Training courses

Kernel and Embedded Linux

Bootlin training courses

Embedded Linux, kernel,
Yocto Project, Buildroot, real-time,
graphics, boot time, debugging...

Bootlin logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
/***********************license start***************
 * Copyright (c) 2003-2010  Cavium Inc. (support@cavium.com). All rights
 * reserved.
 *
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.

 *   * Neither the name of Cavium Inc. nor the names of
 *     its contributors may be used to endorse or promote products
 *     derived from this software without specific prior written
 *     permission.

 * This Software, including technical data, may be subject to U.S. export  control
 * laws, including the U.S. Export Administration Act and its  associated
 * regulations, and may be subject to export or import  regulations in other
 * countries.

 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
 * AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
 * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE  RISK ARISING OUT OF USE OR
 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
 ***********************license end**************************************/







#define CVMX_USE_1_TO_1_TLB_MAPPINGS 0
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
#include <linux/kernel.h>
#include <asm/octeon/cvmx.h>
#include <asm/octeon/cvmx-spinlock.h>
#include <asm/octeon/octeon-pci-console.h>

#define MIN(a,b) min((a),(b))

#else
#include "cvmx-platform.h"

#include "cvmx.h"
#include "cvmx-spinlock.h"
#ifndef MIN
# define	MIN(a,b) (((a)<(b))?(a):(b))
#endif

#include "cvmx-bootmem.h"
#include "octeon-pci-console.h"
#endif
#ifdef __U_BOOT__
#include <watchdog.h>
#endif

#if defined(__linux__) && !defined(__KERNEL__) && !defined(OCTEON_TARGET)
#include "octeon-pci.h"
#endif


/* The following code is only used in standalone CVMX applications. It does
    not apply for kernel or Linux programming */
#if defined(OCTEON_TARGET) && !defined(__linux__) && !defined(CVMX_BUILD_FOR_LINUX_KERNEL)

static int cvmx_pci_console_num = 0;
static int per_core_pci_consoles = 0;
static uint64_t pci_console_desc_addr = 0;
/* This function for simple executive internal use only - do not use in any application */
int  __cvmx_pci_console_write (int fd, char *buf, int nbytes)
{
    int console_num;
    if (fd >= 0x10000000)
    {
        console_num = fd & 0xFFFF;
    }
    else if (per_core_pci_consoles)
    {
        console_num = cvmx_get_core_num();
    }
    else
        console_num = cvmx_pci_console_num;

    if (!pci_console_desc_addr)
    {
        const cvmx_bootmem_named_block_desc_t *block_desc = cvmx_bootmem_find_named_block(OCTEON_PCI_CONSOLE_BLOCK_NAME);
        pci_console_desc_addr = block_desc->base_addr;
    }


    return octeon_pci_console_write(pci_console_desc_addr, console_num, buf, nbytes, 0);

}

#endif


#if !defined(CONFIG_OCTEON_U_BOOT) || (defined(CONFIG_OCTEON_U_BOOT) && (defined(CFG_PCI_CONSOLE) || defined(CONFIG_SYS_PCI_CONSOLE)))
static int octeon_pci_console_buffer_free_bytes(uint32_t buffer_size, uint32_t wr_idx, uint32_t rd_idx)
{
    if (rd_idx >= buffer_size || wr_idx >= buffer_size)
        return -1;

    return (((buffer_size -1) - (wr_idx - rd_idx))%buffer_size);
}
static int octeon_pci_console_buffer_avail_bytes(uint32_t buffer_size, uint32_t wr_idx, uint32_t rd_idx)
{
    if (rd_idx >= buffer_size || wr_idx >= buffer_size)
        return -1;

    return (buffer_size - 1 - octeon_pci_console_buffer_free_bytes(buffer_size, wr_idx, rd_idx));
}
#endif



/* The following code is only used under Linux userspace when you are using
    CVMX */
#if defined(__linux__) && !defined(__KERNEL__) && !defined(OCTEON_TARGET)
int octeon_pci_console_host_write(uint64_t console_desc_addr, unsigned int console_num, const char * buffer, int write_reqest_size, uint32_t flags)
{
    if (!console_desc_addr)
        return -1;

