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
		cvmx_warn("CVMX_LED_PRT_FMT not supported on this chip\n");
	return CVMX_ADD_IO_SEG(0x0001180000001A30ull);
}
#else
#define CVMX_LED_PRT_FMT (CVMX_ADD_IO_SEG(0x0001180000001A30ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_LED_PRT_STATUSX(unsigned long offset)
{
	if (!(
	      (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 7))) ||
	      (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 7))) ||
	      (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 7)))))
		cvmx_warn("CVMX_LED_PRT_STATUSX(%lu) is invalid on this chip\n", offset);
	return CVMX_ADD_IO_SEG(0x0001180000001A80ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_LED_PRT_STATUSX(offset) (CVMX_ADD_IO_SEG(0x0001180000001A80ull) + ((offset) & 7) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_LED_UDD_CNTX(unsigned long offset)
{
	if (!(
	      (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
	      (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
	      (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1)))))
		cvmx_warn("CVMX_LED_UDD_CNTX(%lu) is invalid on this chip\n", offset);
	return CVMX_ADD_IO_SEG(0x0001180000001A20ull) + ((offset) & 1) * 8;
}
#else
#define CVMX_LED_UDD_CNTX(offset) (CVMX_ADD_IO_SEG(0x0001180000001A20ull) + ((offset) & 1) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_LED_UDD_DATX(unsigned long offset)
{
	if (!(
	      (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
	      (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
	      (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1)))))
		cvmx_warn("CVMX_LED_UDD_DATX(%lu) is invalid on this chip\n", offset);
	return CVMX_ADD_IO_SEG(0x0001180000001A38ull) + ((offset) & 1) * 8;
}
#else
#define CVMX_LED_UDD_DATX(offset) (CVMX_ADD_IO_SEG(0x0001180000001A38ull) + ((offset) & 1) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_LED_UDD_DAT_CLRX(unsigned long offset)
{
	if (!(
	      (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
	      (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
	      (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1)))))
		cvmx_warn("CVMX_LED_UDD_DAT_CLRX(%lu) is invalid on this chip\n", offset);
	return CVMX_ADD_IO_SEG(0x0001180000001AC8ull) + ((offset) & 1) * 16;
}
#else
#define CVMX_LED_UDD_DAT_CLRX(offset) (CVMX_ADD_IO_SEG(0x0001180000001AC8ull) + ((offset) & 1) * 16)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_LED_UDD_DAT_SETX(unsigned long offset)
{
	if (!(
	      (OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
	      (OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
	      (OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1)))))
		cvmx_warn("CVMX_LED_UDD_DAT_SETX(%lu) is invalid on this chip\n", offset);
	return CVMX_ADD_IO_SEG(0x0001180000001AC0ull) + ((offset) & 1) * 16;
}
#else
#define CVMX_LED_UDD_DAT_SETX(offset) (CVMX_ADD_IO_SEG(0x0001180000001AC0ull) + ((offset) & 1) * 16)
#endif

/**
 * cvmx_led_blink
 *
 * LED_BLINK = LED Blink Rate (in led_clks)
 *
 */
union cvmx_led_blink {
	uint64_t u64;
	struct cvmx_led_blink_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_8_63                : 56;
	uint64_t rate                         : 8;  /**< LED Blink rate in led_latch clks
                                                         RATE must be > 0 */
#else
	uint64_t rate                         : 8;
	uint64_t reserved_8_63                : 56;
#endif
	} s;
	struct cvmx_led_blink_s               cn38xx;
	struct cvmx_led_blink_s               cn38xxp2;
	struct cvmx_led_blink_s               cn56xx;
	struct cvmx_led_blink_s               cn56xxp1;
	struct cvmx_led_blink_s               cn58xx;
	struct cvmx_led_blink_s               cn58xxp1;
};
typedef union cvmx_led_blink cvmx_led_blink_t;