    /* Get global pci console information and look up specific console structure. */
    uint32_t num_consoles = octeon_read_mem32(console_desc_addr + offsetof(octeon_pci_console_desc_t, num_consoles));
//    printf("Num consoles: %d, buf size: %d\n", num_consoles, console_buffer_size);
    if (console_num >= num_consoles)
    {
        printf("ERROR: attempting to read non-existant console: %d\n", console_num);
        return(-1);
    }
    uint64_t console_addr = octeon_read_mem64(console_desc_addr + offsetof(octeon_pci_console_desc_t, console_addr_array) + console_num *8);
//    printf("Console %d is at 0x%llx\n", console_num, (long long)console_addr);

    uint32_t console_buffer_size = octeon_read_mem32(console_addr + offsetof(octeon_pci_console_t, buf_size));
    /* Check to see if any data is available */
    uint32_t rd_idx, wr_idx;
    uint64_t base_addr;

    base_addr = octeon_read_mem64(console_addr + offsetof(octeon_pci_console_t, input_base_addr));
    rd_idx = octeon_read_mem32(console_addr + offsetof(octeon_pci_console_t, input_read_index));
    wr_idx = octeon_read_mem32(console_addr + offsetof(octeon_pci_console_t, input_write_index));

//    printf("Input base: 0x%llx, rd: %d(0x%x), wr: %d(0x%x)\n", (long long)base_addr, rd_idx, rd_idx, wr_idx, wr_idx);
    int bytes_to_write = octeon_pci_console_buffer_free_bytes(console_buffer_size, wr_idx, rd_idx);
    if (bytes_to_write <= 0)
        return bytes_to_write;
    bytes_to_write = MIN(bytes_to_write, write_reqest_size);
    /* Check to see if what we want to write is not contiguous, and limit ourselves to the contiguous block*/
    if (wr_idx + bytes_to_write >= console_buffer_size)
        bytes_to_write = console_buffer_size - wr_idx;

//    printf("Attempting to write %d bytes, (buf size: %d)\n", bytes_to_write, write_reqest_size);

    octeon_pci_write_mem(base_addr + wr_idx, buffer, bytes_to_write, OCTEON_PCI_ENDIAN_64BIT_SWAP);
    octeon_write_mem32(console_addr + offsetof(octeon_pci_console_t, input_write_index), (wr_idx + bytes_to_write)%console_buffer_size);

    return bytes_to_write;

}

int octeon_pci_console_host_read(uint64_t console_desc_addr, unsigned int console_num, char * buffer, int buf_size, uint32_t flags)
{
    if (!console_desc_addr)
        return -1;

    /* Get global pci console information and look up specific console structure. */
    uint32_t num_consoles = octeon_read_mem32(console_desc_addr + offsetof(octeon_pci_console_desc_t, num_consoles));
//    printf("Num consoles: %d, buf size: %d\n", num_consoles, console_buffer_size);
    if (console_num >= num_consoles)
    {
        printf("ERROR: attempting to read non-existant console: %d\n", console_num);
        return(-1);
    }
    uint64_t console_addr = octeon_read_mem64(console_desc_addr + offsetof(octeon_pci_console_desc_t, console_addr_array) + console_num *8);
    uint32_t console_buffer_size = octeon_read_mem32(console_addr + offsetof(octeon_pci_console_t, buf_size));
//    printf("Console %d is at 0x%llx\n", console_num, (long long)console_addr);

    /* Check to see if any data is available */
    uint32_t rd_idx, wr_idx;
    uint64_t base_addr;

    base_addr = octeon_read_mem64(console_addr + offsetof(octeon_pci_console_t, output_base_addr));
    rd_idx = octeon_read_mem32(console_addr + offsetof(octeon_pci_console_t, output_read_index));
    wr_idx = octeon_read_mem32(console_addr + offsetof(octeon_pci_console_t, output_write_index));

//    printf("Read buffer base: 0x%llx, rd: %d(0x%x), wr: %d(0x%x)\n", (long long)base_addr, rd_idx, rd_idx, wr_idx, wr_idx);
    int bytes_to_read = octeon_pci_console_buffer_avail_bytes(console_buffer_size, wr_idx, rd_idx);
    if (bytes_to_read <= 0)
        return bytes_to_read;


    bytes_to_read = MIN(bytes_to_read, buf_size);
    /* Check to see if what we want to read is not contiguous, and limit ourselves to the contiguous block*/
    if (rd_idx + bytes_to_read >= console_buffer_size)
        bytes_to_read = console_buffer_size - rd_idx;


    octeon_pci_read_mem(buffer, base_addr + rd_idx, bytes_to_read,OCTEON_PCI_ENDIAN_64BIT_SWAP);
    octeon_write_mem32(console_addr + offsetof(octeon_pci_console_t, output_read_index), (rd_idx + bytes_to_read)%console_buffer_size);

    return bytes_to_read;
}


int octeon_pci_console_host_write_avail(uint64_t console_desc_addr, unsigned int console_num)
{
    if (!console_desc_addr)
        return -1;

    /* Get global pci console information and look up specific console structure. */
    uint32_t num_consoles = octeon_read_mem32(console_desc_addr + offsetof(octeon_pci_console_desc_t, num_consoles));
//    printf("Num consoles: %d, buf size: %d\n", num_consoles, console_buffer_size);
    if (console_num >= num_consoles)
    {
        printf("ERROR: attempting to read non-existant console: %d\n", console_num);
        return -1;
    }
    uint64_t console_addr = octeon_read_mem64(console_desc_addr + offsetof(octeon_pci_console_desc_t, console_addr_array) + console_num *8);
//    printf("Console %d is at 0x%llx\n", console_num, (long long)console_addr);

    uint32_t console_buffer_size = octeon_read_mem32(console_addr + offsetof(octeon_pci_console_t, buf_size));
    /* Check to see if any data is available */
    uint32_t rd_idx, wr_idx;
    uint64_t base_addr;

    base_addr = octeon_read_mem64(console_addr + offsetof(octeon_pci_console_t, input_base_addr));
    rd_idx = octeon_read_mem32(console_addr + offsetof(octeon_pci_console_t, input_read_index));
    wr_idx = octeon_read_mem32(console_addr + offsetof(octeon_pci_console_t, input_write_index));

//    printf("Input base: 0x%llx, rd: %d(0x%x), wr: %d(0x%x)\n", (long long)base_addr, rd_idx, rd_idx, wr_idx, wr_idx);
    return octeon_pci_console_buffer_free_bytes(console_buffer_size, wr_idx, rd_idx);
}


int octeon_pci_console_host_read_avail(uint64_t console_desc_addr, unsigned int console_num)
{
    if (!console_desc_addr)
        return -1;

    /* Get global pci console information and look up specific console structure. */
    uint32_t num_consoles = octeon_read_mem32(console_desc_addr + offsetof(octeon_pci_console_desc_t, num_consoles));
//    printf("Num consoles: %d, buf size: %d\n", num_consoles, console_buffer_size);
    if (console_num >= num_consoles)
    {
        printf("ERROR: attempting to read non-existant console: %d\n", console_num);
        return(-1);
    }
    uint64_t console_addr = octeon_read_mem64(console_desc_addr + offsetof(octeon_pci_console_desc_t, console_addr_array) + console_num *8);
    uint32_t console_buffer_size = octeon_read_mem32(console_addr + offsetof(octeon_pci_console_t, buf_size));
//    printf("Console %d is at 0x%llx\n", console_num, (long long)console_addr);

    /* Check to see if any data is available */
    uint32_t rd_idx, wr_idx;
    uint64_t base_addr;

    base_addr = octeon_read_mem64(console_addr + offsetof(octeon_pci_console_t, output_base_addr));
    rd_idx = octeon_read_mem32(console_addr + offsetof(octeon_pci_console_t, output_read_index));
    wr_idx = octeon_read_mem32(console_addr + offsetof(octeon_pci_console_t, output_write_index));

//    printf("Read buffer base: 0x%llx, rd: %d(0x%x), wr: %d(0x%x)\n", (long long)base_addr, rd_idx, rd_idx, wr_idx, wr_idx);
    return octeon_pci_console_buffer_avail_bytes(console_buffer_size, wr_idx, rd_idx);
}


#endif /* TARGET_HOST */






/* This code is only available in a kernel or CVMX standalone. It can't be used
    from userspace */
#if (!defined(CONFIG_OCTEON_U_BOOT) && (!defined(__linux__) || defined(__KERNEL__))) || (defined(CONFIG_OCTEON_U_BOOT) && (defined(CFG_PCI_CONSOLE) || defined(CONFIG_SYS_PCI_CONSOLE))) || defined(CVMX_BUILD_FOR_LINUX_KERNEL)

static octeon_pci_console_t *octeon_pci_console_get_ptr(uint64_t console_desc_addr, unsigned int console_num)
{
    octeon_pci_console_desc_t *cons_desc_ptr;

    if (!console_desc_addr)
        return NULL;

    cons_desc_ptr = (octeon_pci_console_desc_t *)cvmx_phys_to_ptr(console_desc_addr);
    if (console_num >= cons_desc_ptr->num_consoles)
        return NULL;