/**
 * cvmx_led_clk_phase
 *
 * LED_CLK_PHASE = LED Clock Phase (in 64 eclks)
 *
 *
 * Notes:
 * Example:
 * Given a 2ns eclk, an LED_CLK_PHASE[PHASE] = 1, indicates that each
 * led_clk phase is 64 eclks, or 128ns.  The led_clk period is 2*phase,
 * or 256ns which is 3.9MHz.  The default value of 4, yields an led_clk
 * period of 64*4*2ns*2 = 1024ns or ~1MHz (977KHz).
 */
union cvmx_led_clk_phase {
	uint64_t u64;
	struct cvmx_led_clk_phase_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_7_63                : 57;
	uint64_t phase                        : 7;  /**< Number of 64 eclks in order to create the led_clk */
#else
	uint64_t phase                        : 7;
	uint64_t reserved_7_63                : 57;
#endif
	} s;
	struct cvmx_led_clk_phase_s           cn38xx;
	struct cvmx_led_clk_phase_s           cn38xxp2;
	struct cvmx_led_clk_phase_s           cn56xx;
	struct cvmx_led_clk_phase_s           cn56xxp1;
	struct cvmx_led_clk_phase_s           cn58xx;
	struct cvmx_led_clk_phase_s           cn58xxp1;
};
typedef union cvmx_led_clk_phase cvmx_led_clk_phase_t;

/**
 * cvmx_led_cylon
 *
 * LED_CYLON = LED CYLON Effect (should remain undocumented)
 *
 */
union cvmx_led_cylon {
	uint64_t u64;
	struct cvmx_led_cylon_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_16_63               : 48;
	uint64_t rate                         : 16; /**< LED Cylon Effect when RATE!=0
                                                         Changes at RATE*LATCH period */
#else
	uint64_t rate                         : 16;
	uint64_t reserved_16_63               : 48;
#endif
	} s;
	struct cvmx_led_cylon_s               cn38xx;
	struct cvmx_led_cylon_s               cn38xxp2;
	struct cvmx_led_cylon_s               cn56xx;
	struct cvmx_led_cylon_s               cn56xxp1;
	struct cvmx_led_cylon_s               cn58xx;
	struct cvmx_led_cylon_s               cn58xxp1;
};
typedef union cvmx_led_cylon cvmx_led_cylon_t;

/**
 * cvmx_led_dbg
 *
 * LED_DBG = LED Debug Port information
 *
 */
union cvmx_led_dbg {
	uint64_t u64;
	struct cvmx_led_dbg_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_1_63                : 63;
	uint64_t dbg_en                       : 1;  /**< Add Debug Port Data to the LED shift chain
                                                         Debug Data is shifted out LSB to MSB */
#else
	uint64_t dbg_en                       : 1;
	uint64_t reserved_1_63                : 63;
#endif
	} s;
	struct cvmx_led_dbg_s                 cn38xx;
	struct cvmx_led_dbg_s                 cn38xxp2;
	struct cvmx_led_dbg_s                 cn56xx;
	struct cvmx_led_dbg_s                 cn56xxp1;
	struct cvmx_led_dbg_s                 cn58xx;
	struct cvmx_led_dbg_s                 cn58xxp1;
};
typedef union cvmx_led_dbg cvmx_led_dbg_t;

/**
 * cvmx_led_en
 *
 * LED_EN = LED Interface Enable
 *
 *
 * Notes:
 * The LED interface is comprised of a shift chain with a parallel latch.  LED
 * data is shifted out on each fallingg edge of led_clk and then captured by
 * led_lat.
 *
 * The LED shift chain is comprised of the following...
 *
 *      32  - UDD header
 *      6x8 - per port status
 *      17  - debug port
 *      32  - UDD trailer
 *
 * for a total of 129 bits.
 *
 * UDD header is programmable from 0-32 bits (LED_UDD_CNT0) and will shift out
 * LSB to MSB (LED_UDD_DAT0[0], LED_UDD_DAT0[1],
 * ... LED_UDD_DAT0[LED_UDD_CNT0].
 *
 * The per port status is also variable.  Systems can control which ports send
 * data (LED_PRT) as well as the status content (LED_PRT_FMT and
 * LED_PRT_STATUS*).  When multiple ports are enabled, they come out in lowest
 * port to highest port (prt0, prt1, ...).
 *
 * The debug port data can also be added to the LED chain (LED_DBG).  When
 * enabled, the debug data shifts out LSB to MSB.
 *
 * The UDD trailer data is identical to the header data, but uses LED_UDD_CNT1
 * and LED_UDD_DAT1.
 */
union cvmx_led_en {
	uint64_t u64;
	struct cvmx_led_en_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_1_63                : 63;
	uint64_t en                           : 1;  /**< Enable the LED interface shift-chain */
#else
	uint64_t en                           : 1;
	uint64_t reserved_1_63                : 63;
#endif
	} s;
	struct cvmx_led_en_s                  cn38xx;
	struct cvmx_led_en_s                  cn38xxp2;
	struct cvmx_led_en_s                  cn56xx;
	struct cvmx_led_en_s                  cn56xxp1;
	struct cvmx_led_en_s                  cn58xx;
	struct cvmx_led_en_s                  cn58xxp1;
};
typedef union cvmx_led_en cvmx_led_en_t;

/**
 * cvmx_led_polarity
 *
 * LED_POLARITY = LED Polarity
 *
 */
union cvmx_led_polarity {
	uint64_t u64;
	struct cvmx_led_polarity_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_1_63                : 63;
	uint64_t polarity                     : 1;  /**< LED active polarity
                                                         0 = active HIGH LED
                                                         1 = active LOW LED (invert led_dat) */
#else
	uint64_t polarity                     : 1;
	uint64_t reserved_1_63                : 63;
#endif
	} s;
	struct cvmx_led_polarity_s            cn38xx;
	struct cvmx_led_polarity_s            cn38xxp2;
	struct cvmx_led_polarity_s            cn56xx;
	struct cvmx_led_polarity_s            cn56xxp1;
	struct cvmx_led_polarity_s            cn58xx;
	struct cvmx_led_polarity_s            cn58xxp1;
};
typedef union cvmx_led_polarity cvmx_led_polarity_t;

/**
 * cvmx_led_prt
 *
 * LED_PRT = LED Port status information
 *
 *
 * Notes:
 * Note:
 * the PRT vector enables information of the 8 RGMII ports connected to
 * Octane.  It does not reflect the actual programmed PHY addresses.
 */
union cvmx_led_prt {
	uint64_t u64;
	struct cvmx_led_prt_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_8_63                : 56;
	uint64_t prt_en                       : 8;  /**< Which ports are enabled to display status
                                                         PRT_EN<3:0> coresponds to RGMII ports 3-0 on int0
                                                         PRT_EN<7:4> coresponds to RGMII ports 7-4 on int1
                                                         Only applies when interface is in RGMII mode
                                                         The status format is defined by LED_PRT_FMT */
#else
	uint64_t prt_en                       : 8;
	uint64_t reserved_8_63                : 56;
#endif
	} s;
	struct cvmx_led_prt_s                 cn38xx;
	struct cvmx_led_prt_s                 cn38xxp2;
	struct cvmx_led_prt_s                 cn56xx;
	struct cvmx_led_prt_s                 cn56xxp1;
	struct cvmx_led_prt_s                 cn58xx;
	struct cvmx_led_prt_s                 cn58xxp1;
};
typedef union cvmx_led_prt cvmx_led_prt_t;