    return (octeon_pci_console_t *)cvmx_phys_to_ptr(cons_desc_ptr->console_addr_array[console_num]);
}


int octeon_pci_console_write(uint64_t console_desc_addr, unsigned int console_num, const char * buffer, int bytes_to_write, uint32_t flags)
{
    octeon_pci_console_t *cons_ptr;
    cvmx_spinlock_t *lock;
    int bytes_available;
    char *buf_ptr;
    int bytes_written;

    cons_ptr = octeon_pci_console_get_ptr(console_desc_addr, console_num);
    if (!cons_ptr)
        return -1;

    lock = (cvmx_spinlock_t *)&cons_ptr->lock;

    buf_ptr = (char*)cvmx_phys_to_ptr(cons_ptr->output_base_addr);
    bytes_written = 0;
    cvmx_spinlock_lock(lock);
    while (bytes_to_write > 0)
    {
        bytes_available = octeon_pci_console_buffer_free_bytes(cons_ptr->buf_size, cons_ptr->output_write_index, cons_ptr->output_read_index);
//        printf("Console %d has %d bytes available for writes\n", console_num, bytes_available);
        if (bytes_available > 0)
        {
            int write_size = MIN(bytes_available, bytes_to_write);
            /* Limit ourselves to what we can output in a contiguous block */
            if (cons_ptr->output_write_index + write_size >= cons_ptr->buf_size)
                write_size = cons_ptr->buf_size - cons_ptr->output_write_index;

            memcpy(buf_ptr + cons_ptr->output_write_index, buffer + bytes_written, write_size);
            CVMX_SYNCW;  /* Make sure data is visible before changing write index */
            cons_ptr->output_write_index = (cons_ptr->output_write_index + write_size)%cons_ptr->buf_size;
            bytes_to_write -= write_size;
            bytes_written += write_size;
        }
        else if (bytes_available == 0)
        {
            /* Check to see if we should wait for room, or return after a partial write */
            if (flags & OCT_PCI_CON_FLAG_NONBLOCK)
                goto done;

#ifdef __U_BOOT__
            WATCHDOG_RESET();
#endif
            cvmx_wait(1000000);  /* Delay if we are spinning */
        }
        else
        {
            bytes_written = -1;
            goto done;
        }
    }

done:
    cvmx_spinlock_unlock(lock);
    return(bytes_written);
}

int octeon_pci_console_read(uint64_t console_desc_addr, unsigned int console_num, char * buffer, int buffer_size, uint32_t flags)
{
    int bytes_available;
    char *buf_ptr;
    cvmx_spinlock_t *lock;
    int bytes_read;
    int read_size;
    octeon_pci_console_t *cons_ptr = octeon_pci_console_get_ptr(console_desc_addr, console_num);
    if (!cons_ptr)
        return -1;

    buf_ptr = (char*)cvmx_phys_to_ptr(cons_ptr->input_base_addr);

    bytes_available = octeon_pci_console_buffer_avail_bytes(cons_ptr->buf_size, cons_ptr->input_write_index, cons_ptr->input_read_index);
    if (bytes_available < 0)
        return bytes_available;

    lock = (cvmx_spinlock_t *)&cons_ptr->lock;
    cvmx_spinlock_lock(lock);

    if (!(flags & OCT_PCI_CON_FLAG_NONBLOCK))
    {
        /* Wait for some data to be available */
        while (0 == (bytes_available = octeon_pci_console_buffer_avail_bytes(cons_ptr->buf_size, cons_ptr->input_write_index, cons_ptr->input_read_index)))
        {
            cvmx_wait(1000000);
#ifdef __U_BOOT__
            WATCHDOG_RESET();
#endif
        }
    }

    bytes_read = 0;
//        printf("Console %d has %d bytes available for writes\n", console_num, bytes_available);

    /* Don't overflow the buffer passed to us */
    read_size = MIN(bytes_available, buffer_size);