/**
 * cvmx_led_prt_fmt
 *
 * LED_PRT_FMT = LED Port Status Infomation Format
 *
 *
 * Notes:
 * TX: RGMII TX block is sending packet data or extends on the port
 * RX: RGMII RX block has received non-idle cycle
 *
 * For short transfers, LEDs will remain on for at least one blink cycle
 */
union cvmx_led_prt_fmt {
	uint64_t u64;
	struct cvmx_led_prt_fmt_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_4_63                : 60;
	uint64_t format                       : 4;  /**< Port Status Information for each enabled port in
                                                         LED_PRT.  The formats are below
                                                         0x0: [ LED_PRT_STATUS[0]            ]
                                                         0x1: [ LED_PRT_STATUS[1:0]          ]
                                                         0x2: [ LED_PRT_STATUS[3:0]          ]
                                                         0x3: [ LED_PRT_STATUS[5:0]          ]
                                                         0x4: [ (RX|TX), LED_PRT_STATUS[0]   ]
                                                         0x5: [ (RX|TX), LED_PRT_STATUS[1:0] ]
                                                         0x6: [ (RX|TX), LED_PRT_STATUS[3:0] ]
                                                         0x8: [ Tx, Rx, LED_PRT_STATUS[0]    ]
                                                         0x9: [ Tx, Rx, LED_PRT_STATUS[1:0]  ]
                                                         0xa: [ Tx, Rx, LED_PRT_STATUS[3:0]  ] */
#else
	uint64_t format                       : 4;
	uint64_t reserved_4_63                : 60;
#endif
	} s;
	struct cvmx_led_prt_fmt_s             cn38xx;
	struct cvmx_led_prt_fmt_s             cn38xxp2;
	struct cvmx_led_prt_fmt_s             cn56xx;
	struct cvmx_led_prt_fmt_s             cn56xxp1;
	struct cvmx_led_prt_fmt_s             cn58xx;
	struct cvmx_led_prt_fmt_s             cn58xxp1;
};
typedef union cvmx_led_prt_fmt cvmx_led_prt_fmt_t;

/**
 * cvmx_led_prt_status#
 *
 * LED_PRT_STATUS = LED Port Status information
 *
 */
union cvmx_led_prt_statusx {
	uint64_t u64;
	struct cvmx_led_prt_statusx_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_6_63                : 58;
	uint64_t status                       : 6;  /**< Bits that software can set to be added to the
                                                         LED shift chain - depending on LED_PRT_FMT
                                                         LED_PRT_STATUS(3..0) corespond to RGMII ports 3-0
                                                          on interface0
                                                         LED_PRT_STATUS(7..4) corespond to RGMII ports 7-4
                                                          on interface1
                                                         Only applies when interface is in RGMII mode */
#else
	uint64_t status                       : 6;
	uint64_t reserved_6_63                : 58;
#endif
	} s;
	struct cvmx_led_prt_statusx_s         cn38xx;
	struct cvmx_led_prt_statusx_s         cn38xxp2;
	struct cvmx_led_prt_statusx_s         cn56xx;
	struct cvmx_led_prt_statusx_s         cn56xxp1;
	struct cvmx_led_prt_statusx_s         cn58xx;
	struct cvmx_led_prt_statusx_s         cn58xxp1;
};
typedef union cvmx_led_prt_statusx cvmx_led_prt_statusx_t;

/**
 * cvmx_led_udd_cnt#
 *
 * LED_UDD_CNT = LED UDD Counts
 *
 */
union cvmx_led_udd_cntx {
	uint64_t u64;
	struct cvmx_led_udd_cntx_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_6_63                : 58;
	uint64_t cnt                          : 6;  /**< Number of bits of user-defined data to include in
                                                         the LED shift chain.  Legal values: 0-32. */
#else
	uint64_t cnt                          : 6;
	uint64_t reserved_6_63                : 58;
#endif
	} s;
	struct cvmx_led_udd_cntx_s            cn38xx;
	struct cvmx_led_udd_cntx_s            cn38xxp2;
	struct cvmx_led_udd_cntx_s            cn56xx;
	struct cvmx_led_udd_cntx_s            cn56xxp1;
	struct cvmx_led_udd_cntx_s            cn58xx;
	struct cvmx_led_udd_cntx_s            cn58xxp1;
};
typedef union cvmx_led_udd_cntx cvmx_led_udd_cntx_t;