    /* Limit ourselves to what we can input in a contiguous block */
    if (cons_ptr->input_read_index + read_size >= cons_ptr->buf_size)
        read_size = cons_ptr->buf_size - cons_ptr->input_read_index;

    memcpy(buffer, buf_ptr + cons_ptr->input_read_index, read_size);
    cons_ptr->input_read_index = (cons_ptr->input_read_index + read_size)%cons_ptr->buf_size;
    bytes_read += read_size;

    cvmx_spinlock_unlock(lock);
    return(bytes_read);
}


int octeon_pci_console_write_avail(uint64_t console_desc_addr, unsigned int console_num)
{
    int bytes_available;
    octeon_pci_console_t *cons_ptr = octeon_pci_console_get_ptr(console_desc_addr, console_num);
    if (!cons_ptr)
        return -1;

    bytes_available = octeon_pci_console_buffer_free_bytes(cons_ptr->buf_size, cons_ptr->input_write_index, cons_ptr->input_read_index);
    if (bytes_available >= 0)
        return(bytes_available);
    else
        return 0;
}


int octeon_pci_console_read_avail(uint64_t console_desc_addr, unsigned int console_num)
{
    int bytes_available;
    octeon_pci_console_t *cons_ptr = octeon_pci_console_get_ptr(console_desc_addr, console_num);
    if (!cons_ptr)
        return -1;

    bytes_available = octeon_pci_console_buffer_avail_bytes(cons_ptr->buf_size, cons_ptr->input_write_index, cons_ptr->input_read_index);
    if (bytes_available >= 0)
        return(bytes_available);
    else
        return 0;
}

#endif


/* This code can only be used in the bootloader */
#if defined(CONFIG_OCTEON_U_BOOT) && (defined(CFG_PCI_CONSOLE) || defined(CONFIG_SYS_PCI_CONSOLE))
uint64_t  octeon_pci_console_init(int num_consoles, int buffer_size)
{
    octeon_pci_console_desc_t *cons_desc_ptr;
    octeon_pci_console_t *cons_ptr;

    /* Compute size required for pci console structure */
    int alloc_size = num_consoles * (buffer_size * 2 + sizeof(octeon_pci_console_t) + sizeof(uint64_t)) + sizeof(octeon_pci_console_desc_t);

    /* Allocate memory for the consoles.  This must be in the range addresssible by the bootloader.
    ** Try to do so in a manner which minimizes fragmentation.  We try to put it at the top of DDR0 or bottom of
    ** DDR2 first, and only do generic allocation if those fail */
    int64_t console_block_addr = cvmx_bootmem_phy_named_block_alloc(alloc_size, OCTEON_DDR0_SIZE - alloc_size - 128, OCTEON_DDR0_SIZE, 128, OCTEON_PCI_CONSOLE_BLOCK_NAME, CVMX_BOOTMEM_FLAG_END_ALLOC);
    if (console_block_addr < 0)
        console_block_addr = cvmx_bootmem_phy_named_block_alloc(alloc_size, OCTEON_DDR2_BASE + 1, OCTEON_DDR2_BASE + alloc_size + 128, 128, OCTEON_PCI_CONSOLE_BLOCK_NAME, CVMX_BOOTMEM_FLAG_END_ALLOC);
    if (console_block_addr < 0)
        console_block_addr = cvmx_bootmem_phy_named_block_alloc(alloc_size, 0, 0x7fffffff, 128, OCTEON_PCI_CONSOLE_BLOCK_NAME, CVMX_BOOTMEM_FLAG_END_ALLOC);
    if (console_block_addr < 0)
        return 0;

    cons_desc_ptr = (void *)(uint32_t)console_block_addr;

    memset(cons_desc_ptr, 0, alloc_size);  /* Clear entire alloc'ed memory */

    cons_desc_ptr->lock = 1; /* initialize as locked until we are done */
    CVMX_SYNCW;
    cons_desc_ptr->num_consoles = num_consoles;
    cons_desc_ptr->flags = 0;
    cons_desc_ptr->major_version = OCTEON_PCI_CONSOLE_MAJOR_VERSION;
    cons_desc_ptr->minor_version = OCTEON_PCI_CONSOLE_MINOR_VERSION;

    int i;
    uint64_t avail_addr = console_block_addr + sizeof(octeon_pci_console_desc_t) + num_consoles * sizeof(uint64_t);
    for (i = 0; i < num_consoles;i++)
    {
        cons_desc_ptr->console_addr_array[i] = avail_addr;
        cons_ptr = (void *)(uint32_t)cons_desc_ptr->console_addr_array[i];
        avail_addr += sizeof(octeon_pci_console_t);
        cons_ptr->input_base_addr = avail_addr;
        avail_addr += buffer_size;
        cons_ptr->output_base_addr = avail_addr;
        avail_addr += buffer_size;
        cons_ptr->buf_size = buffer_size;
    }
    CVMX_SYNCW;
    cons_desc_ptr->lock = 0;

    return console_block_addr;


}
#endif