/**
 * cvmx_led_udd_dat#
 *
 * LED_UDD_DAT = User defined data (header or trailer)
 *
 *
 * Notes:
 * Bits come out LSB to MSB on the shift chain.  If LED_UDD_CNT is set to 4
 * then the bits comes out LED_UDD_DAT[0], LED_UDD_DAT[1], LED_UDD_DAT[2],
 * LED_UDD_DAT[3].
 */
union cvmx_led_udd_datx {
	uint64_t u64;
	struct cvmx_led_udd_datx_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_32_63               : 32;
	uint64_t dat                          : 32; /**< Header or trailer UDD data to be displayed on
                                                         the LED shift chain.  Number of bits to include
                                                         is controled by LED_UDD_CNT */
#else
	uint64_t dat                          : 32;
	uint64_t reserved_32_63               : 32;
#endif
	} s;
	struct cvmx_led_udd_datx_s            cn38xx;
	struct cvmx_led_udd_datx_s            cn38xxp2;
	struct cvmx_led_udd_datx_s            cn56xx;
	struct cvmx_led_udd_datx_s            cn56xxp1;
	struct cvmx_led_udd_datx_s            cn58xx;
	struct cvmx_led_udd_datx_s            cn58xxp1;
};
typedef union cvmx_led_udd_datx cvmx_led_udd_datx_t;

/**
 * cvmx_led_udd_dat_clr#
 *
 * LED_UDD_DAT_CLR = User defined data (header or trailer)
 *
 */
union cvmx_led_udd_dat_clrx {
	uint64_t u64;
	struct cvmx_led_udd_dat_clrx_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_32_63               : 32;
	uint64_t clr                          : 32; /**< Bitwise clear for the Header or trailer UDD data to
                                                         be displayed on the LED shift chain. */
#else
	uint64_t clr                          : 32;
	uint64_t reserved_32_63               : 32;
#endif
	} s;
	struct cvmx_led_udd_dat_clrx_s        cn38xx;
	struct cvmx_led_udd_dat_clrx_s        cn38xxp2;
	struct cvmx_led_udd_dat_clrx_s        cn56xx;
	struct cvmx_led_udd_dat_clrx_s        cn56xxp1;
	struct cvmx_led_udd_dat_clrx_s        cn58xx;
	struct cvmx_led_udd_dat_clrx_s        cn58xxp1;
};
typedef union cvmx_led_udd_dat_clrx cvmx_led_udd_dat_clrx_t;

/**
 * cvmx_led_udd_dat_set#
 *
 * LED_UDD_DAT_SET = User defined data (header or trailer)
 *
 */
union cvmx_led_udd_dat_setx {
	uint64_t u64;
	struct cvmx_led_udd_dat_setx_s {
#ifdef __BIG_ENDIAN_BITFIELD
	uint64_t reserved_32_63               : 32;
	uint64_t set                          : 32; /**< Bitwise set for the Header or trailer UDD data to
                                                         be displayed on the LED shift chain. */
#else
	uint64_t set                          : 32;
	uint64_t reserved_32_63               : 32;
#endif
	} s;
	struct cvmx_led_udd_dat_setx_s        cn38xx;
	struct cvmx_led_udd_dat_setx_s        cn38xxp2;
	struct cvmx_led_udd_dat_setx_s        cn56xx;
	struct cvmx_led_udd_dat_setx_s        cn56xxp1;
	struct cvmx_led_udd_dat_setx_s        cn58xx;
	struct cvmx_led_udd_dat_setx_s        cn58xxp1;
};
typedef union cvmx_led_udd_dat_setx cvmx_led_udd_dat_setx_t;

#endif